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ABSTRACT A modified Newton-Raphson method for
solving finite difference equations for the renal counter-
flow system is described. The method has proved generally
stable and efficient, and has given significant computa-
tional results for a variety of models: calculations on
single solute models of the coupled vasa recta nephron
counterflow system have shown that for large water and
solute permeabilities of the exchanging membranes, be-
havior of the non-ideal system approaches that of the
previously described ideal central core model. Concentra-
tion by salt and urea mixing in two solute models has been
analyzed and previous conclusions from central core
models have been found to remain valid in non-ideal
systems. The numerical solutions have set some order of
magnitude bounds on permeability requirements for con-
centration in different types of non-ideal systems. Finally,
from the detailed concentration profiles it has been possi-
ble to relate the rate of free energy creation and dissipa-
tion from transmembrane transport of solutes and water
to the net rate of free energy efflux from the counterflow
system, and so to compute in a given model the fraction
of power used for solute concentration.

It has been proposed in previous papers (1-3) that the behavior
of the intricately coupled nephrovascular counterflow system
of the renal medulla (4) approaches as a limiting case that of a
four-tube model: the vascular counterflow exchanger is repre-
sented by a single tube-the central core, closed at the papil-
lary end and open at the corticomedullary junction-which
exchanges with three other tubes corresponding respectively
to ascending Henle's limb (AHL), descending Henle's limb
(DHL), and collecting duct (CD). Under the assumption that
total solute concentrations in core, DHL, and CD are nearly
the same at each level of the medulla, it has been possible to
develop an approximate analytic theory of the ideal central
core concentrating engine and so of the medullary counterflow
system. This assumption implies very high solute and water
permeability of the vasa recta and very high osmotic water
permeability and (or) solute permeability of DHL and CD.
The behavior of non-ideal models with finite permeabilities
will deviate from that of the ideal central core model. In
general, the differential equations describing non-ideal models
must be solved numerically. For certain single-solute models
this has been done by converting the two-point boundary
value problem to an initial value problem (5), but this method
tends to be unstable, requiring very good initial estimates to
converge, and does not extend readily to two-solute models.

In this paper we outline a modified Newton-Raphson
method for solving globally finite difference equations approxi-
mating the differential equations. The method has proved
generally applicable to a variety of models of the renal
counterflow system. In this paper we summarize some signifi-
cant preliminary computational results. Detailed descriptions
of both the method and the results are in preparation.

Solution of finite difference equations

Under suitable restrictions the steady state differential equa-
tions for the renal counterflow system are (2, 6):

dFik/dx = -Jik,

dFiv/dx = -Jiv,
Jik = 2vpJip,,

jiD = 2pvJip. D

Fik= FivCik, and

dPi/dx = -RiFFiv,

[1]
[2)
[3]

[4]
[5]

[6]
where Fik is the axial flow of the kth solute in the ith tube, F,,
is the axial volume flow in the ith tube, Jik is the outward
transmural flux per unit length of the kth solute from the ith
tube, Ji, is the outward transmural volume flux (primarily
water), Jl7,k is the transmural flux of the kth solute from the
ith to the pth tube, Jr,,, is the transmural volume flux from
the ith to the pth tube, Cik is the concentration of the kth solute
in the ith tube, Pi is hydrostatic pressure, RiF is flow resis-
tance, and x is normalized distance along the axis, 0 < x < 1.
Transmural fluxes are given by

Jip=k= Jip,t(l - ojp,k)(Cik + Cpk)/2
+ htpk(Cik - CP) + itpk and [7]

JiPv = hipV[2k RT(cpk - Cik)aiP,k + Pi - Pplj [8]
where 01p,k is the Staverman reflection coefficient of the mem-
brane separating the ith from the pth tube for the kth solute,
hipk is its passive permeability for the kth solute, hip, is its
hydraulic permeability coefficient, 51p,k is the metabolically
driven transport from the ith to the pth tube, R is the gas
constant, and T is the absolute temperature.
We assume that the metabolically driven transport obeys

approximate Michaelis-Menten kinetics, i.e.

Abbreviations: AHL, ascending Henle's limb; DHL, descending
Henle's limb; CD, collecting duct; DVR, descending vasa recta;
AVR, ascending vasa recta; DN, distal cortical nephron.
* A preliminary report of this work was given in ref. 13.
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3ipk= aip,k/[l + blp,k/Cik] [9]
where alV,k is the maximum rate of transport and b,,,k is the
Michaelis constant. All of the membrane parameters may be
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functions of distance along the tube, but are assumed not to
depend on concentrations, flows, or pressures. For any particu-
lar membrane some of them usually equal zero; e.g., for no
active transport, ajp ,k = 0.
Boundary conditions for the above system of equations are

that entering concentrations, pressures, and flows are specified
at x = 0 (the corticomedullary border) for tubes corresponding
to DHL and descending vasa recta (DVR). Concentrations,
pressures and flows, entering AHL at x = 1 (the papilla) must
match those leaving DHL. Similarly ascending vasa recta
(AVR) must match DVR at x = 1. When vasa recta are
approximated by the core we have the subsidiary equations

C4k(l) = J4v() [10]

(We follow the general subscripting convention DHL = 1,
AHL = 2, CD = 3, core or AVR = 4, DVR = 5, and DN =
6.) When distal cortical nephron§ (DN) is included in the
model, it is assumed to exchange with an external bath of fixed
composition and pressure; distance varies from 0 to 1 along
the DN, entering concentrations, flows, and pressures must
match those for AHL at x = 0, and final values for DN at x =
1 must match entering values for CD at ± = 0. When DN is
not included, then entering concentrations, flows, and pres-
sures for CD are specified.
To approximate the differential Eqs. 1 and 2 by difference

equations, the medulla (and distal tubule) were divided into
N segments and the difference equations

Fjk(j + 1) - Fjk(j) = -[Jik(j + 1) + Jlk(j)J/(2N), [11]
Fjv(j + 1) - Fit(j) = - [Jiv(j + 1) + Jj(j) ]/(2N), [121
and

Pi(j + 1) - P(j) =

-RiF[FIv(j + 1) + Fjv(j)]/(2N), [13]
were written for each segment, where F1A(j) is the flow of the
kth solute at x j/N. If RtF is very small, pressure is nearly
constant throughout the system and drops out of the equa-
tions. The system of Eqs. 11 and 12 can then be solved
iteratively as follows.
The functions

t= -Ftk(i + 1) + Fik(j)
- [J k(j + 1) + JikW]/(2N) [14]

are defined. An initial estimate is then made of the Cjk(j).
From Eqs. 12 and 8 and the boundary conditions, the Fi,(j)
are then computed. It can be seen that these are functions
only of the Cjk(j) and the hydraulic permeabilities. Then sub-
stituting these F18(j) into Eq. 5, the resulting Fik(j) into Eq.
11 and using Eqs. 7 and 9 gives the 1k as functions of the
cak(j) only. The deviation of each BO kk from 0 is a measure of
the rate (positive or negative) at which the kth solute is
accumulating in thejth segment of the ith tube for the particu-
lar initial choice of the Cjk(j).
For a steady state solution we require I40ijkI < e for all i, j,

and k, where E is some preset tolerance. Ordinarily the toler-
ance condition is not satisfied by the initial choice of the
Cik(j). To improve the estimate, the Jacobian matrix, G, of the
partial derivatives 60ijk/lCqr(S) is computed numerically.

The system of linear equations

- GAc = 0, [15]
where O is the vector of the accumulation functions 4aIk and c
the vector of the C ikj, is then solved by Gaussian elimination
and back substitution to give the correction Ac = G-1 0 to the
vector of concentrations. If G is singular, which occurs
occasionally, an approximation to the Moore-Penrose gener-
alized inverse of G is then substituted for G'. The approxi-
mation is G+ (GTG + TI)-GT, where G+ is the generalized
inverse, GT is the transpose of G, and T is a small positive
number (7, 8). The next approximation of the concentration
vector c is given by

c = C - tAc, [16]

where t is a scalar chosen to maximize convergence to the
solution maxi,J, k Ij, jkI < e. (t = 1 corresponds to the Newton-
Raphson method and is ordinarily used.)
The method is both efficient and stable. For e = 10- and

initial entering total solute flow in DHL equal approximately
to 1, four to ten iterations are usually needed to obtain a solu-
tion. The number of iterations depends primarily on the initial
estimate and is relatively independent of the number of func-
tions ~ik. The time per iteration increases roughly as the cube
of the total number of equations (Eq. 14). In most of the
computations given below the number of spatial segments for
each tube is 10; thus, the total number of equations varies
from 20 for a single-solute, two-tube (core and DHL) model to
120 for A two-solute, six-tube (DHL, AHL, CD, DN, AVR,
and DVR) model. Correspondingly, the time per iteration
ranged from a fraction of a second to about 5 sec on an IBM
370/165. A suitable number of spatial divisions was empiri-
cally determined. From experimentation with 5, 10, 20, and 40
divisions with the simpler models, and 5, 10, and 20 chops
with the more complex models, and comparison with values
obtained by "shooting" methods (5), we found 10 spatial
divisions to give concentrations within 5% of limiting values
for most problems. As yet we have no rigorous estimates of
how closely solutions of the difference equations approximate
exact solutions of the differential equations in two-solute
models with discontinuous transmembrane fluxes. The toler-
ance e for solute accumulation is critical: e = 10-2 can give
grossly inaccurate results (it can be seen that for a total of 50
spatial segments this tolerance can permit a total solute
accumulation of 50% entering DHL solute flow); 10-2 > 6>
10-8 can give errors of several percent, e = 10-i one or two
percent; and from e = 10-4 to e = 10-5 there is usually no
significant change in the c vector. Usually the maximum
residual in the cijk functions decreases by an order of magni-
tude per iteration and can be taken to e < 10-18, the limit set
by machine roundoff error. In the results given in this paper,
e = 10- was taken as the criterion for a solution.

Central core model as a limiting case

For a single solute and a water extracting mode of operation,
the central core model reduces to the prototype two-tube
model shown in Fig. 1. If the hydraulic coefficient of the
membrane separating core and DHL is large enough so that
concentrations in core and DHL are nearly equal, then central
core theory (2) predicts that the concentration ratio of papilla
to cortex will approach

r = 1/(1-f), [17]

§ In our terminology distal cortical nephron includes the cortical
portion of thick AHL, distal convoluted tubule, and cortical
collecting duct.
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FIG. 1 (left). Prototype two-tube model.
FIG. 3 (right). Coupled DHL-vasa recta model. The core of

the two-tube model has been replaced bya vascular exchanger.

where f is the fraction of entering descending limb solute flow
supplied to the core; thus, iff = 0.9, r = 10. For finite perme-
abilities, core concentration will exceed DHL concentration.
As a result, fluid leaving the core will be slightly hypertonic,
less water will be extracted from DHL, and the concentration
ratio will decrease. In Fig. 2 the concentration profiles in
DHL, as computed by the method described above, are
plotted for different normalized values of the hydraulic perme-
ability. The easiest way to grasp the physiological significance
of h, is to note that for h, = 100, the driving force for water
movement, for a total osmolality of 300 mOsm for entering
DHL fluid, would vary from 13 mOsm at the corticomedullary
junction to 0.38 mOsm at the papilla. Stated in conventional
units we find that for an DHL flow of 6 nl/min at the cortico-
medullary junction, a DHL diameter of 20 sm, and a total
medullary depth of 1 cm, this would correspond to an osmotic
coefficient Lp - 2 X 10-i ml- cm-2 sect atm'-. This is to
be compared with a measured value of 1.62 X 10-4 ml. cm 2. -
sec- * atm-' in isolated rabbit DHL (9).
The concentrating ability of the medulla is critically

dependent on the exchange efficiency of the vasa recta. As this
becomes large the concentration ratio approaches the limit set
by the permeability of Henle's limb. This point is illustrated in
Figs. 3 and 4. In the model illustrated in Fig. 3, the core of the
model in Fig. 1 is replaced by a vascular exchanger. In Fig. 4,
concentration profiles for this model are plotted for increasing
values of h,, the normalized solute permeability of the mem-
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FIG. 2. Concentration profiles of DHL of prototype model for
different hydraulic permeabilities of DHL.
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FIG. 4. Concentration profiles .in coupled three-tube model
as a function of vasas recta solute permeability. Normalized water
permeability h. of DHL was 100 in these computations.

brane separating AVR and DVR. In this computation, enter-
ing DVR flow was assumed to be 10 times entering DHL flow.
Thus, if DVR exchanged isotope with an outside bath at zero
isotope concentration, concentration in DVR would decay as
exp (-hx/10). It can be seen from Fig. 4, that as h, increases,
the concentration approaches the limit set by the central core
model, but that the closeness of approach is critically depen-
dent on h,. It can be shown (10) that if the hydraulic perme-
ability is such that DHL concentration approximately equals
DVR concentration and DVR volume flow is much greater
than DHL volume flow, then the concentration ratio for the
system is given by

r = 1/[1- fT(l - fu)(1 -fw)] [18]

where r is the concentration ratio, fT is fractional solute trans-
port out of AHL, fu is the ratio of CD flow to combined CD
and DHL flow at the papilla, and fw measures the effect of
vascular washout. Essentially it is the fraction of solute that
leaves the system unaccompanied by its isotonic equivalent of
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FIG. 5. Concentration ratio of three-tube model as a function

of exchange efficiency K, for both the approximate analytic
solution ( )and the numerical solutions (0).
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FIG. 6. Medullary cross-sectional configuration of six-tube, Z

two-solute model. AHL and CD are connected by DN (not 0

shown). Water movement is indicated by white arrow, salt move-
ment by black arrow, and urea movement by striped arrow.
Permeabilities are as implied by the transmural fluxes; e.g., DHL
is impermeable to salt and urea. In the outer medulla, 0 < x <
0.5, salt transport out of AHL is active; in the inner medulla,
0.5 < x < 1.0, passive.

water. It can also be shown that

fw - [1 - exp (-1/(Dr))](Dr), [19]
where D= (Fd,) 2/h is an effective diffusion coefficient for the
vascular exchanger, and Fd, is volume flow in the vasa recta.
If fw from Eq. 19 is substituted into Eq. 18 one obtains a
transcendental equation in r. In Fig. 5, r as determined by
Eqs. 18 and 19 is plotted as a function of 'K =1lD for
fT( - fu) = 0.9 and is compared with values obtained from
numerical solution of the differential equations. As can be
seen, agreement is excellent.
Passive function of the inner medulla
A major theoretical result of the central core model was that
the medullary counterflow system was capable of concen-
trating by the passive mixing of salt and urea in the inner
medulla, with no active salt transport out of the thin AHL,
provided that salt, urea, and water permeabilities together
with entering flows and concentrations were suitable (1, 3).
Kokko and Rector independently proposed a qualitative
model in which salt movement out of thin AHL is passive and
secondary to urea diffusion into the inner medulla from CD
(11). With the mathematical method described above it
has been possible to analyze the role of salt and urea mixing in
concentration in models that include AHL, DHL, CD, DN,
AVR, and DVR. In the medulla the cross-sectional configura-
tion of the system is as shown in Fig. 6, with solute and water
exchange as indicated. In Figs. 7 and 8, concentration profiles
are shown for active salt transport restricted to the outer
medulla (O < x < 0.5) and equal to 0.9 of entering DHL
load. Salt concentration was taken as 1.0 and urea as 0.05 in
entering DHL and DVR flow, i.e., 300 mOsm and 15 mOsm. In
Fig. 7 is shown the effect of varying urea permeability of CD
for fixed salt permeability of AHL and in Fig. 8 the effect of
varying salt permeability of thin AHL for fixed urea perme-
ability of CD. These computations have borne out the pre-
dictions of the idealized central core theory-namely, that the
inner medulla (0.5 < x < 1) can develop a concentration
gradient with no active transport, but that for it to do so, thin
AHL must be highly permeable to salt; e.g. with the same
conversion factors as for ht, ha, = 10 corresponds to a salt
permeability of 16 X 10- cm sec1l.
Power utilization in the medulla

The rates of free energy change due to various processes going
on in the renal medulla are related (12) by the general bal-
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FIG. 7. Passive concentration in the inner medulla. Effect on
total concentration in DHL of varying urea permeability h3. of
CD with salt permeability of thin AHL fixed at h2, = 10 in
normalized units.

ance equation

RT{2k2t[(Ffk In Cik)X.1 - (Fik In Cik)x1O.]}

= RT~k [-Jipk In (Cik/Cpk) + JipV(Cik Cpk)]I
i>p

-j 2 DgAj (d-)2} [20]
IC ik dx

where Dik is the diffusion coefficient of the ith solute in the kth
tube, and Ai is the cross-sectional area of the ith tube. Sub-
stituting from the phenomenological Eqs. 7 and 8 for trans-
mural fluxes into Eq. 20, assuming Dik - 0 and Ofip~k - 1,
and using the relation FUk (2ZjF i) .1; where FUk is the CD
outflow of the kth solute; we obtain

RTYk{FUk In (Cuk/Co-)- tZ [Fgk In (Cik/Cok) 1Z=}

= RT {2k f E -[hip,k(Cik - CPk) + 51VkI In (Cjk/Cpk)dx
i>p

-jf ~iRThip,.(cm -CpM)2dX}' [21]
i>p

where Cok is a reference concentration for the kth solute
(usually one of the entering concentrations), ciM is total solute
concentration in the ith tube, and CUK is concentration of the
kth solute in CD outflow.
The left hand side of Eq. 21 is the rate at which free energy

outflow from the medulla exceeds free energy inflow; the right
hand side is the rate at which free energy is being created or
destroyed by transport of solutes and water across the mem-
branes separating the tubes. With the possible exception of
active transport terms of the form 3tpk In (Cik/Cpk), all terms
on the right hand side of Eq. 21 are negative and represent
power dissipation in the membranes. Thus -RT foj hipk(Cik
- CPk) In (cik/cpk)dx is the rate of energy dissipation in the
passive diffusion of the kth solute across the membrane
separating the ith and pth tubes. In Table 1, we have com-
puted relative power use for the case h3. = 0.02, has = 10,
illustrated in Fig 7. Note that the power supplied to the system

Proc. Nat. Acad. Sci. USA 71 (1974)
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FIG. 8. Effect on total solute concentration in DHL of vary-

ing salt permeability h2, of thin AHL with CD urea permeability
h3. fixed at 0.01 and with CD active urea source of strength .01 in
normalized units. Note that for a positive concentration gradient
to be developed in the inner medulla by passive transport, both
h2. > 0 and h3. > 0 are required.

by the distal nephron is the difference between the rate of free
energy outflow from AHL and free energy inflow via CD. The
sum of the power supplied to the system by DN and thick
AHL is normalized to 1. For this particular case, only 12% of
this power is used to increase the free energy of solutes in the
final urine. In the ideal central core models, the losses due to
imperfect vascular exchange and finite hydraulic permeabil-
ities of DHL and CD would disappear, but dissipation in the

TABLE 1. Relative power use in the renal medulla*

Power supplied
DN
AHLt
Total

Power used
Solute loss vasa recta
Membrane dissipation
CD urea

AHL saltj
AVR salt
AVR urea

DHL water
CD water
Subtotal

Solute concentration in urine
Salt§
Urea

Totals

0.201
0.799
1.000

0.376

0.096
0.007
0.159
0.024
0.207
0.004
0.497

0.119
0.992

* Computations are for the case ha. = 0.02 and h2, = 10 shown
in Fig. 7.

t Active transport integral for thick AHL.

t Passive diffusion integral for thin AHL.

§ Because of active salt transport out of AIIL and DN a

negligible amount is excreted in final urine for this case.

The difference 0.008 between supply and use represents the
cumulative error of the various integrations.

inner medulla from salt diffusion of thin AHL and urea diffu-
sion out of CD would remain.

This type of calculation says nothing whatsoever about the
efficiency with which metabolic energy is coupled to active
salt transport, but does indicate the fraction of the energy
supplied to the medulla by active salt transport that goes into
increasing the free energy of solutes in the final urine.

DISCUSSION

The results for single solute systems (Figs. 2, 4, and 5) show
that concentration profiles of systems with finite permeabili-
ties approach profiles for ideal central core models as perme-
abilities become large and confirm the hypothesis that central
core concentrating engines are the prototype for the operation
of the nephrovascular units of the renal medulla. The calcula-
tions on non-ideal two solute models (Figs. 7 and 8) have
established that, like ideal central core systems, they can con-
centrate with no active transport in the inner medulla, but
again only if they have very high salt permeabilities of thin
AHL. The numerical solutions have also permitted an estimate
of the range of permeabilities required for solute concentration
in a given type of model. Finally, by combining the present
quantitative kinetic analysis with earlier thermodynamic
analysis (12), it has been possible for the first time to calculate
in a given model the relative fractions of power used in in-
creasing the free energy of solutes in the final urine and dis-
sipated in frictional resistance to the transmembrane flow of
solutes and water (Table 1).
The modified Newton-Raphson method used to obtain

these numerical solutions is computationally efficient and
stable, and is permitting for the first time quantitative com-
parison of both steady state and transient behaviors of a wide
spectrum of models of the renal counterflow system. These
first results show that a model can concentrate effectively only
if its membrane permeabilities and other transport parameters
fall within rather sharply defined limits.
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I The method extends readily to transient problems, giving a

fully implicit scheme for solving the finite difference approxima-
tion of the partial differential equations that appears to be un-

conditionally stable (unpublished).
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