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Abstract
Airway protection is the prevention and/or removal of material by behaviors, such as cough and
swallow. We tested the hypothesis that cough and swallow, in response to aspiration, are a “meta-
behavior” and thus are coordinated and have alterations in excitability to respond to aspiration risk
and maintain homeostasis. Anesthetized animals were challenged with a protocol that simulated
ongoing aspiration and induced both coughing and swallowing. Electromyograms of the
mylohyoid, geniohyoid, thyrohyoid, thyroarytenoid, thyropharyngeus, cricopharyngeus,
parasternal, rectus abdominis muscles together with esophageal pressure were recorded to identify
and evaluate cough and swallow. During simulated aspiration, both cough and swallow intensity
increased and swallow duration decreased consistent with a more rapid pharyngeal clearance. A
phase restriction between cough and swallow was also observed; swallow was restricted to the E2
phase of cough during chest wall and abdominal motor quiescence. These results support the
conclusion that the cough and swallow pattern generators are an airway protective meta-behavior.
The resulting alterations in swallow drive during the simulated aspiration protocol also supports
the conclusion that the trachea provides feedback on swallow quality, informing the brainstem
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about aspiration incidences. The overall coordination of cough and swallow led to the additional
conclusion that mechanically the larynx and upper esophageal sphincter act as two separate valves
controlling the direction of positive and negative pressures from the upper airway into the thorax.
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1.0 Introduction
Airway protection is the coordination of several behaviors to prevent and/or correct the
aspiration of material into the lungs. Two important behaviors in airway protection are
swallow and cough. Swallowing is a coordinated behavior that is dependent upon afferent
feedback for initiation and modulation. Touch, pressure, and/or liquid on the tongue, faucial
pillars, soft palate, uvula, epiglottis, pharyngeal wall, and/or junction of the pharynx/
esophagus can induce swallowing (Miller & Scheeington, 1916; Pommerenke, 1928; Storey,
1968; Miller, 1982). Cough is a reflex which responds to material entering the airway by
producing high velocity airflows creating shearing forces in larger airways and squeezing
actions in smaller airways to remove mucus and foreign matters (Ross et al., 1955; Fontana
& Lavorini, 2006; Widdicombe & Chung, 2007).

Disordered airway protection, is clinically defined as intrusion of material below the level of
the vocal folds during swallowing (dysphagia), (DePippo et al., 1992; Aviv et al., 1996;
Rosenbek et al., 1996a; Robbins et al., 1999; McCullough et al., 2001a; Kalia, 2003;
Robbins et al., 2008; Cichero & Altman, 2012), and/or an impaired/lack of cough response
to aspiration (dystussia) (Muz et al., 1989; Martin et al., 1994; Smith Hammond et al., 2001;
Kelly et al., 2007). Cough is the most noticeable response to aspiration; however there are a
host of responses including swallowing, expiration reflex, increased mucous secretions, and/
or alterations contractions of the smooth muscle lining the airway (Bolser et al., 1995;
Belvisi & Bolser, 2002; Bolser & Davenport, 2007; Vovk et al., 2007). The patient may also
exhibit other clinical indicators such as postural changes and changes in voice quality
(McCullough et al., 2001b; McCullough et al., 2005; Logemann et al., 2008).

Cough and swallow can both be elicited in experimental models. Cough can be initiated by
mechanical stimulation of the trachea or larynx, (Bolser & DeGennaro, 1994; Bolser et al.,
2006; Wang et al., 2009; Poliacek et al., 2011) or inhalation of an irritant aerosol (Bolser et
al., 1995); and swallow by injection of water into the oropharynx, mechanical stimulation of
the pharynx, and/or electrical stimulation of the superior laryngeal nerve (Miller &
Sherrington, 1915). Swallow is proposed to be generated by a dorsal and ventral medullary
network that may share upper airway motor outputs with that of the respiratory pattern
generator (Jean, 2001). The central initiation and rhythmogenesis of swallow is thought to
be restricted to the dorsal swallow group and not controlled by the ventral respiratory pattern
generator (Jean, 2001). On the other hand, the available evidence supports reconfiguration of
existing elements of the respiratory pattern generator in the production of coughing
(Shannon et al., 1996; Shannon et al., 1998; Shannon et al., 2004), although some control
functions for cough are mediated by brainstem systems that are not required for breathing
(Bolser & Davenport, 2002). As such, preclinical data support some sharing of neural
elements between the pattern generators for swallow, cough, and breathing but the core
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network for swallow appears to be anatomically separate within the brainstem from that for
cough and breathing (Dick et al., 1993; Oku et al., 1994; Shannon et al., 1996; Baekey et
al., 2001).

There are clear clinical associations between dysphagia (disordered swallow) and dystussia
(disordered cough) in those with Parkinson’s disease and stroke (Smith Hammond et al.,
2001; Pitts et al., 2008; Pitts et al., 2009; Smith Hammond et al., 2009). Training paradigms
to influence or prevent episodes of aspiration have been intensely studied (Rosenbek et al.,
1991; Schmidt et al., 1994; Ali et al., 1996b; Rosenbek et al., 1996a; Rosenbek et al.,
1996b; Aviv et al., 1997; Rosenbek et al., 1998; Aviv et al., 2002; Miller et al., 2006; Clave
et al., 2008; Miller, 2008; Troche et al., 2010; Voytas & Al Rifai, 2012), however, few
treatments have demonstrated therapeutic effectiveness in modifying or preventing
aspiration across patient populations. This may be because the primary treatment is for
dysphagia with little intervention for dystussia (Bath et al., 1999; Foley et al., 2008;
Wheeler-Hegland et al., 2009).

The clinical association between dysphagia and dystussia could be explained simply by the
fact that the minimal neural elements for both cough and swallow are located in the
brainstem. In this scenario, disease processes such as stroke, would be expected to affect
each behavior similarly because of this anatomical association. However, dystussia and
dysphagia can occur in patients with neurologic diseases that do not directly affect the
brainstem. Alternatively, a more complex, but not mutually exclusive, hypothesis could
account for co-depression of cough and swallow in neurological diseases. A central control
system could exist that that coordinates the expression of these behaviors to optimize airway
protection. . Additionally, the coordinated expression of several behaviors, each with unique
regulation, to achieve a common goal – such as cough and swallow - is consistent with the
hypothesis that response to aspiration is a “meta-behavior.” This is analogous to the
behavior of autonomous agents used to schedule responses when two or more components
are combined to react to incoming stimuli (Guessoum & Briot, 1999). Features of the
behavior include “precedence” in which the actions that have little to no central processing
take precedence over actions which require additional processing, and “blocking” in which
any of the components (behaviors) can block any other action until it is completed. An
additional assumption is that the gain or excitability of the components (behaviors) can also
be altered without sacrificing homeostasis (Fibla et al., 2010). If these hypotheses are true,
this system may be affected and/or impaired by multiple neurologic disease states, which
may account for the known clinical associations between disordered cough and swallow.
However, the evidence for a coordinating mechanism between reflexive swallow and cough
is based solely on inferences from clinical observations.

The aims of this study were to determine if the cough and swallow motor patterns are
coordinated and, if so, identify operational principles which govern their interactions
following an aspiration event. We hypothesized that during a simulated aspiration, there will
be minimal overlap of the cough and swallow behaviors.. Furthermore, we speculated that
the behaviors interact spatially to optimize mechanical effectiveness during aspiration.

2.0 Methods
Experiments were performed on 17 spontaneously breathing adult male cats. Ethical
approval of the protocol was confirmed by the University of Florida Intuitional Animal Care
and Use Committee (IACUC). The animals were initially anesthetized with sodium
pentobarbital (35-40 mg/kg i.v.); supplementary doses were administered as needed (1-3
mg/kg i.v.). A dose of atropine sulfate (0.1-0.2 mg/kg, i.v.) was given at the beginning of the
experiment to reduce secretions from repeated tracheal stimulation. Cannulas were placed in
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the femoral artery, femoral vein, and trachea. An esophageal balloon was placed via an oral
approach to measure pressure in the midthoracic esophagus. Arterial blood pressure and
end-tidal CO2 were continuously monitored. Body temperature was monitored and
maintained at 37.5 ± 0.5 °C using a heating lamp and pad. Arterial blood samples were
periodically removed for blood gas analysis. PO2 was maintained using air mixtures with
enriched oxygen (25-60%) to maintain values above 100 mm Hg.

Electromyograms (EMG) were recorded using bipolar insulated fine wire electrodes. Seven
muscles were used to evaluate cough and/or swallow function: mylohyoid, geniohyoid,
thyrohyoid, thyropharyngeus, thyroarytenoid, cricopharyngeus, parasternal, and rectus
abdominis. The digastric muscles were dissected away from the surface of the mylohyoid
and electrodes were placed on the left mylohyoid. A small horizontal incision was made at
the rostral end of the right mylohyoid followed by an incision following the midline for
approximately 1cm to reveal the geniohyoid underneath. Electrodes were placed 1cm from
the caudal insertion of the geniohyoid muscle. The thyroarytenoid electrodes were inserted
through the cricothyroid window into the anterior portion of the vocal folds, which were
visually inspected post-mortem. Rotation of the larynx and pharynx counterclockwise
revealed the superior laryngeal nerve, which facilitated placement of the thyropharyngeus
muscle electrodes. The thyropharyngeus is a fan shaped muscle with the smallest portion
attached to the thyroid cartilage; electrodes were placed in the ventral, caudal portion of the
muscle overlaying thyroid cartilage within 5 mm of the rostral insertion of the muscle. To
place the electrodes within the cricopharyngeus muscle, the larynx and pharynx were rotated
counterclockwise to reveal the posterior aspect of the larynx. The tissue was palpated for the
edge of the cricoid cartilage and electrodes were placed just cranial to the edge of this
structure. Thyrohyoid electrodes were inserted approximately one cm rostral to the
attachment to the thyroid cartilage; those for the parasternal muscle were placed in the third
intercostal space, just adjacent to the sternum. The rectus abdominis electrodes were located
approximately two cm caudal to the xiphoid process just medial to the margin of the rectus
abdominis. The positions of all electrodes were confirmed by visual inspection and EMG
activity patterns during breathing, cough and swallow.

Cough was induced by mechanical stimulation of the extra and intra-thoracic trachea using a
thin polyethylene catheter (diameter 1.27mm). The catheter was manually rotated along the
length of the intrathoracic trachea. Cough was defined as a burst of activity in the
parasternal EMG, followed by (and partially overlapping) a burst in the thyroarytenoid and
rectus abdominis, along with a negative to positive change in esophageal pressure. To
initiate swallowing, a one-inch long, thin polyethylene catheter (diameter 2.37 mm),
attached to a 6cc syringe was placed into the oropharynx. Water was injected into the
pharynx via a syringe (3 cc’s). Swallowing was defined as a quiescence of the
cricopharyngeus with overlapping activity in the mylohyoid, geniohyoid, thyropharyngeus,
thyrohyoid, thyroarytenoid and the parasternal (representing the schluckatmung or swallow
breath) (Wilson et al., 1981; Gestreau et al., 2000; Saito et al., 2002; Bonis et al., 2011).

The protocol included non-overlapping stimulus intervals for sequential induction of cough
and swallow behaviors followed by temporally overlapped stimulation trials. Mechanical
stimulation of the trachea mimics aspiration of material into the trachea and readily
provokes vigorous coughing in this model (Bolser et al., 2001; Belvisi & Bolser, 2002;
Poliacek et al., 2007; Wang et al., 2009; Poliacek et al., 2011). Injection of water into the
oropharynx is a reliable stimulus for swallow. The purpose for this temporal overlap was to
simulate aspiration in the presence of a water filled pharyngeal airway. As such, this
protocol closely approximated not just a single aspiration event, but the risk of further
ingestion of material into the tracheal airway from the pharynx. This process is similar to
that experienced by humans with pathologies that predispose them to significant risk of
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aspiration during a meal (Horner & Massey, 1988; Bushmann et al., 1989; Coates &
Bakheit, 1997; Potulska et al., 2003; Prosiegel et al., 2004; Daniels et al., 2006; Miller,
2008; Cabre et al., 2010). The following sequential protocol was used: two trials with
mechanical stimulation of the trachea for 20s each, two trials with pharyngeal injection of
water, two combined stimulation trials with mechanical stimulation of the trachea for 20s
and water injection into the pharynx 5s after the onset of the cough stimulus.

All EMG signals were amplified, filtered (200-5000 Hz), rectified, and integrated (time
constant 50 ms). EMG amplitude measures were normalized to the largest cough or swallow
respectively. Cough phase durations were measured using the definitions from Wang et al
(2009) . The inspiratory phase (CTI), the expiratory phase with active muscle activity
(CTE1), passive expiratory phase (CTE2), and total cough (CTtot) durations were measured.
CTI was defined as the onset of parasternal activity to the maximum burst of the parasternal
EMG, CTE1 was defined as the maximum burst of the parasternal EMG to the end of the
abdominal EMG activity, and CTE2 was defined as the end of the abdominal motor burst to
the onset of the parasternal EMG activity for the next cough in the epoch. Swallow duration
measures were defined as laryngeal elevation: the onset of the mylohyoid to the end of the
EMG burst in the geniohyoid; upper esophageal opening: from the sharp decrease in
cricopharyngeus activity to its resumption; and total swallow duration: the onset of the
mylohyoid activity to the resumption of the cricopharyngeus activity.

Results are expressed as means ± standard error. For statistical analysis Student’s paired t-
tests were used to identify differences. Results were corrected for multiple comparison by
controlling false discovery rate to 0.05 (Benjamini & Hochberg, 1995). Relationships
between normalized burst amplitudes of the cricopharyngeus, parasternal, abdominal, and
esophageal pressure during cough was evaluated by linear regression analysis. Relationships
between swallow and cough phase were analyzed for randomness using the runs test. A
difference was considered significant if the p-value was less than 0.05.

3.0 Results
Injection of a water bolus into the oropharynx elicited an average of 2.1± 0.2 swallows with
water alone and significantly more swallows 2.9± 0.4 when combined with mechanical
stimulation of the trachea (p< 0.01). Mechanical stimulation of the trachea alone elicited an
average of 7.5± 0.9 coughs per trial. Raw EMG traces for cough and swallow are
represented in Figure 1. Water alone elicited swallow during breathing, and 3% of swallows
(2 of 73) were in the inspiratory phase of breathing, 76% of swallows (56 of 73) were during
the expiratory phase of breathing, 11% of swallows (8 of 73) were in the transition from
inspiration to expiration, and 10% of swallows (7 of 73) were in the transition of expiration
to inspiration. The combined stimulation modality produced swallows during sequential
cough efforts and 95% of the swallows (87 of 92) were completed during the E2 cough
phase. There were four instances of a swallow occurring from the transition of E2 to a cough
I phase and one instance of swallow occurring from the transition of E2 to a eupneic
inspiration. Figure 2 is a histogram of swallow initiation and termination within the cough
phases during the aspiration protocol. Each cough phase (I, E1, and E2) duration measures
were normalized to 100, and each phase was segmented into 10 bins (30 bins total over the
three phases). The runs test for swallow onset (p < 0.001) and swallow termination (p <
0.001) during the cough phases was non-linear.

The swallows which occurred during the combined stimulus modality had significantly
greater EMG amplitudes for the parasternal (p < 0.04), geniohyoid (p < 0.01), thyrohyoid
(p< 0.01), thyropharyngeus (p < 0.001), and cricopharyngeus (p ≤ 0.01) (see Table 1). There
was also a significant decrease in the parasternal burst duration (p< 0.04). The burst
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duration of the laryngeal, pharyngeal, and submental muscles did not change significantly in
the combined stimulus modality, however the duration of the laryngeal elevation (p ≤ 0.01),
the opening of the upper esophageal sphincter (p < 0.01), and the total swallow duration (P
< 0.01) were significantly decreased.

Repetitive coughs were compared before and after the introduction of the swallow stimulus
into the oropharynx. The coughs which occurred after the introduction of the swallow
stimulus had significantly greater EMG amplitudes for the parasternal (p < 0.05), rectus
abdominis (p < 0.001), thyropharyngeus (p < 0.01), and the positive component of
esophageal pressure (p < 0.02) significantly increased (Table 2 and Figure 3). There were no
significant changes in CTI and CTE1 phases of cough. Additionally, CTE2 durations with
and without a swallow present were compared. Following the injection of water into the
oropharynx, CTE2 with a swallow was significantly longer (p < 0.05) than those without a
swallow.

3.1 Additional observations on pharyngeal muscle activities during eupnea and cough
The cricopharyngeus (upper esophageal sphincter) was active during repetitive cough
(Figure 1, 3, and 4). It had an augmenting pattern over the inspiratory phase, peaked at the
transition from the inspiratory to the expiratory phase, and declined in magnitude during the
expiratory phase. The cricopharyngeus EMG amplitude was not correlated with the peak in
the positive esophageal pressure (r2 = 0.005), rectus abdominis amplitude (r2 = 0.08), or
parasternal amplitude (r2 = 0.04) during coughing. The thyropharyngeus muscle had
expiratory phasic activity during eupnea which decreased during the cough stimulus and
repetitive coughing (Figure 4).

4.0 Discussion
This is the first study to examine the coordination of cough and swallow during the
aspiration response. The aspiration protocol elicited significantly more swallows than the
water bolus without concurrent tracheal stimulation. Most (95%) of the aspiration swallows
occurred during the E2 phase of cough. The total swallow duration was decreased without
decreasing the burst duration of any pharyngeal/laryngeal/submental muscles, and there was
an increase in the EMG magnitude of the pharyngeal muscles, inspiratory muscle activity
for schluckatmung production, and hyoid elevators (geniohyoid and thyrohyoid) for
swallows that occurred during repetitive coughing episodes. The duration of cough E2
phases which contained a swallow were significantly longer than in control trials. Moreover,
chest wall and abdominal (inspiratory and expiratory) and thyrohyoid muscle
electromyographic activity increased during coughs following the injection of the water into
the pharynx as did expiratory esophageal pressures. Cricopharyngeus activity was also
elevated during coughing.

4.1 Phase restriction of swallow
Swallowing that is normally executed during eupnea has been intensely studied, and there is
a phase preference for swallows to occur during the expiratory phase of breathing;
specifically that 80% of swallows occur during the expiratory phase of breathing in humans
(Martin-Harris et al., 2003; Wheeler Hegland et al., 2009; Wheeler Hegland et al., 2011),
cats (Dick et al., 1993), goats (Feroah et al., 2002a; Feroah et al., 2002b; Bonis et al., 2011),
and rats (Saito et al., 2003). Our observations are indicative of a more rigid regulatory
control of swallowing during aspiration promoting events, i.e. swallow during repetitive
coughing. We propose the concept of phase restriction to explain the fixed occurrence of
swallows during the quiescent period following the cough expulsion (cough E2) (Figure 1
and 2). This idea is reinforced by cough E2 prolongation, ensuring adequate time for
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swallow initiation and completion before the onset of the next inspiratory phase (Figure 1
and 2). This rigid control system is necessary because both cough and swallow share the
pharyngeal airway, and the presence of food or liquid in this airway segment represents a
significant aspiration risk.

Forssberg, Grillner and Rossignol (1975), Sillar (1991), Watson (1992), and Pearson (1993)
all proposed a filtering of afferent information to ensure an appropriate motor response
within the context of the ongoing motor activity. This concept includes roles for afferent
feedback in the establishment of the temporal order of motor behaviors and in controlling
transitions from one behavior to another. Furthermore the decision to produce a behavior,
based on afferent information, is dependent on the state of the ongoing motor behaviors, like
breathing and/or coughing (Forssberg et al., 1975; Sillar, 1991; Watson, 1992; Pearson,
1993). This effect has been established in other systems including: chick hatching and
stepping (Bekoff et al., 1987), hand movements in primates (Sanes et al., 1985), and flight
in the locust (Wolf & Pearson, 1987) by using models of deafferentation. Our results support
a theory of filtering of pharyngeal and laryngeal afferent information by brainstem networks
to inhibit the swallow pattern generator during the inspiratory and active expiration phases
of cough.

4.2 Dual valve system
Our results also suggest a highly coordinated control of both the laryngeal airway and upper
esophageal sphincter such that they may represent a dual valve system regulating pressure
between upper airway and the thoracic cavity (Figure 5). To our knowledge, prior work on
cough or swallowing did not observe signatures of a unified control system for the larynx
and upper esophageal sphincter. The laryngeal adductor/abductor and upper esophageal
sphincter control air/bolus flow into or out-of the lungs or esophagus. For example, during
swallowing there is maximal activity of the laryngeal adductor muscles and maximum
relaxation of the upper esophageal sphincter, and thus pressures move the bolus into the
esophagus and not into the larynx/trachea. Our data support the presence of a reciprocal
relationship for cough as well. During our experiments the EMG activity of the
cricopharyngeus muscle was very sensitive to mechanical stimulation in the trachea (Figure
4). EMG activity of this muscle steadily increased over the inspiratory period, peaking
during the transition from inspiration to E1 and decreased during the E1 and E2 phases. This
mechanism mechanically “seals” the upper esophageal sphincter during cough to prevent
loss of intra-thoracic pressure and thus maximizes cough effectiveness. This increased
cricopharyngeus muscle activity also reduces the risk of esophageal reflux into the pharynx.

Given this dual valve system (Figure 5), swallowing can occur during the inspiratory phase
of breathing because trans-laryngeal flows and intra-thoracic pressure are relatively low. We
propose that swallow-related laryngeal adductor activity (glottic and supra-glottic) is
sufficient to close the airway during a eupneic breathing cycle; however the much higher
inspiratory and expiratory flows and pressure during coughing would make it mechanically
difficult for a successful bolus transfer across the esophageal sphincter. Even during the
compression phase (a time of little or no trans-laryngeal flow) the pressure in the thoracic
cavity is high and hindering bolus movement.

Shannon, et al (1996; 1998; 2004), and Bolser and Davenport (2002) proposed that the
temporal regulation of the expiratory phase of cough is altered by excitability of the
expiratory-augmenting late neurons (i.e neurons which fire during the expiratory phase of
breathing with significantly more action potentials in the second half of the expiratory
period as compared to the first half) within the Bötzinger Complex. We propose that the
swallow pattern generator interacts with these neurons, increasing their excitability to
prolong the cough E2 phase. These control mechanisms may represent a neural substrate
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that is essential for airway protection, and may help to explain how a wide range of
neurologic diseases results in related dysphagia and dystussia (Smith Hammond et al., 2001;
Pitts et al., 2008; Pitts et al., 2009; Smith Hammond et al., 2009; Pitts et al., 2010).

An absent cough response to aspiration is a hallmark of dysphagia, and may be a
manifestation of an impaired sensory feedback control system. During a clinical evaluation
of swallow, material can penetrate to the level of the vocal folds without a cough or
expiration response in young adults during swallowing (Daniels et al., 2004; Daggett et al.,
2006). We hypothesize that the trachea, with or without the laryngeal afferent activation,
provides feedback on swallow quality, on a cycle by cycle basis. Additionally, dysphagia
caused by neurotrauma (Aviv et al., 1996) or damage to the vagus (Halum et al., 2003) can
result in a condition known as cricopharyngeal bar and laryngeal dysfunction.
Cricopharyngeal bar is defined as hyperactivity of the cricopharyngeus during swallow,
resulting in obstruction of the esophageal opening during swallowing leading to residue in
the pharynx (Aviv et al., 1996; Halum et al., 2003). These clinical findings are consistent
with the dual valve system, representing a control system that when dysfunctional, results in
pathological behavior of both valves.

4.3 Pharyngeal clearance
Jean (1984, 2001) discussed oral and pharyngeal afferent feedback as a primary modulator
of the swallow motor pattern generator. More specifically the size, texture, taste,
temperature of the bolus or pharyngeal distention can alter the swallow pattern (Kahrilas &
Logemann, 1993; Logemann et al., 1995; Ali et al., 1996a; Rademaker et al., 1998; Ertekin
et al., 2000; Hiss et al., 2001; Jean, 2001; Kendall & Leonard, 2001; Kendall et al., 2001;
Butler et al., 2004; Chee et al., 2005; Leow et al., 2007; Troche et al., 2008; Humbert et al.,
2009; Thexton et al., 2009; Yamamura et al., 2010). This effect has not been previously
demonstrated by stimulation of tracheal afferents. Mechanical stimulation of the trachea
activates afferent receptors (c-fibers and rapidly adapting receptors) with axons in the
recurrent laryngeal nerve (Kalia & Mesulam, 1980). Our results thus support the hypothesis
that tracheal receptors, in addition to the pharyngeal and esophageal receptors proposed by
Jean, (1984) modulate the central pattern generator for swallow

Increased swallow EMG activity of the geniohyoid, thyrohyoid, thyropharyngeus,
parasternal and post-swallow cricopharyngeus during mechanical stimulation of the trachea
is evidence of increased pharyngeal clearance. This is manifested by increased swallow
intensity and increased swallow occurrence during the aspiration protocol. These results
indicate that mechanical stimulation of the trachea alters activity patterns of submental and
pharyngeal muscles. We hypothesized this increased drive would result in increased
pharyngeal clearance, because it was also accompanied by decreases in total swallow and
laryngeal elevation time. Note these changes were not perpetuated by a decrease in
individual muscle activation time, but a faster activation of the oral-pharyngeal-upper
esophageal sphincter wave (Table 1).

This is the first report of modulation of the posterior pharyngeal constrictor, the
thyropharyngeus muscle during coughing. The implications of this finding extend beyond
the activity pattern of a single muscle upper airway muscle during cough or breathing. The
activity of this muscle is an additional manifestation of novel coordinating mechanisms
between cough and swallow. We believe that effective pharyngeal clearance is also
accomplished through a complex interplay of material ejected by cough and subsequently
swallowed. Figure 4 shows an example of phasic expiratory activity of the thyropharyngeus
muscle. The thyropharyngeus muscle controls the diameter of the pyriform sinus, adjacent to
the laryngeal vestibule, which acts as a reservoir for material within the pharynx during
swallowing. Accumulated material in the pyriform sinus is similar to bolus accumulation
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before/during the pharyngeal phase of swallow, mucus ejected from the lower airways by
coughing could pool in the pyriform sinus. We hypothesize that the pyriform sinus remains
open to accommodate material ejected by coughing by a reduction in phasic activity of the
thyropharyngeus muscle. During subsequent swallows contraction of the thyropharyngeus
then collapses the sinus, emptying the contents into the esophagus.

We note that due to the open trachea in this preparation, the alterations in thyropharyngeus
muscle EMGs were likely the result of modifications of central mechanisms driving this
motoneuron pool rather than sensory feedback from material deposited in the pharynx or
pharyngeal airflow. The extent, to which these motor responses of the thyropharyngeus
muscle were due to inhibition from the cough pattern generator or due to activation of
tracheal afferents, or both, is unknown. Cough motor drive was also increased in the cycles
immediately following a swallow occurrence (Figure 2). This observation is explained by
one of at least two alternate hypotheses: a) prolonged excitatory relationships exists between
the swallow and cough pattern generators in addition to short-term phase restriction, and/or
b) prolongation of the preceding cough E2 phase enhances synaptic drive to spinal and
upper airway motoneurons. This dynamic interplay between these behaviors and may be a
central motor program in anticipation of increased cough-related airflow shear forces in the
pharyngeal airway following the swallow.

4.4 Meta-behavior
The results support the idea that the production of cough and swallow in response to
aspiration is a “meta behavior” We observed alterations in gain of cough and swallow when
the behaviors were induced in the aspiration protocol. In this context, alterations in
behavioral gain are consistent with allostasis, or the maintenance of stability through change
(Fibla et al., 2010). Allostasis describes a process by which organisms adjust to predictable
and unpredictable events. Meta-behavioral responses, such as the coordination of cough and
swallow reported in this study, provide tools by which the central nervous system achieves
allostasis. Our data also support precedence and blocking as important control mechanisms
in airway protection. The specific brainstem mechanisms that underlie these control features
are unknown. However, they likely represent a substrate for pathological processes that
result in dysphagia and dystussia.

One implication of this designation is that no single behavior is sufficient to protect the
airway from aspiration. In patients that are unable to swallow, feeding occurs via a stomach
tube to bypass the pharynx (Norton et al., 1996; Britton et al., 1997; Meng et al., 2000;
Heffernan et al., 2004). If untreated, these patients will aspirate and are likely to acquire
pneumonia (Wada et al., 2000; Kaplan et al., 2002; Cabre et al., 2010). While some of these
patients might be able to cough, the presence of coughing does not alter the clinical strategy
for their management. Clinical decision-making de facto discounts the sufficiency of
coughing alone to prevent pneumonia. It is much more common to encounter patients who
have impairment of both cough and swallow [stroke (Smith Hammond et al., 2001; Smith
Hammond et al., 2009), PD (Pitts et al., 2008; Pitts et al., 2009; Pitts et al., 2010; Troche et
al., 2010; Pitts et al., 2012), etc.], consistent with a linked control system for these behaviors
in humans.

4.5 Limitations of the experimental design
A limitation of the experimental design was the use of sodium pentobarbital anesthesia, and
its effects on respiratory motor drive. Warner and colleagues (1992), in sodium
pentobarbital anesthetized dogs, demonstrated acute suppression of expiratory motor drive
during breathing, but the effects were ameliorated over time in spite of constant plasma
levels of this anesthetic. Warner et al (1992) concluded that the expiratory depressant effects
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of this anesthetic were transient. Our laboratory has shown that vigorous cough expiratory
motor responses occur in cats anesthetized with sodium pentobarbital (Bolser et al., 2000;
Bolser and Davenport, 2000).

An additional limitation was the use of a single stimulus modality to induce each behavior
(mechanical for cough and water for swallow). It is not yet known if cough induced by
chemical stimuli and/or swallow induced by mechanical/chemical stimuli (e.g., various
bolus types of different size, texture, taste, etc.) would be coordinated. However, we
hypothesize that these coordinating mechanisms are primarily central in nature, and not
dependent on afferent modality. As such, we predict that this meta-behavioral response will
be observed regardless of stimulus modality.

5.0 Conclusion
Cough and swallow are highly coordinated through defined excitatory and inhibitory central
interactions. This inter-behavior control system minimizes the risk of aspiration and is
consistent with the existence of a meta-behavioral control system. These operating
principles provide a framework for integrating models of dysphagia and dystussia.
Furthermore, increased cough and swallow excitability during simulated aspiration suggests
a novel role of tracheal afferent feedback for informing this meta-behavioral control system
for airway protection regarding aspiration.
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Highlights

• This manuscript describes novel mechanisms which regulate the coordination of
cough and swallow specifically in response to aspiration.

• Our work demonstrates the existence of common system that is sophisticated
and exerts control over these behaviors at several different levels.

• This knowledge will stimulate research aimed to understand the control of these
behaviors as integrated and coupled.
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Figure 1.
Raw EMG traces of the coordination of cough and swallow. Swallow is denoted by circles
and cough by arrows. The first panel is injection of water into the pharynx resulting in four
swallows, and the second panel is coordinated coughs and swallows resulting from the
aspiration protocol.
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Figure 2.
Histogram of swallow initiation and termination within the cough phases during the
aspiration protocol. The occurrence and termination of swallows were plotted across cough
phases that were segmented into quartiles. Swallows were executed primarily in the E2
cough phase. The solid line is swallow initiation as demarked by elevation of the hyoid and
relaxation of the upper esophageal sphincter, and swallow termination was identified by
increased tone to the upper esophageal sphincter following relaxation. There is one
occurrence of a swallow being initiated during the E1 phase and four occurrences swallows
being completed during the I phase of the subsequent cough (n=73 swallows from 17
animals).
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Figure 3.
Change in cough motor drive with injection of water into the oropharynx. Triangle denotes
swallow. Note the increased rectus abdominis and parasternal electromyographic activity
and expiratory esophageal pressure in the second cough.
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Figure 4.
Cannula was inserted into the trachea at the downward arrow. Cough cycles are noted with
stars. Expiratory phasic thyropharyngeus EMG activity was suppressed, and
cricopharyngeus EMG activity was increased at the onset of the tracheal stimulation. The
cricopharyngeus EMG has dynamic activity during cough with the peak during the transition
from the inspiratory to the expiratory phase.
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Figure 5.
Dual valve system hypothesis. The side by side circles represent the two valves, the larynx
and the upper esophageal sphincter. Closure of the two valves is controlled by the
thyroarytenoid and the cricopharyngeus muscles, respectively. The valve aperture is
represented on a scale from white (maximum opening) to black (maximum closure). Note:
during the expiratory phase of eupnea there is some thyroarytenoid activity. **
Thyroarytenoid and cricopharyngeal electromyogram waveform averages across multiple
behavior occurrences during cough and swallow. The vertical gray line in the second and
third panels is the midline marker of the behavior execution, and during cough this
represents the transition from inspiration to active expiration.
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Table 1

Effect of water and water plus tracheal stimulation (TS + Water) on normalized EMG amplitudes and
durations (ms) of selected swallow-related muscles.

Amplitude (% of maximum)^ Water TS + Water

Parasternal 51 ± 6 67 ± 4*

Mylohyoid 68 ± 5 78 ± 5

Geniohyoid 69 ± 4 82 ± 3**

Thyroarytenoid 75 ± 3 80 ± 3

Thyrohyoid 78 ± 3 88 ± 1**

Thyropharyngeus 61 ± 4 74 ± 2**

Cricopharyngeus (post-relaxation burst) 52 ± 6 70 ± 4**

Duration (ms) Water TS ± Water

Laryngeal Elevation□ 507 ± 38 430 ± 30**

Total Swallow 572 ± 43 508 ± 36**

Upper Esophageal Sphincter Open 455 ± 25 386 ± 14**

Parasternal 419 ± 46 331 ± 43*

Mylohyoid 468 ± 39 420 ± 31

Geniohyoid 366 ± 33 360 ± 32

Thyroarytenoid 440 ± 25 418 ± 34

Thyrohyoid 398 ± 39 392 ± 24

Thyropharyngeus 182 ± 24 185 ± 25

*
p ≤ 0.05

**
P ≤ 0.01

□
Onset of mylohyoid activity to offset of geniohyoid activity.

^
EMG’s were normalized to the maximum EMG amplitude.
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Table 2

Effect of tracheal stimulation (TS) and water plus tracheal stimulation (TS + Water) on normalized EMG
amplitudes and durations (ms) of selected cough-related muscles and pressure. Change in CTE2 duration when
no swallow was present versus swallow present.

Amplitude (% of maximum)^ TS TS + Water

Parasternal 58 ± 4 71 ± 3*

Rectus Abdominis 48 ± 5 69 ± 3***

Thyroarytenoid 52 ± 5 62 ± 5

Cricopharyngeus 71 ± 3 73 ± 3

Thyrohyoid 54 ± 6 65 ± 5**

Esophageal Pressure (cm H20) 19 ± 3 31 ± 5**

Duration (ms) TS TS ± Water

Inspiratory 823 ± 93 835 ± 115

Compression 139 ± 19 147 ± 16

Expiratory 1 (E1) 437 ± 38 408 ± 28

Total Cough Cycle 5286 ± 1169 4338 ± 1006

Duration (ms) No swallow With swallow

Expiratory 2 (E2)□ 1497 ± 890 3097 ± 2783*

*
p ≤ 0.05

**
p ≤ 0.01

***
p ≤ 0.001

□
E2 durations after water injected into the pharynx

^
EMG’s were normalized to the maximum EMG amplitude.
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