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Summary
The maintenance of protein solubility is a fundamental aspect of protein homeostasis, as
aggregation is associated with cytotoxicity and a variety of human diseases. Numerous proteins
unrelated in sequence and structure, however, can misfold and aggregate, and widespread
aggregation can occur in living systems under stress or ageing. A crucial question in this context is
why only certain proteins aggregate in vivo while others do not. We identify here the proteins most
vulnerable to aggregation as those whose cellular concentrations are high relative to their
solubilities. These supersaturated proteins represent a metastable sub-proteome involved in
pathological aggregation during stress and ageing, and are overrepresented in biochemical
processes associated with neurodegenerative disorders. Consequently, such cellular processes
become dysfunctional when the ability to keep intrinsically supersaturated proteins soluble is
compromised. Thus, the simultaneous analysis of abundance and solubility can rationalize the
diverse cellular pathologies linked to neurodegenerative diseases and aging.

Introduction
Neurodegenerative disorders are increasingly prevalent in our society and represent a very
significant challenge to healthcare systems (Balch et al., 2008; Dobson, 2003). A number of
explanations of the fundamental origins of these diseases have been proposed, including
mitochondrial dysfunction, disruptions of the endoplasmic reticulum and membrane
trafficking, effects on protein folding and clearance, and the activation of inflammatory
responses (Balch et al., 2008; Dobson, 2003; Querfurth and LaFerla, 2010; Selkoe, 2011).
One common feature associated with these conditions, however, is the aggregation of certain
peptides and proteins, which generates a cascade of pathological events, including the
secondary aggregation of various other proteins and the consequent failure of protein
homeostasis to preserve normal biological function (Balch et al., 2008; Dobson, 2003;
Gidalevitz et al., 2006; Selkoe, 2011).
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Given the evidence that protein aggregation is a widespread phenomenon (Chapman et al.,
2006; David et al., 2010; Gidalevitz et al., 2006; Koga et al., 2011; Koplin et al., 2010; Liao
et al., 2004; Narayanaswamy et al., 2009; Olzscha et al., 2011; Reis-Rodrigues et al., 2012;
Wang et al., 2005; Xia et al., 2008), two key questions are why some proteins, but not
others, aggregate in vivo and generate pathological states, and whether the identities of these
proteins differ substantially between diseases. If particular proteins aggregate in response to
specific stresses, different sets of aggregated proteins will appear under each condition.
Alternatively, the various sets of aggregating proteins may correspond to a fraction of the
proteome with distinctive characteristics that increase the risk of aggregation under many
kinds of stress. The latter possibility is consistent with observations that aggregation-prone
proteins share general physicochemical features (Chiti et al., 2003; Fernandez-Escamilla et
al., 2004; Olzscha et al., 2011; Tartaglia et al., 2008).

Our aim in this work has been to answer a fundamental question about widespread protein
aggregation – why certain proteins aggregate in stress, ageing, or disease, while others do
not. To address this problem, we have sought to establish a proteome-wide method of
identifying the proteins that are vulnerable to aggregation in vivo. Using this method, we
have identified a number of proteins that are expressed at levels that are high relative to their
solubilities. These proteins are supersaturated, as their concentrations exceed their critical
solubility levels. Early evidence that supersaturation predisposes proteins to aggregate was
provided by the finding that the rate and extent of aggregation of hemoglobin S, which is
associated with sickle cell anemia, is strongly concentration-dependent (Hofrichter et al.,
1976). More recently, this idea has been used to compare the aggregation and crystallisation
behaviour of proteins (Yoshimura et al., 2012). Here, we have extended the concept of
supersaturation to the proteome level by considering both the unfolded and folded states that
can be populated by individual proteins, as well as their association into complexes. Thus,
for example, an intrinsically aggregation-prone protein is not necessarily dangerous unless it
is expressed at a relatively high concentration. Similarly, a highly concentrated protein may
not be at risk of losing its solubility unless its intrinsic propensity to aggregate is relatively
high.

By predicting supersaturation from estimated protein concentration and aggregation
propensity at a proteome scale, we are able to rationalize a variety of phenomena associated
with aggregation and misfolding diseases. We find through our analysis of the human and C.
elegans proteomes that those proteins known to interact with aggregates or to aggregate
upon aging are highly supersaturated, and that the cellular processes known to be associated
with neurodegenerative diseases are at risk of disruption because they involve an
exceptionally large number of supersaturated proteins. These results show how the initial
appearance of protein aggregates in the presence of other vulnerable proteins can precipitate
a series of uncontrolled aggregation events with severe pathological consequences, and that
proteins in a supersaturated state compose the sub-proteome most at risk of misfolding and
aggregation under conditions of stress. These proteins and the biochemical pathways to
which they belong may be the first to suffer from an impairment of protein homeostasis, and
therefore represent the underlying basis for the cellular damage caused by diseases of
misfolding, including neurodegenerative conditions such as Alzheimer’s and Parkinson’s
diseases.

Results
Prediction of protein supersaturation from concentration and aggregation propensity

In order to identify those proteins most at risk of misfolding and aggregating in vivo, we
calculated their level of supersaturation using a score that we define in terms of the
concentrations of proteins relative to their aggregation propensities (see Methods and

Ciryam et al. Page 2

Cell Rep. Author manuscript; available in PMC 2014 November 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Supplementary Information). The cellular concentrations of proteins with high
supersaturation scores are more likely to exceed their critical values under varying
conditions, leading these proteins to become insoluble. We here used the aggregation
propensities of proteins as estimates of their solubility, as experimental measurements of
critical concentrations of proteins in vivo are extremely difficult to carry out at the proteome
level. To evaluate the risk of proteins to aggregate from their unfolded or native states, we
define the parameters σu and σf as the supersaturation scores, respectively (Fig. 1). The risk
of aggregation is different in these two states since in the folded state the most aggregation-
prone regions tend to be buried in the core of the structure, and thus they are prevented from
forming intermolecular interactions (Tartaglia et al., 2008). The critical concentrations of
proteins in their unfolded states thus are generally expected to be lower than in their folded
states, hence the necessity of introducing the σu and σf scores separately. Since the largest
pool of unfolded proteins corresponds to newly synthesized proteins, whose concentrations
can be estimated from the corresponding mRNA concentrations, we used the logarithmic
average of scores derived from microarray analysis of over 70 types of human tissue or of
the nematode C. elegans at a range of ages to represent levels of newly synthesized proteins
(Golden et al., 2008; Su et al., 2004). For folded proteins, in order to define σf the score, we
used the logarithm of the normalized spectral abundance factors (NSAFs) derived from mass
spectrometry (Schrimpf et al., 2012).

We estimated the propensity of proteins to aggregate from the unfolded state using the Zagg
score calculated with the Zyggregator method (Tartaglia et al., 2008), which is based on the
analysis of the physicochemical properties of amino acid sequences (Chiti et al., 2003). The
Zyggregator method employs algorithms that have been parameterized to reproduce the
aggregation behavior of a set of known amyloidogenic proteins, and has been validated in a
series of studies in which it has been shown to lead to accurate predictions of aggregation
rates both in vitro and in vivo (Belli et al., 2011; Luheshi et al., 2007; Roodveldt et al., 2012;
Tartaglia et al., 2008). For proteins that aggregate from the native state, we used an
aggregation propensity score that accounts for the protective effects of the folded structure,
which is defined by assigning corrections to the aggregation propensities of individual
residues on the basis of the extent of the structural fluctuations that they experience in the
folded state and that lead to their temporary exposure to the solvent (Tartaglia et al., 2008).

This structurally-corrected aggregation propensity score  has been shown to correlate
well with protein solubility determined from an in vitro reconstituted bacterial ribosome
system (Agostini et al., 2012). We then summed the logarithms of the concentration and
aggregation propensity values (see Methods and Supplementary Information) to construct a
human database of σu scores for 16,263 proteins and σf scores for 6,155 proteins and C.
elegans database of σu scores for 16,623 proteinsand σf scores for 10,149 proteins (Table
S2). The sizes of our databases were limited primarily by the availability of expression and
abundance data that could be unambiguously mapped to specific protein identifiers.

Supersaturation scores rationalize widespread protein aggregation under stress
As a wide range of proteins are known to form fibrillar assemblies within the cell (Chapman
et al., 2006; Chiti and Dobson, 2006; David et al., 2010; Fowler et al., 2007; Gidalevitz et
al., 2006; Haass and Selkoe, 2007; Hartl et al., 2011; Koplin et al., 2010; Liao et al., 2004;
Olzscha et al., 2011; Reis-Rodrigues et al., 2012; Wang et al., 2005; Xia et al., 2008) we
investigated the relationship between the phenomena of supersaturation and aggregation. For
instance, the function of actin, a highly abundant protein also identified as being highly
supersaturated in our calculations (Table S2), relies on its ability to assemble reversibly into
filaments, and it has been suggested that given the typical cytosolic concentration of actin, it
would always remain in a polymerized form were it not for the presence of specific
regulatory mechanisms (Pollard et al., 2000).
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More generally, we find that the ‘amyloid proteins,’ as annotated in the UniProt database
(UniProt Consortium, 2012), have elevated supersaturation scores (Figs. 2a,b, S1a,b and
S1h,i). For these proteins, the score is more than 500-fold greater than the median value over
the proteome (540×, p=1.9•10−5), indicating that these proteins are on average at greater risk
of aggregation upon accumulation in the cell (Fig. 2a,b) than when they are in the process of
being synthesized (Fig. S1a,b). This conclusion is consistent with the appearance of such
proteins as the predominant constituents of either intracellular inclusions or extracellular
deposits in a variety of diseases (Balch et al., 2008; Dobson, 2003).

Given that high supersaturation scores correspond to an increased risk of proteins becoming
insoluble, we investigated whether such scores can rationalize additional aspects of protein
aggregation, including co-aggregation with large, insoluble deposits associated with disease
(Liao et al., 2004; Wang et al., 2005; Xia et al., 2008) and artificial β-sheet protein (Olzscha
et al., 2011) aggregates. Our results indicate that the σf score can identify proteins found to
incorporate into amyloid plaques (Liao et al., 2004) (200×, p=1.7•10−7, Fig. 2a,c),
neurofibrillary tangles (Wang et al., 2005) (140×, p=1.2•10−18, Fig. 2a,d), and Lewy bodies
(Xia et al., 2008) (2.5×, p=2.9•10−3, Fig. 2a,e) isolated from autopsy samples of
neurodegenerative disease patients. We find that proteins that co-aggregate with artificial β-
sheet proteins in human cell cultures (Olzscha et al., 2011) are characterized by increased
values of the σf score (3.5×, p=1.7•10−6, Fig. 2a,f), as well. Such proteins also have elevated
σu scores (1.4×, p=1.4•10−2, Fig. S1a,f), consistent with observations from pulse-chase
experiments that both newly-synthesized and preexisting proteins interact with aggregates
(Olzscha et al., 2011). The σf (Fig. 2) and σu (Fig. S1) scores are broadly consistent for all of
these sets, with proteins that co-aggregate with large inclusions tending to be relatively
highly supersaturated in both the folded and unfolded states.

We then turned our attention to the analysis of proteins that are likely to become susceptible
to aggregation when the control of protein homeostasis declines, as in ageing (David et al.,
2010; Reis-Rodrigues et al., 2012). We observe that the σu scores (0.61×, p=2.0•10−85, Fig.
S1a,g) of proteins that aggregate upon ageing in C. elegans (David et al., 2010; Reis-
Rodrigues et al., 2012) are lower than those of the proteome as a whole; by contrast, the σf
scores are much higher for these proteins (35×, p=1.9•10−158, Fig. 2a,g). The low values of
the σu scores can be attributed to the fact that global gene expression in C. elegans declines
with age (Golden et al., 2008), thus reducing the levels of newly synthesized proteins that
may aggregate from their unfolded states. Instead, proteins that aggregate during ageing
have low expression levels but relatively high concentrations, and tend to be metastable by
virtue of their high σf scores.

Since both the estimates of concentration and the predictions of aggregation propensity are
subject to considerable potential errors, to test the robustness of our results against these
errors, we introduced Gaussian noise into the calculations of the σf and σu scores, finding
that the results are indeed stable against high levels of noise (in many cases, more than 50-
fold error, Figs. S2–S3).

Biochemical pathways associated with neurodegenerative diseases are enriched in
supersaturated proteins

Since supersaturation scores could explain diverse phenomena related directly to
aggregation, we wondered whether they might help to identify cellular processes that were
particularly sensitive to stress. Therefore, we asked whether particular biochemical
pathways are at high risk of disruption by virtue of the supersaturation levels of their
constituent proteins. For our analysis we considered the pathways that are listed in the Kyoto
Encyclopedia of Genes and Genomes (KEGG), which are based on manually-curated sets of
proteins involved in cellular processes or proposed to be involved in disease on the basis of
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reports in the literature. We used the DAVID software (Huang et al., 2009) to determine if
any of the KEGG pathways (Kanehisa et al.) have a large number of human proteins with
high σu or σf scores. We carried out an unbiased search of the roughly 200 KEGG pathways
and found only eight pathways significantly enriched in the proteins with σu scores at or
above the 95th percentile. Strikingly, all these pathways involve proteins that either form
well-defined functional complexes or are related to diseases that involve pathological
protein complexes. The three disease pathways that are most dramatically enriched in
supersaturated proteins are those of Alzheimer’s (p=6.0•10−17), Parkinson’s (p=1.1•10−28),
and Huntington’s (p=4.0•10−22) diseases (Fig. 3a). A fourth pathway, involved in
pathogenic E. coli infection, which is closely associated with the cytoskeleton, is also
enriched, but to a much less significant level (p=4.6•10−3). KEGG pathways are broadly
constructed, with those related to neurodegenerative diseases including not only proteins
known to aggregate, but also the proteins that process these aggregates and the cellular
systems that become impaired as a result of aggregation (Kanehisa et al.). Despite this
disparate collection of proteins, a staggering two-thirds of proteins in the KEGG
Alzheimer’s disease pathway have supersaturation scores above the median value for the
human proteome (Fig. 6).

In addition to these disease pathways, we also find that the KEGG pathways associated with
the assembly of the ribosome (p=4.0•10−53) and the proteasome (p=3.2•10−2), and with the
processes of oxidative phosphorylation (p=8.8•10−33) and cardiac muscle contraction
(p=3.9•10−5), are enriched in supersaturated proteins (Fig. 3a). These results, particularly
those associated with the ribosome and oxidative phosphorylation, are highly robust against
errors in the calculation of σu scores (Fig. 3b). All of these pathways involve the assembly
of major cellular macromolecular complexes, the components of which must contain
interactive surfaces that tend to be aggregation-prone (Pechmann et al., 2009). In agreement
with this finding, proteins involved in such assemblies, especially the ribosome, have been
observed consistently in widespread aggregation studies (David et al., 2010; Koplin et al.,
2010; Reis-Rodrigues et al., 2012). Significantly, none of the pathways identified by using
supersaturation scores is identifiable from aggregation propensities alone.

These results suggest that widespread aggregation under conditions of stress is defined not
only by the specific nature of the stress itself, but also by the level of supersaturation of the
proteins that aggregate. If this is the case, some proteins should have characteristics that
render them susceptible to aggregation under a variety of conditions. To investigate this
possibility, we determined the overlap between the Alzheimer’s, Parkinson’s, and
Huntington’s disease KEGG pathways. The 76 proteins common to the pathways
represented by these diseases have on average a much larger σu score (19×, p=4.2•10−31)
than that of the proteome as a whole (Fig. 4a), or indeed, that of the remaining proteins in
the three individual pathways (Fig. 4b).

Of the eight pathways enriched in proteins with high σu scores, five — including those for
Alzheimer’s, Parkinson’s, and Huntington’s diseases — are also enriched in proteins with
high σf scores, although in the latter case the data are less statistically significant (Fig. S4).
The fact that the σu scores so strongly single out pathways involved in neurodegeneration
suggests that the proteins that misfold and aggregate during the course of these diseases
aggregate primarily from unstructured or partially unstructured states. In particular, since
many proteins in the KEGG neurodegenerative disease pathways are membrane proteins,
they are unlikely to aggregate from their folded state in the membrane environment. They
are, however, likely to be at risk during folding or upon removal from the membrane for
degradation (MacGurn et al., 2012; Notterpek et al., 1999; Skach, 2009), especially if
protein homeostasis dysfunction impairs membrane trafficking, as has been reported
(Cooper et al., 2006). Consistent with the view that membrane proteins may have a
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somewhat elevated risk in the unfolded state is that the median σu score score is modestly
elevated for proteins with ‘membrane’ Gene Ontology (Ashburner et al., 2000) tag (1.2×,
p=1.7•10−20), while the σf score is low for such proteins (0.47×, 5.9•10−52). This risk,
therefore, is small compared to that which we show for most sets of aggregating proteins in
Fig. 2. In order to test whether the observation that the Alzheimer’s, Parkinson’s, and
Huntington’s disease pathways have elevated numbers of supersaturated proteins is simply a
consequence of their richness in membrane proteins, we determined whether or not the sets
of proteins at or above the 95th percentile of σu or σf scores are significantly enriched in
membrane proteins compared to the proteome at large. Our results indicate that the most
supersaturated proteins are not enriched in this way (σu: p=0.16, σf: p=1.0). However, we do
find that the proteins most supersaturated in the unfolded state are enriched in those
associated with the Gene Ontology tag ‘organelle membrane’ (σu: p=6.9•10−19, σf: p=1.0).
This result is consistent with recent evidence that membrane proteins in the mitochondrial
respiratory chain can misfold when the Parkinson’s-associated gene PINK1 is mutated
(Pimenta de Castro et al., 2012). In fact, chief among the overlapping proteins in the
Alzheimer’s, Parkinson’s, and Huntington’s disease pathways are the proteins that are
members of the respiratory chain.

Since co-aggregating proteins are more highly supersaturated in the folded state than in the
unfolded state, the ability of the σu score, in addition to the σf score, to identify disease
pathways suggests at least three possibilities. First, it may be that many proteins involved
with disease aggregate independently instead of associating with inclusions, as suggested by
the tendency of proteins toward homomeric aggregation (Matsumoto et al., 2006; Rajan et
al., 2001; Wright et al., 2005). Second, proteins involved with disease may be degraded if
they fail to fold into their native conformation (Goldberg, 2003). Third, mass spectrometry
experiments designed to identify aggregating or co-aggregating proteins tend to ignore
membrane proteins because of the difficulty of distinguishing membrane-associated proteins
from truly insoluble ones, and therefore may be missing an important component of the
disease process. Despite the need for such details to be resolved in the future, our results
suggest that supersaturation in the folded state is reporting on significant functional
properties of proteins in the cell, as well as potentially pathological processes. We find, for
example, that in addition to proteins that aggregate (Fig. 2), those proteins that form
functional complexes tend to have high σf scores (complexes (Licata et al., 2012): 6.2×,
p=2.3•10−58; nuclear complexes (Luc and Tempst, 2004): 1.7×, p=1.2•10−3, Fig. 5). These
results are consistent with evidence that the features that mediate normal protein interactions
are similar to those that promote aggregation (Pechmann et al., 2009).

To test our results for the σu scores, we used another predictor of aggregation from the
unfolded state, the TANGO algorithm (Fernandez-Escamilla et al., 2004). A supersaturation
score based on this algorithm (σuT) (Table S2) produces similar results to those obtained
with the σu score (Fig. S1). Furthermore, to test the possibility that the σu and σf scores may
give too much weight to the expression levels relative to the aggregation propensities, we
increased the exponential weight of aggregation propensities in the σu andσf score. At the
highest reweighting that we tested (Fig. S5–S6), supersaturation scores are more strongly

correlated with aggregation propensity scores (Human Zagg, σu: 0.88, Human  ,σf: 0.88,

Worm Zagg, σu: 0.99, Worm  , σf: 0.96) than concentration score (Human mRNA
expression, σu: 0.35, Human protein abundance, σf: 0.53, Worm mRNA expression, σu:
0.10, Worm protein abundance, σf: −0.015). After reweighting, we find that most of our
results are robust over a wide range of aggregation propensity values (Figs. S5–S6).

Still, we observed that concentration is a strong predictor of the variety of aggregation-
related phenomena that we have analyzed in this work, as an important component of the
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predictive power of σf is attributable to this property. Indeed, the widespread aggregation
data sets that we considered tend to exhibit protein abundance levels more elevated than

corresponding mRNA levels, and while they also tend to be more elevated in  than Zagg,
the difference is much smaller (Fig. S1). In addition, the ratio of relative σf to σu values is
positively correlated with the ratio of relative protein abundance to mRNA levels, but

negatively correlated with the ratio of relative  to Zagg levels (Fig. S1). The relevance of
the concentration levels in rationalizing widespread aggregation measurements is a further
indication that the concepts of solubility and supersaturation are key in understanding these
data.

Moreover, since both the procedure adopted for pathway construction in the KEGG database
(Kanehisa et al., 2010) and the identification of aggregating proteins using mass
spectrometry (Olzscha et al., 2011) typically consider only the more abundant proteins, the
use of the supersaturation score is likely to help to identify additional proteins that aggregate
in disease, particularly those with low concentrations and high aggregation propensities. For
example, pathways related to cell surface receptors, including olfactory transduction
(p=4.0•10−90) and neuroactive ligand-receptor interaction (p=4.9•10−5), are enriched among
those supersaturated proteins that are present at low concentrations.

Discussion
Previous studies that have investigated the causes of proteome-wide aggregation have
considered the intrinsic aggregation propensities of proteins (Goldschmidt et al., 2010;
Monsellier et al., 2008; Tartaglia et al., 2005; Tartaglia and Vendruscolo, 2010). It has thus
been suggested that a diverse collection of proteins can form aggregates, although the
presence of molecular chaperones and clearance processes largely prevents proteome-wide
aggregation under stress-free conditions (Dobson, 2003; Goldschmidt et al., 2010; Lindquist
and Kelly, 2011; Monsellier et al., 2008; Olzscha et al., 2011). It has also been shown that
destabilizing mutations may drive soluble proteins towards aggregation, and that a genetic
background predisposed to such defects can exacerbate this problem (Gidalevitz et al., 2006;
Luheshi et al., 2007). More generally, since protein aggregation in the cellular environment
has potentially devastating effects, the expression of aggregation-prone proteins is generally
maintained at low levels (Tartaglia et al., 2007) and tightly regulated (Gsponer and Babu,
2012). It has been observed, however, that proteins are only just soluble at the levels at
which they are expressed in the cell (Tartaglia et al., 2007) and as these trends are conserved
in the yeast, mouse, and human proteomes, it has been suggested that monomeric and
aggregate forms of proteins are in an effective homeostatic state (Gsponer and Babu, 2012).
Similarly, it was recently shown that highly abundant proteins have fewer aggregation-prone
surfaces, an observation consistent with their low aggregation propensities (Levy et al.,
2012; Tartaglia et al., 2007). Given these evolutionary constraints, it may be surprising that
in vivo aggregation is such a common phenomenon under stress (Chapman et al., 2006;
Gidalevitz et al., 2006; Koplin et al., 2010; Liao et al., 2004; Narayanaswamy et al., 2009;
Olzscha et al., 2011; Wang et al., 2005; Xia et al., 2008) or aging (David et al., 2010; Koga
et al., 2011; Reis-Rodrigues et al., 2012). Our results on protein supersaturation provide an
explanation for these observations, as they indicate that not only the intrinsic propensities of
proteins to aggregate, but also their cellular concentrations are key factors that distinguish
aggregation-prone proteins from those whose homeostasis is more robust (Tables 1, S1).
While it has been observed that widespread aggregation occurs upon overexpression, which
raises the supersaturation levels (Gsponer and Babu, 2012; Narayanaswamy et al., 2009;
Sopko et al., 2006), our results indicate that a substantial fraction of the proteome is
intrinsically supersaturated and therefore requires the constant aid of quality control
mechanisms such as molecular chaperones to remain soluble.
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The example of serum albumin illustrates some of the strategies adopted by supersaturated
proteins to avoid aggregation, as well as their limitations. Albumin, which is exceptionally
abundant, is classified in our analysis as supersaturated (Table S2). This protein, which is
ubiquitous in the serum, is usually considered to be very soluble, and yet it has been
observed to aggregate in vitro (Costantino et al., 1995; Maruyama et al., 2001) and to form
toxic aggregates in the synovial fluid of rheumatoid arthritis patients (Oates et al., 2006).
These findings reflect two important aspects that regulate the behaviour of supersaturated
proteins – the volume that they occupy and the interactions that they form. Although
albumin is highly abundant in the serum, its concentration is still relatively low owing to the
large volume of the serum itself. By contrast, when confined in the synovial fluid, which has
a smaller volume, the concentration of albumin may become substantially higher. In
addition, albumin forms numerous complexes with proteins and other molecules, which may
protect it from aggregation, as has been observed for the ribosomal proteins (David et al.,
2010; Koplin et al., 2010; Reis-Rodrigues et al., 2012). Future studies should account for the
volume occupied by proteins and the complexes they form in order to increase the accuracy
of supersaturation predictions.

Although abundant proteins have evolved to be more soluble than those that are of low
abundance (Tartaglia et al., 2007), some proteins are expressed at such high concentrations
that it may be impossible for them to achieve the necessarily solubility with the constraints
of functionality and the need for a stable hydrophobic core. We have found that abundance
itself is also a good predictor of widespread aggregation in vivo. This result indicates that
highly abundant proteins are intrinsically more at risk of aggregation than low abundant
proteins (Table S3), which in turns suggests that highly abundant proteins must be
maintained at high solubility levels by the protein homeostasis system. These proteins are
therefore more susceptible to aggregation in processes that impair protein homeostasis, such
as stress, ageing, or disease. The strong predictive power of abundance underscores the
importance of solubility in this phenomenon.

These supersaturated proteins are kinetically, but not thermodynamically, stable in their
soluble states (Baldwin et al., 2011; Gazit, 2002; Yoshimura et al., 2012), and are thus likely
to be highly dependent on the systems that control protein homeostasis in order to remain
folded. The instability of supersaturated proteins is thus expected to arise from the failure of
cellular systems that contribute to keeping them soluble. The disruption of this machinery
under stress and in disease conditions leads to the aggregation of such proteins by shifting
the protein homeostasis boundary for their solubility (Hutt et al., 2009; Taylor and Dillin,
2011). The present study suggests that a widespread failure to maintain proteins in their
soluble functional states underlies the diverse and complex pathophysiology of
neurodegenerative diseases. The sensitivity of neurons to protein aggregation, therefore,
may arise from their high dependence on classes of proteins, such as those identified here,
that are inherently and unavoidably at risk. Thus, the initial aggregation of the primary
amyloid proteins, such as A β and α-synuclein, may trigger an aggregation cascade that
disrupts cellular pathways involving these supersaturated proteins.

In conclusion, we have shown that the presence of a large number of supersaturated proteins
in the human proteome rationalizes a wide variety of aggregation phenomena associated
with aging and disease. The finding that such proteins are overrepresented in a broad range
of biochemical processes linked to neurodegenerative diseases reveals why such processes
are particularly vulnerable to the appearance of aggregated species or other factors that
compromise proteins homeostasis. We anticipate that the type of analysis that we have
described can provide a general and widely applicable basis for tracking the instability of
proteomes under specific circumstances. By exploiting recent advances in techniques for
proteomic analysis, it may soon become possible to use supersaturation measures to assess
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quantitatively the vulnerability of the human proteome to aggregation and the risk of
neurodegenerative disease in individuals over the course of their lives.

Methods
The concentration and aggregation propensity of a given protein were combined to produce
the supersaturation score:σ = C + Z, where C is the logarithm of the concentration derived
from the mRNA expression or protein abundance levels (see Tables S1 and S2), and Z is the
Zyggregator score. The σ scores were then re-centered such that the median of each database
was zero and used to analyze proteins associated with widespread aggregation (Chapman et
al., 2006; David et al., 2010; Gidalevitz et al., 2006; Koplin et al., 2010; Liao et al., 2004;
Olzscha et al., 2011; Reis-Rodrigues et al., 2012; Wang et al., 2005; Xia et al., 2008), by
comparing them to a control lysate when available, or to the full proteome database
otherwise. In other cases, comparisons were made against the whole proteome data set.
Similar procedures were followed for protein complexes (Licata et al., 2012; Luc and
Tempst, 2004). A summary of data sets used in this study is provided in Tables 1 and S1.
DAVID (Gidalevitz et al., 2006) was used to find KEGG (Kanehisa et al., 2010) pathways
enriched in proteins at or above the 95th percentile of each σ score, with the full database set
as background. Error tests were performed by introducing Gaussian noise into the full σu
and σf databases in 100 independent trials, or by changing the weighting of aggregation
propensity in the un-centered scores, and then re-computing Mann-Whitney U p-values and
median fold changes each time.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Protein supersaturation is an intrinsic aspect of protein homeostasis

Supersaturated proteins form a metastable sub-proteome

Supersaturated proteins are overrepresented in neurodegenerative pathways

Supersaturated proteins undergo aggregation upon cellular stress or ageing
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Figure 1. Protein aggregation in vivo can occur through different routes
Proteins may misfold and aggregate as they emerge from the ribosome or when they unfold
at least transiently from the native state. The proteins most at risk of aggregation are those
whose concentration is high with respect to their solubility. We quantify this risk by defining
the supersaturation σu and σf scores. The supersaturation score σu, which measures the
tendency of proteins to aggregate from the unfolded state, is based on the Zyggregator score
(Tartaglia et al., 2008) (Zagg) and mRNA expression levels. The supersaturation score σf,
which measures the tendency of proteins to aggregate from the folded state, is based on the

structurally-corrected Zyggregator score (Tartaglia et al., 2008)  and protein
concentration.
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Figure 2. Widespread protein aggregation is associated with high supersaturation scores
(a) Summary of the results for the different classes of aggregating proteins analyzed in this
work. Results are given in terms of the increases in the supersaturation scores over the
average value for the whole proteome or for an experimental lysate (“fold change”). We
compared the supersaturation scores σf for: (b) the whole proteome and the human “amyloid
proteins” in UniProt (UniProt Consortium, 2012), (c) the whole proteome and proteins that
co-precipitate in amyloid plaques (Liao et al., 2004), (d) the whole proteome and proteins
that co-precipitate in neurofibrillary tangles (Wang et al., 2005), (e) the whole lysate and
proteins that co-precipitate in Lewy bodies (Xia et al., 2008), (f) the whole lysate and
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proteins that co-precipitate in artificial β-sheet protein aggregates (Olzscha et al.), (g) the
whole proteome and proteins found to aggregate in C. elegans during aging (David et al.,
2010; Reis-Rodrigues et al., 2012). Boxplots extend from the lower to the upper quartiles,
with the internal lines refer to the median values. Whiskers range from the lowest to highest
value data points within 150% of the interquartile ranges. The statistical significance was
assessed by Wilcoxon/Mann-Whitney U test with the Bonferroni-corrected p-values (*p <
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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Figure 3. Biochemical processes associated with neurodegenerative diseases are highly enriched
in supersaturated proteins
(a) List of the KEGG pathways (Kanehisa et al., 2010) identified here as significantly
enriched (Bonferroni-corrected p-values) in proteins at or above the 95th percentile of
supersaturation (σu): (R) ribosome, (OP) oxidative phosphorylation, (PD) Parkinson’s
disease, (HD) Huntington’s disease, (AD) Alzheimer’s disease, (CMC) cardiac muscle
contraction, (PEcI) pathogenic E. coli infection, (Pr) proteasome; physiological and
pathological pathways are shown in blue and red, respectively. (b,c) Test of the robustness
of the significance of the enrichment of the KEGG pathways according to their
supersaturation scores. Gaussian noise was introduced 100 independent times into the
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proteome scores at 50 different levels and plotted (1× = no noise) for: (b) physiological
pathways, which are robust up to 28× (R), 8.8× (OP), 2.3× (CMC) and 1.2× (Pr), and (c)
pathological pathways, which are robust up to 8.2× (PD), 6.2× (HD), 5.5× (AD) and 2.1×
(PEcI). Error bars indicate interquartile ranges, green points indicate error levels below the
p=0.05 significance (red dashed line) by the Wilcoxon/Mann-Whitney U test.
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Figure 4. Supersaturated proteins are common to different neurodegenerative pathways
(a) Comparison of the σu scores for the proteome and the set of 76 proteins common among
the Alzheimer’s, Parkinson’s, and Huntington’s KEGG pathways (Kanehisa et al., 2010);
this set of proteins is denoted as ‘overlap’. (b) Comparison of the scores for the proteins in
the Alzheimer’s, Parkinson’s, and Huntington’s pathways. Colors are assigned based on the
division of the σu scores into deciles from low (green) to high (red).
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Figure 5. Proteins that form complexes tend to be more supersaturated than the proteome as a
whole
We compared the σf scores for: (a) the proteome and proteins involved in complexes, and
(b) the nuclear proteome and proteins involved in nuclear complexes. Boxplots extend from
the lower to the upper quartiles, with the internal lines refer to the median values. Whiskers
range from the lowest to highest value data points within 150% of the interquartile ranges.
The statistical significance was assessed by Wilcoxon/Mann-Whitney U test with the
Bonferroni-corrected p-values (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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Figure 6. Supersaturated proteins are over-represented in the KEGG Alzheimer’s disease
pathway
The KEGG pathway for Alzheimer’s disease (Kanehisa et al.) is curated from the literature
and includes many proteins not directly associated with the disruption of the homeostasis of
the Aβ peptide. Those proteins that are part of the overlap (see Fig. 4a) of the Alzheimer’s,
Parkinson’s, and Huntington’s disease pathways are shown in bold. Approximately 65% of
proteins in the Alzheimer’s pathway have high σu scores. Colors are assigned based on the
division of the σu database into deciles from low (green) to high (red).
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