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Abstract
A new graph-based approach for segmentation of luminal and external elastic lamina (EEL)
surface of coronary vessels in gated 20 MHz intravascular ultrasound (IVUS) image sequences
(volumes) is presented. The approach consists of a fully automated segmentation stage (‘new
automated’ or NA) and a user-guided computer-aided refinement (‘new refinement’ or NR) stage.
Both approaches are based on the LOGISMOS approach for simultaneous dual-surface graph-
based segmentation. This combination allows the user to efficiently combine general information
about IVUS image appearance and case-specific IVUS morphology and therefore deal with
frequently occurring issues like calcified plaque – causing signal shadowing – and imaging
artifacts. The automated segmentation stage starts with pre-segmenting the lumen to automatically
define the lumen centerline, which is used to transform the segmentation task into a LOGISMOS-
family graph optimization problem. Following the automated segmentation, the user can inspect
the result and correct local or regional segmentation inaccuracies by (iteratively) providing
approximate clues regarding the location of the desired surface locations. This expert information
is utilized to modify the previously calculated cost functions, locally reoptimizing the underlying
modified graph without a need to start the new optimization from scratch.

Validation of our method was performed on 41 gated 20 MHz IVUS data sets for which an expert-
defined independent standard was available. Resulting from the automated stage of the approach
(NA), the mean and standard deviation of the RMS area errors for the luminal and external elastic
lamina surfaces were 1.12 ± 0.67 mm2 and 2.35 ± 1.61 mm2, respectively. Following the
refinement stage (NR), the RMS area errors significantly decreased to 0.82±0.44 mm2 and
1.17±0.65 mm2 for the same surfaces, respectively (p < 0.001 for both surfaces). The approach is
delivering a previously unachievable speed of obtaining clinically relevant segmentations
compared to the current approaches of automated segmentation followed by manual editing.
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I. Introduction
Intravascular ultrasound (IVUS) provides two-dimensional cross-sectional images of vessel
wall architecture and plaque morphology. When augmented with motorized pullback, three-
dimensional images are formed. IVUS imaging is common in coronary catheterization
laboratories, augmenting traditional X-ray angiography imaging and providing information
about the coronary wall morphology. While traditional coronary angiography provides
information about the coronary lumen, IVUS adds information about the coronary wall, its
remodeling in response to the atherosclerotic processes, and – when virtual histology is
included – about atherosclerotic plaque composition. IVUS imaging is routinely performed
during percutaneous coronary interventions like balloon angioplasty with or without stent
placement to determine vessel geometry, plaque status, presence of ulcerations, to correctly
size the angioplasty balloons, determine proper diameter and length of coronary stents,
assess resulting stent apposition, etc.

To obtain IVUS images, an imaging catheter is extended distally to the desired location of
the coronary artery under fluoroscopic guidance. Three-dimensional IVUS imaging is
performed by mechanical pullback of the imaging catheter from its initial distal
(downstream) position. Typically, the acquired image frames are cardiac cycle (usually R-
wave) gated to provide phase-specific 3-D IVUS image sequences. Such R-wave gated
sequences can be visualized and quantitatively analyzed as a straight pipe or in its correct
geometry when fused with two-plane angiographic image data providing 3-D vessel
geometry [1].

Atherosclerotic plaque is located between two borders (in 2-D) or surfaces (in 3-D) that can
be identified in IVUS images – luminal surface (interface between blood and intima) and the
surface formed by the external elastic lamina (EEL, media–adventitia interface). IVUS
segmentation of the lumen and EEL borders/surfaces is of substantial clinical interest and
contributes to clinical decision making. Yet, no truly reliable and consistently accurate
IVUS segmentation methods exist that would guarantee segmentation success in a clinical
setting. This is especially true considering that close-to-realtime performance is required.

IVUS segmentation methods have been reported for almost 20 years. Despite a considerable
effort devoted to this task and a number of partial successes, no perfect solution emerged
that would allow reliable automated analysis of IVUS data. There is a number of reasons
making IVUS segmentation very difficult due to the presence of a variety of artifacts
including blood speckle, near-field artifacts, strut or guide wire artifacts, reverberations,
non-uniform rotational or axial distortion, missing information due to calcified plaque
shadowing, etc. The early methods were based on 2-D dynamic programming detecting the
lumen and EEL borders independently [2]–[4]. Three-dimensional approaches followed and
included active surfaces [5], [6], level sets [7], [8], shape models [9], inverse scattering
algorithms [10], or combination of transversal and longitudinal model- and knowledge-
guided contour detection techniques [11], to name a few. Recently, our group has developed
a method for simultaneous segmentation of multiple surfaces called LOGISMOS [12], [13]
and applied to 3-D IVUS segmentation [14]. Despite the variety of approaches developed
for IVUS segmentation, one observation remains omnipresent in all these methods – while
each of the cited automated methods successfully segments IVUS image data in many IVUS
image frames, they all fail in a considerable number of frames making automated IVUS
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segmentation virtually impossible to use in a clinical setting. In all these locations – many of
which are of utmost clinical relevance – the interventional cardiologist must resort to tedious
and time-consuming manual tracing of a large number of IVUS frames to obtain acceptable
boundaries and desirable quantitative indices of morphology or plaque virtual histology. The
fact that obtaining virtual histology information about the plaque tissue is directly dependent
on correct segmentation of the luminal and EEL surfaces further increases importance of this
task.

Motivated by the pressing clinical need of achieving successful segmentation of all IVUS
frames of interest and realizing that the most important coronary locations are the most
diseased ones, which may suffer from the most severe imaging artifacts like calcium
shadowing (Fig. 1), we have developed a two-stage approach consisting of automated and
semi-automated steps based on optimal dual-surface graph based segmentation
(LOGISMOS) [12]–[14]. The approach was designed for gated 20 MHz IVUS image data,
but the principle can be adapted/generalized to other IVUS imaging protocols (e.g., 40 MHz
IVUS pullbacks). In the first stage, the graph is built and an initial segmentation of the
lumen and EEL are determined automatically. The second stage is optional and can be seen
as a “dialog” between the user and the previously utilized algorithm, where the user provides
rough clues for the desired locations of at-this-stage incorrectly positioned boundaries by
augmenting the graph's objective function. Utilizing such locally targeted expert interactions
that act directly on the optimized graph, real-time interaction responses yield updated pairs
of segmentation surfaces in an interactive, user-driven, and semi-automated fashion. A small
number of interactions is typically sufficient to achieve fully satisfactory 3-D segmentations
of IVUS image sequences consisting of hundreds of R-wave gated frames. As a result, a
highly accurate, highly automated, and performance-efficient method has been developed
facilitating routine segmentation of complete IVUS pullback sequences almost immediately
after completing the IVUS image acquisition.

II. Method
As mentioned in the Introduction, the proposed approach to gated 20 MHz IVUS
segmentation consists of two main stages: a) initial automated segmentation and b)
interactive graph-optimization driven segmentation refinement, if needed. In stage a), lumen
(inner) surface and EEL (outer) surface are segmented simultaneously in 3-D. For this
purpose, the lumen is first roughly pre-segmented and luminal centerline determined,
facilitating construction of the graph for LOGISMOS-based dual surface segmentation [12],
[13]. Both the pre-segmentation and the simultaneous dual-surface segmentation are fully
automated and yield optimal surfaces with respect to the employed objective function. Any
local or regional segmentation errors can be identified by the expert operator and efficiently
corrected in the second stage of our approach. The basic idea behind our refinement stage is
that the user is allowed to interact directly with the LOGISMOS-based segmentation
algorithm by providing rough clues regarding the desired boundary location.

A. Graph Construction for LOGISMOS Segmentation
Both the lumen pre-segmentation and dual-surface segmentation in stage a) of our approach
utilize the LOGISMOS approach. The main idea of the LOGISMOS-based segmentation
strategy is to transform the segmentation problem into a graph optimization problem
(finding a minimum-cost closed set) [12] by means of a maximum-flow algorithm [15].
Thus, global optimality of the resulting dual-surface segmentation is guaranteed according
to the employed cost function, hard smoothness constraints of the respective surfaces, and
interaction constraints between pairs of surfaces. The hard smoothness constraint for a
particular surface corresponds to its maximum allowed roughness. Surface interaction
constraints reflect the minimum and maximum allowed distances between surface pairs [12].
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For dual-surface LOGISMOS, a weighted graph G containing two sub-graphs G = {Gi = (Vi,
Ai) : i = 1,2} is constructed, where Vi represents a graph node set, Ai a graph arc set, G1
inner surface (S1) sub-graph and G2 outer surface (S2) sub-graph. υ ∈ Vi is a graph node on a
column, the length of which is lp. Each node υ corresponds to a point of intensity I(x, y, z) in
the volumetric image stack I. In this context, the final LOGISMOS segmentation result is
represented by two meshes; one for the inner surface and one for the outer surface. The
vertices of these meshes correspond to nodes of the graph G that are determined by the
LOGISMOS (optimization) method. Thus, for each column of the graph G, each surface will
be assigned exactly one node. As will be described below, inter-surface constraints will be
introduced to avoid folding or overlap of inner and outer surface.

Gi consists of sub-graphs Gik ∈ Gi with k = 1,2, …,Z where Z represents the number of
image frames in the stack. For each sub-graph Gik, np graph columns are generated from a
center point μk in radial directions at θp = 2π/np angle increments (Fig. 2(a)). The distance
between nodes along the column is dn, which is set to half the pixel size. Based on this graph
construction, we have lp = rf/2 nodes, where rf is half the frame (image) size in pixels.

Intra-column arcs are built to connect nodes n(υ, m) to n(υ, m − 1) on a column colk(υ) with
infinite weights, where m is the column node index. Inter-column arcs are built to connect
the node n(υi,m) to the node n(υj,m − Δa) with infinite weights (Fig. 2(b)), where Δa is the
in-frame hard smoothness constraint between neighboring columns. To obtain a 3-D graph
Gi, sub-graphs {Gik: k = 1, 2,…,Z} are connected by inter-column arcs, which pairwise
connect nodes n(υi, m) to nodes n(υi, m − Δb) on the column colk(υi) and colk±1(υi) with
infinite weights (Fig. 2(c)), where Δb is inter-frame hard smoothness constraint.

Graphs G1 and G2 are interconnected by inter-surface arcs which connect nodes n(υi,m) of
G2 and n(υi,m − δu) of G1 with infinite weights, and nodes n(υi, m) of G1 and n(υi, m + δl) of
G2 with infinite weights (Fig. 2(d)), where δl and δu are lower-limit and upper-limit
interaction constraints representing the minimum and maximum allowed distances between
surfaces S1 and S2.

Graph node weight sets Ci with i ∈ {1,2} (objective or cost functions) are derived from
volumetric image data to reflect local image characteristics. In this context, note that weights
(costs) can be arbitrary real values [12]. In addition, linear soft smoothness constraints are
utilized, as proposed by Song et al. in [16]. For this purpose, constant weight αia (in-frame)
and αib (inter-frame) arcs are introduced to penalize shifts between adjacent vertices on
surfaces Si.

The same LOGISMOS-based segmentation approach is utilized for lumen pre-segmentation
and dual-surface lumen–EEL segmentation. All parameters of our method were determined
experimentally on five cases, which were not included in the test data set described in
Section III-A. Both approaches use the same graph construction, with the exceptions of hard
smoothness constraints, cost function design and utilized center point locations {μk : k = 1,2,
…, Z}. Most graph-construction parameters (e.g., Fig. 2) directly related to the imaging
protocol like in-frame resolution and pullback speed. In this context note that information
about in-frame pixel sizes is available from the DICOM headers of the IVUS image
sequences. Frame-to-frame spacing is derived from the IVUS catheter pullback speed. While
the frame-to-frame spacing may vary slightly for different locations of the frame in curved
vessels, these differences are small from frame to frame due to a substantial rigidity of the
IVUS catheter tip. Currently, these differences are not considered by the utilized approach
although they may be determined from the reconstructed 3D geometry of the vessel and the
associated IVUS pullback trajectory as previously described in [1].
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In this application, the graph-construction parameters common to the pre-segmentation and
dual-surface segmentation were: np = 36, δl = 4 nodes, and δu = lp nodes. Also, the following
common soft smoothness α1a = 0.01, α1b = 0.01, α2a = 0.005, and α2b = 0.005 were utilized.
Specific parameters for hard smoothness constraints of inner (Δ1) and outer (Δ2) surfaces are
provided in Sections II-B1 and II-B2 below. In general, we found that setting parameters for
graph construction is not critical for performance as long as: a) the segmentation result can
be represented within the graph framework and b) reasonable constraints (e.g., smoothness)
are defined. Consequently, for a new imaging protocol, these graph construction parameters
can be easily adjusted by utilizing a small set of representative IVUS pullbacks.
Furthermore, the cost function design presented in the subsequent sections depends on the
utilized IVUS transducer and needs to be adapted accordingly.

B. Automated Segmentation
1) Lumen Pre-segmentation—The goal of this step is to roughly pre-segment the inner
surface S1 (luminal surface) of the IVUS volume to estimate the lumen centerline, which
will be used for the subsequent dual-surface segmentation (Section II-B2).

For the lumen pre-segmentation, a dual-surface LOGISMOS framework is utilized and G2
presence is solely used to constrain the search for G1; there is no goal of determining an
accurate location of the S2 surface at this step. Note that only rough boundary locations are
required for this step. First, a total variation (TV) regularized L1 model-based decomposition
[17] with regularization parameter λ = 0.01 is used to remove high-frequency details like
speckle noise, but preserves information regarding location of the inner wall boundary (Figs.
3(a) and 3(b)).

The LOGISMOS-based lumen pre-segmentation uses the center of the imaging catheter
(image center) as μk for k = 1,2,…,Z. The cost functions (C1 and C2) for surfaces Si assign
the following costs to column nodes n(υ,j):

(1)

Normalized gradient magnitude (range of [0, 1]), gradient direction, and surface normal
vectors (in graph column direction and pointing away from μk) are denoted gmag(υ, j),
gdir(υ, j), and nυ, respectively. gmax is the maximum gradient magnitude of the volume. The
definition of costs (Eq.1) is motivated by the observation that for the majority of normal
(i.e., without pathology or artifacts) 20 MHz IVUS image frames, the lumen is darker than
media/adventitia layer, which is darker than surrounding background of the vessel. Note that
smaller deviations from this pattern are likely not critical, because of other additional
constraints (smoothness). However, large areas that deviate from this pattern may require
interactive refinement. The gradient calculation is based on Gaussian derivatives with
standard deviation of σ = 0.1 mm. This parameter depends on image resolution and needs to
be adjusted for different imaging protocols. Linear interpolation is utilized to obtain costs
ci(υ, j). The following hard smoothness constraints were used for pre-segmentation: Δ1a =
15, Δ1b = 15, Δ2a = 6, and Δ2b = 9. Note that parameters were set such that smoothness
constraint is more relaxed for the inner boundary (Δ1a and Δ1b) compared to the outer
boundary (Δ2a and Δ2a), because the inner boundary (lumen) frequently exhibits more shape
variation than the outer boundary (EEL), which is more circularly shaped. Fig. 3(c) shows
an example of lumen pre-segmentation.
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2) Dual-Surface Segmentation—The dual-surface segmentation is based on the same
LOGISMOS framework (Section II-A). The center position μk for each image frame is
however derived from the lumen pre-segmentation (Section II-B1) and original unfiltered
image data are utilized for calculating cost functions.

Outer boundary (EEL) costs c2(υ, j) are calculated as given in Eq. 1. As a cost function for
the inner boundary (luminal surface), a combination of edge-based and in-region-based costs
are utilized

(2)

as depicted in the example given in Fig. 5. In Eq. 2, ξ is set to 0.4 and represents a weighting
factor between two cost terms. The term ce(υ, j) represents an edge based cost function
equivalent to Eq. 1, and

(3)

represents an in-region cost term with a gray-value weighting function

(4)

In this context, the gray-value at node n(υ, m) is denoted by x(υ, m). The design of the
weighting function is inspired by the Rayleigh probability density function (PDF), which is
given by

(5)

where x is the gray-value of a pixel and a > 0. Specifically, we model gray-values of the
lumen region by means of a Rayleigh PDF, which is well suited to describe the typical
speckle noise pattern found in ultrasound images [18] and has also been utilized in the
context of IVUS segmentation (e.g., [1], [7]). A plot showing the relationship between Eqs.
4 and 5 is given in Fig. 4. Function f(x) returns low costs if IVUS gray-values are likely
belonging to the lumen. Note that f(x) was designed such that the catheter which is
blackened out with a gray-value of zero also receives low costs. Parameter a of the Rayleigh
PDF is estimated from the pre-segmented lumen (Section II-B1) with

(6)

where xi is a gray-value sampling point and N is the number of sampling points in the ROI
defined as a sub-region of the volume between the catheter surface and the segmented lumen
(inner) surface.

Graph parameters used for automated dual-surface IVUS segmentation were as follows.
Parameter σ was set to the same value as in Section II-B1. For hard smoothness constraints,
Δ1a = 5, Δ1b = 6, Δ2a = 4, and Δ2b = 6 was utilized. For the selection of these parameters, the
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same considerations, as outlined in Section II-B1, apply. However, because of the
previously determined center position μk, the constraints are adjusted to be more restrictive.

C. User-Guided Segmentation Refinement—Our segmentation refinement method is
directly based on the graph structure G built in step 2 of our automated segmentation
approach (Section II-B2). While the reported user-driven refinement method modifies the
graph node costs, it does not change the topology of the underlying graph structure. The
individual processing steps of the algorithm are depicted in Fig. 6 and are described in detail
below.

1. The user inspects the segmentation result and locates a segmentation inaccuracy
(Fig. 6(a)).

2. The user selects either the inner or outer surface for refinement and draws a
polygon line and/or specifies a point roughly at the location of the desired surface
boundary (Fig. 6(b)). This task is supported by a graphical user interface (GUI).

3. Utilizing the information provided by the user, the algorithm locally updates costs
in the graph structure G.

4. The maximum-flow is recalculated for the updated graph G. To speed up the
computation, recomputing the maximum-flow from scratch is avoided by utilizing
the previously calculated residual graph in a similar way as previously described in
[19].

5. The display of the inner and outer surfaces is updated (Fig. 6(c)).

The above described refinement method can be utilized iteratively, if required. The
program's GUI allows the user to “undo” a refinement operation, if needed. In the following,
we provide more details for step 3 of our algorithm.

As outlined above, the user can guide the segmentation result by drawing polygon lines in
cross-sectional images along the vessel or placing single points in arbitrarily (desired)
locations of the IVUS volume. Based on this interactively defined information, node costs in
local neighborhoods of the entered points or polygonal lines are modified to affect the
outcome of the optimal graph-search segmentation. Single points specified by the user are
converted by the algorithm to a polygon line consisting of one start and end point that are
the same.

Given a polygon line represented by the point set L = {l1, l2,…, lj} that roughly
approximates the correct boundary location (Fig. 7), intersection points pk with k = s, s + 1,
…, e are calculated for each image frame, and wedge sector shaped influence regions Ωk are
defined (gray region in Fig. 7). For the influence regions, r = 0.182 mm and angle θ = 20°
were utilized, for all test data sets (Section III-A). Affected columns are defined as those that
intersect the volume Ω defined by combining all influence regions Ω = {Ωs,Ωs+1,… ,Ωe}.

Let  and  denote node costs before and after a refinement iteration,
respectively. Nodes on the affected columns for surface Si are updated as follows

(7)

and the costs of all other (unaffected) columns are left unchanged . The
rationale behind having two update functions for affected columns is as follows. First, costs
of nodes on affected columns near (inside Ω) the user-specified refinement point or polygon
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line need to become more “attractive” (cheaper) or at least stay the same. This is
accomplished by

(8)

where d() denotes the Euclidean distance function. Parameter σr = 0.13 mm adjusts the
locality of the cost modification and must be considered in combination with parameter r,
defining the width of the circular sector Ω (Fig. 7). Second, costs of nodes on affected
columns far away from user-specified point or polygon line (outside Ω) are made less
attractive by utilizing an update function

(9)

to penalize nodes (locations) that are very unlikely a part of correct surfaces.

Any single graph column may be impacted by multiple refinement iterations. Thus, the

current (t +1) and the previous (t) iteration must be considered. Let  and  be

intersection points in frame k that correspond to impact regions  and  respectively.
For each frame, the following rules are used in conjunction with Eqs. (7), (8), and (9) for

updating the costs of a column υ that is affected by  and/or :

1. If there is no overlap between  and  (Fig. 8(a)) then the impact region 

and the corresponding intersection point  are used in Eqs. (8) and (9).

2. If  and  are overlapping (Fig. 8(b)) then both  and  are employed
based on the rules given in Table I.

III. Experimental methods
A. Image Data and Experiment Setup

For our study, 41 data sets were available originating from a Volcano IVG3 imaging system
with 20 MHz solid-state catheters. Combined with a mechanical pullback device, the
Volcano system provides EKG R-wave gated image sequences. Considering the usual heart
rate of 60-90 beats per minute, the catheter pullback speed of 0.5 mm/sec with EKG gating
provides an IVUS image frame every 0.3–0.5 mm axially, on average. Each image frame is
384 × 384 pixels in size, with in-frame resolution of 0.026 × 0.026 mm. Temporal pullback
sequences of 70 to 259 frames were included in our data set with frame-to-frame distances
ranging from 0.25 to 0.69 mm. In the 41 pullbacks, the number of bifurcations per data set
was 3.3±1.5 with a median of 4, minimum of 0 and maximum of 6.

Automated simultaneous segmentation of the inner and outer surfaces was performed on all
41 test data sets, for a total of 6467 frames. All computations were performed on a Linux
workstation with a 2.93 GHz Xeon CPU with program's memory requirements never
exceeding 2 GB on the 41 IVUS test data sets. An expert was asked to inspect the
segmentation results generated by the fully automated approach and refine the segmentation
using the second stage of our approach. For this purpose, the developed user interface
allowed the user to look at arbitrary cross-sections in all three dimensions as necessary.
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Also, the user was allowed to freely choose between points and polygon lines for
refinement.

The parameters of the algorithm were the same for all 41 test cases, as specified in Section
II. For performance comparison, we have used an earlier-reported automated IVUS
segmentation method [14]. Results using [14] approach are labeled as “PA” (previous
automated), the results of our new automated approach are labeled as “NA”, and the results
of our new refinement approach applied to NA are labeled “NR”.

B. Independent Standard
Manual tracing of the luminal and EEL borders was performed by an expert interventional
cardiologist. The independent standard resulted from frame-by-frame editing or retracing
borders resulting from [14]. The manual tracing environment allowed to trace surfaces either
in individual frames or in one of 6 axially reformatted planes (30 degree increments). The
expert observer was allowed to select the individual planes or frames in any sequence and
modify the borders until full satisfaction. In the process, all frames of each image sequence
were reviewed, and most if not all manually traced and repeatedly edited. In the case of
bifurcations, the expert was required to smoothly interpolate the luminal and EEL surfaces.
This way of defining an independent standard was very tedious and time consuming,
typically requiring 2-3 hours of manual tracing and editing per image sequence. A high-
quality independent standard resulted that was used for performance assessment by the
methods under comparison.

C. Quantitative Indices
The following quantitative error indices are utilized: mean signed border positioning error
(ds), mean unsigned border positioning error (du), root-mean-square (RMS) border
positioning error (drms), mean signed area error (As), mean unsigned area error (Au) and
RMS area error (Arms). All these quantitative indices were utilized in [14]. In the case of ds
and As, a negative value indicates that the segmentation border is inside and a positive value
indicates that the border is outside of the expert-defined boundary/surface. To compute
quantitative indices, borders on each frame are considered as points in polar coordinates at
360 one-degree angles. Border positioning errors are calculated for each boundary point as a
distance between the independent standard point and the point on the segmented boundary.
Indices ds, du, drms are calculated per sequence as averaged distances over all boundary
points of the 3-D pullback sequence. Similarly, the area errors are calculated for each frame
and As, Au and Arms are the averaged results over the entire pullback sequence.

IV. Results
The mean and standard deviation of quantitative indices for lumen and EEL surfaces for PA,
NA and NR approaches are summarized in Table II. A comparison between boxplots of all
quantitative indices and methods is shown in Fig. 9. In addition, paired Student's t-tests at a
significance level of 0.05 were performed to determine whether the average error indices
were significantly different when comparing segmentation approaches (Table III).

The mean and standard deviation of the computing time needed for automated segmentation
(approach NA) per data set was 42.6 ± 13.8 s, and the median was 40.0 s. The computing
time ranged between 9.0 and 70.5 s. The portion of time required for obtaining the solution
of the maximum-flow calculation in luminal pre-segmentation and dual-surface
segmentations steps combined was 5.1±3.3 s (median: 4.2 s).

The mean and standard deviation of user interaction time needed by the expert for inspection
and segmentation refinement (approach NR) per case was 5.7 ± 1.8 min. The median user
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interaction time was 5.8 min, and the required times ranged between 0.9 and 9.3 min for the
set of all 41 tested IVUS pullbacks. The measured user interaction time includes locating
local segmentation inaccuracies, identifying and marking correct border locations with
polygon lines or points, and (iteratively) applying the surface refinement algorithm. The
processing time required for computing the refinement results was 86 ± 57 ms (median: 79
ms) per iteration. Overall, the time needed for both stages of our method consisting of the
automated segmentation and user-guided refinement was 6.5 ± 1.8 min with a median of 6.6
min. The maximum and minimum were 10.0 and 1.9 min, respectively.

Examples of segmentation results generated with the proposed automated approach (NA)
(without refinement) are shown in Fig. 10. Comparisons with the independent standard as
well as with surfaces generated using the PA, NA, and NR approaches are depicted in Figs.
11 and 12.

Out of the 41 gated 20 MHz IVUS data sets utilized for performance assessment in this
paper, a subset of ten pullback subsections was provided to the organizers of the IVUS
Segmentation Challenge that was part of the 2011 Medical Image Computing and Computer
Assisted Intervention (MICCAI) workshop on Computing and Visualization for (Intra)
Vascular Imaging (CVII)1. As defined on the IVUS challenge website2, the used
quantitative performance indices were Jaccard measure (JM), Hausdorff Distance (HD) and
Percentage of Area Difference (PAD). Our results on the complete ten IVUS pullback
subsections, based on these indices and the independent standard described in Section III-B,
are summarized in Table IV. Currently, the IVUS Segmentation Challenge summary paper
is in review. However, the paper is expected to be published in the near future. Once
challenge results are available, Table IV can be utilized for comparison. In this context, note
that for segmentations submitted to the IVUS challenge, performance indices were
calculated only for a validation set, consisting of a small subset of frames that were
randomly chosen and for which the organizers created their own reference standard.

V. Discussion
Our new automated IVUS segmentation method (the NA method) outperformed our
previous approach (the PA method) as documented by the results shown in Table II and Fig.
9. The obtained improvements are practically relevant and statistically significant across all
quantitative indices of border positioning and area errors (Table III).

As can be seen from comparing the performance indices for all tested methods, the
segmentation errors of the EEL surface (outer wall) were consistently larger than those of
the luminal surface (inner wall) for all investigated segmentation methods (Table II and Fig.
9). This should not be surprising, because segmenting the EEL surface is considerably more
difficult than segmenting the lumen. Among others, the blood speckle dynamics, which
helps resolve most ambiguities of the luminal segmentation is not relevant for resolving the
EEL ambiguities, of which there are many. Out of these, calcified plaque shadows
frequently cause most of the EEL segmentation inaccuracies due to a partial or complete
lack of the ultrasound signal from the EEL interface. In such situations, the human experts
use 3-D context as well as his/her anatomical knowledge and coronary remodeling
experience to estimate the course of the EEL surface. Clearly, the automated approach such
as the NA has only a limited chance to succeed in the cases of an almost complete lack of
usable IVUS data depicting the EEL interface, and any human-based approach inevitably
suffers from inter- and even intra-observer variability. Notably, this variability also affects

1http://vpa.sabanciuniv.edu/sites/cvii2011
2http://www.cbl.uh.edu/challenges
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the definition of the independent standard. As such, larger errors should be expected for the
EEL surface as they have been observed.

In the context of IVUS surface segmentation, some of the published IVUS segmentation
methods like [7]–[10] tried to tackle segmentation problems by utilizing classification
approaches or by including automated approaches for detection of calcification, diseased
arterial sections, or side branches in their algorithms. However, in the case of local
segmentation failure, no efficient refinement methods have been available. With the
proposed method, we address this problem. Consequently, the performance reported for
such methods might be somewhat lower, compared to our approach. Furthermore, such
approaches for classification/detection of diseased arterial sections etc. could also be
integrated in our NA method to further reduce the need for segmentation refinement.

Compared to our previous dual-surface approach [14], notable improvements of the
performance is attributed to the combination of the improvements to a) the underlying graph
structure (both lumen-centering of the constructed graph resulting from the novel pre-
segmentation step and incorporation of arc-based soft constraints allowing to model shape
priors [16]) and b) the novel terms of the employed cost function dependent on edge as well
as regional information from the IVUS images. Because of the lumen-centering, we have
utilized 3-times more columns (parameter np) compared to our previous work [14], thus
providing sufficient node density for our application. Due to the efficient refinement
approach, utilizing more columns does not translate into an increase of user interaction
during refinement. Based on our experiments, we found that a common center for lumen and
EEL graphs is a sufficiently good approximation.

Our second-stage – the computer-aided approach to segmentation refinement – enables the
user to further improve the quality of IVUS segmentations in a very time efficient manner,
even in difficult cases. In terms of segmentation performance, the two-stage NR approach in
which the refinement follows the automated NA stage, the segmentation improvements were
again found statistically significant when compared to the tested automated approaches, both
the previous automated PA approach and the new automated NA approach (Table III) – with
the signed error indices ds and As computed from the luminal surfaces being an exception
and not showing statistically significant improvement of the NR approach compared to the
NA method alone. In other words, the NA approach is already providing highly accurate
luminal surface as far as signed border positioning and area errors are concerned. Still, as
can be seen from the boxplots in Figs. 9(a) and 9(b), the ranges of deviation around the
median are smaller for NR compared to NA.

The average user interaction time required for utilizing our NR approach is more than 25-
fold lower compared to fully manual editing and tracing that started with the result of the PA
method. One reason for this improvement is that the user interactions in the NR approach
fully utilize the advantages of the simultaneous dual-surface segmentation approach. Thus,
when correcting, e.g., the inner luminal surface, the outer EEL surface is adjusted
automatically without a need to indicate the desired locations of the outer surface and vice
versa (Fig. 6). Equally important, our refinement approach is inherently three-dimensional.
Thus, the resulting surfaces are smoother and less likely to show discontinuities that may be
unavoidable when performing slice-by-slice manual segmentation editing. These
improvements are practically important since they will contribute to making real-clinical-
time IVUS segmentation a reality in the near future.

The presented method was specifically designed for gated 20 MHz IVUS data. While IVUS
segmentation of gated 20 MHz IVUS pullbacks might be somewhat less challenging,
compared to non-gated 20 MHz or 40, 45 and 60 MHz IVUS data, it is still a demanding
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task. In addition, our approach can be generalized to non-gated 20 MHz or 40, 45 and 60
MHz IVUS pullbacks, if needed. Fig. 13 depicts one example where the proposed
segmentation method was applied to a non-gated 20 MHz IVUS sequence with 5379 frames.
Note that the algorithm was not modified and none of the parameters were adapted for this
application. The automatic segmentation (NA) took 1145 s due to the large size of the IVUS
pullback (0.6 GB DICOM file), and the peak memory usage during computation never
exceeded 42 GB. While the segmentation produced with our algorithm generally follows the
basic shape of lumen and EEL surface reasonably well (Fig. 13), it fails to locally follow the
zig-zag pattern due to the cardiac motion cycle in some locations. This is not surprising,
because in the case of non-gated 20 MHz pullbacks, the vessel surfaces show more local
variation, compared to the gated sequences. Consequently, the surface smoothness constraint
between adjacent IVUS images (Fig. 2(c)) would need to be adjusted accordingly.

One potential disadvantage of our refinement scheme might be that the shapes of any
allowed refinement solutions (resulting surfaces) are limited by the hard shape constraints of
the graph structure (e.g., hard smoothness constraints). These constraints cannot be changed
easily on the fly without modifying the graph representation and recomputing the graph
possibly from scratch. A solution for this limitation may be to perform an additional step of
highly localized purely manual editing after completing the NR if/as needed. This would
allow to deal with flaps and dissections. Also, in our current implementation, we assume that
the vessel is formed by a single tube. Clearly, bifurcations violate this assumption.
Typically, our approach interpolates the vessel surfaces at locations where vessels branch
off, as depicted in Fig. 14. To more correctly model bifurcations, additional processing steps
subsequent to our segmentation methods will be required. Such post-processing may consist
of bifurcation identification and 3-D modeling of branches, as outlined in [20], [21].

Fig. 15 depicts a segmentation example of an IVUS pullback with a stent. Note that for the
result depicted in image in Fig. 15(a), no editing was performed.

Despite the demonstrated performance improvements in the 41 tested 3-D data sets, the
study design is not free of several limitations, one of which was the way how the
independent standard was originally defined. As stated earlier, the PA method served for
initial IVUS pullback segmentation and the resulting surfaces were used as a start of a
manual editing process that yielded the independent standard as described in Section III-B.
As such, the independent standard is not fully independent from the PA method although the
manual tracing and editing required about 100 hours of expert editing resulting in substantial
changes of the surface definitions (compare panels PA and IS in Figs. 10, 11, and 12).
Arguing that the resulting independent standard is quite distant from the original PA
segmentation would be well justified. More important and ultimately relevant to the
presented study, there is no such real or perceived dependence between the NA or NR
surfaces and the independent standard since the NA approach is based on a different graph
construction, different interaction priors, and different cost functions. Consequently, even if
there are some remaining dependencies between the independent standard and the PA
segmentations, these would solely favor performance assessment of the PA method, which –
however – fared worst among the three compared approaches. Clearly, any benefit that the
definition of the independent standard may have provided to the PA method did not affect
the ultimate assessment of the PA method as being significantly worse than the two other
compared approaches. Therefore, this limitation of the study design can be regarded as
insignificant with respect to the overall outcome of the reported work. This conclusion is
also supported by an experiment where a second expert (Expert 2) traced ten randomly
selected cross-sections of ten IVUS pullbacks from the 41 data sets described in Section III-
A. Utilizing this second expert opinion, the performance of PA and NR methods was
assessed by means of the RMS border positioning error (drms) and RMS area error (Arms).
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The results for the selected 100 IVUS frames are summarized in Fig. 16. The same trend as
depicted by the corresponding boxplots in Figs. 9(e) and 9(f) can be observed. For all
performance indices based on Expert 2 tracings and for luminal as well as EEL surfaces, the
proposed NR approach significantly outperformed the PA method (p-values < 0.02). Fig. 17
shows a comparison between expert opinions as well as PA and NR segmentation results.

VI. Conclusion
Segmentation of lumen and EEL surfaces in IVUS volumes is a difficult task. In this paper
we proposed a combination of automated segmentation and computer-aided refinement to
facilitate this process. Our new automated segmentation method (NA) delivered
significantly better results compared to the work reported by us previously in [14]. The
presented approach to segmentation refinement (NR) was found to be efficient, effective,
and allowed the user to produce high quality segmentation results in cases of clinical quality
images with a barrage of typical imaging artifacts. Overall, the average time required for
producing IVUS segmentations suitable for further quantitative analysis was reduced from
several hours to 6.5 min on average while demonstrating excellent segmentation accuracy.
As such, our approach enables close-to-real-time IVUS segmentation, which is an important
factor for enabling quantitative analysis of IVUS image data in routine clinical setting.
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Fig. 1.
Example of regional segmentation errors caused by plaque calcification and image artifacts
(locations marked with ellipses). Note that the image was axially reformatted from a
sequence of R-wave gated IVUS pullback images.
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Fig. 2.
Graph construction for dual-surface LOGISMOS. (a) Search profiles of a single surface are
constructed starting from vessel centerline point μk determined for every IVUS frame. (b)
LOGISMOS graph structure of a single surface with arcs enforcing the surface smoothness
constraints between adjacent columns on the same frame. (c) LOGISMOS graph structure of
a single surface with arcs enforcing the surface smoothness constraints between the
corresponding columns on adjacent image frames. (d) LOGISMOS graph structure with arcs
enforcing the inter-surface constraints. See [12], [13] for additional details.
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Fig. 3.
Lumen pre-segmentation. (a) Original IVUS image. (b) Image after TV decomposition. (c)
Lumen pre-segmentation result shown in yellow.
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Fig. 4.
Relation between estimated Rayleigh probability density function (blue curve) and utilized
gray-value weighting function f(x) (red curve); a = 12.3 was utilized for both plots.
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Fig. 5.
Cost function calculation for dual-surface automated segmentation. (a) Original IVUS image
with expert-defined segmentation (independent standard). The horizontal white line
indicates the location of a graph column (starting at the pre-segmentation determined lumen
center μk) that is utilized for illustration of cost calculation. (b) Column-corresponding gray-
value profile. Zero on the horizontal axis represents center μk. (c) Edge cost function ce and
(d) in-region cost function cr derived from (b). (e) Final cost function c1 for the inner
surface. Vertical lines shown in red indicate the locations of the inner and outer contours of
the independent standard (Fig. 5(a)) on this column.
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Fig. 6.
Illustration of interactive LOGISMOS-based refinement of an automatically generated IVUS
segmentation. This case was previously depicted in Fig. 1. (a) The user inspects the IVUS
segmentation produced by our automated approach and discovers a local segmentation
inaccuracy of the inner (arrow 1) and outer (arrow 2) surfaces. The outer boundary
segmentation got “distracted” by a high density (calcified) region inside of the vessel wall
and the associated shadow. (b) The user roughly indicates the correct location of the outer
wall by drawing a polygon line (arrow 3, purple line) in proximity to the desired surface
location. This single polygon line is used to locally modify the cost function for the outer
boundary. (c) Refinement result after recalculating the maximum-flow for the dual-surface
graph. Note that outer (arrow 4) and inner boundary (arrow 5) are simultaneously corrected
due to the mutually interacting dual-surface graph structure. (d) Corresponding independent
standard.
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Fig. 7.
Influence region definition for segmentation refinement based on a user-specified polygon
line. Affected and unaffected nodes are shown in yellow and red, respectively. See text for
details.
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Fig. 8.
Example of a graph column affected by a previous and current refinement operation. (a) A
column is affected by two none-overlapping impact regions. (b) A column is affected by two
overlapping impact regions.
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Fig. 9.
Comparison between boxplots of quantitative indices for IVUS segmentation of luminal and
EEL surfaces with methods PA, NA, and RA. (a) Signed border positioning error. (b)
Signed area error. (c) Unsigned border positioning error. (d) Unsigned area error. (e) RMS
of border positioning error. (f) RMS of area error. The boxplots provide a graphical display
of five statistical values (from the bottom to the top vertical line): the so-called smallest
observation (Q1 − 1.5(Q3 − Q1)), first quartile (Q1), median (Q2), third quartile (Q3), and the
so-called largest observation (Q3 + 1.5(Q3 − Q1)); + markers indicate outliers.
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Fig. 10.
Comparison of automatically generated segmentation results on five different data sets
(cases A-E). The luminal and EEL surfaces are shown in yellow and red, respectively. (PA)
Method reported in [14]. (NA) Our automated segmentation approach. (IS) Independent
standard. All segmentations produced with NA were assessed by the user and found to be
correct. Consequently, the user did not perform any refinement on cases A to E.
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Fig. 11.
Comparison of segmentation results in mesh-based 3-D representation of the EEL surface.
Note that this data set was also shown in Figs. 1 and 6. (PA) Method reported in [14]. (NA)
Our automated segmentation approach. (NR) Segmentation refinement result. (IS)
Independent standard.
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Fig. 12.
Examples of segmentation results on five different data sets (cases F-J). The luminal and
EEL surfaces are shown in yellow and red, respectively. (PA) Method reported in [14]. (NA)
Our automated segmentation approach. (NR) Segmentation refinement result. (IS)
Independent standard.
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Fig. 13.
Example of ungated 20 MHz IVUS pullback segmentation with the proposed method. (a)
Segmentation result produced by our automated approach (NA). (b and c) Detailed view of
the area marked by the green box in (a). (b) The user roughly indicates the correct location
of the outer wall by drawing a polygon line (arrow, purple line). (c) Refinement result
(method NR).
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Fig. 14.
Example of the behavior of our approach at vessel bifurcations. (NA) Our automated
approach. (NR) Result after refinement. Note that the user did not perform any refinement in
the region of the bifurcation. (IS) Independent standard (Section III-B).
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Fig. 15.
Segmentation of an IVUS pullback with a stent. (a) Result of our automated method (NA).
(b) Manually generated independent reference standard.
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Fig. 16.
Boxplots of performance indices for luminal and EEL surfaces generated with methods PA
and RA based on Expert 2 tracings of 100 randomly selected IVUS frames. (a) RMS border
positioning error and (b) RMS area error.
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Fig. 17.
Comparison of expert tracing and computer-method performance for luminal surface. (a)
Expert 1. (b) Expert 2. Segmentation results of (c) method PA and (d) method NR.
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Table I

Rules for Updating the Cost Function During Segmentation Refinement in Dependence of the Location of
Node n(υ, j).

Determine level of influence based on distance from n(υ, j)

to  and  (i.e., the closest intersection point is
utilized); replace d(pk, n(υ, j)) with

 in
function UR (Eq. 8)

 is the dominant region; replace pk with  in
function UR (Eq. 8)

 is the dominant region; replace pk with  in
function UR (Eq. 8)

Determine level of influence based on distance from n(υ,

j) to  and  (i.e., the closest intersection point is
utilized); replace d(pk, n(υ, j)) with

 in
function UB (Eq. 9)
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