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Abstract
The nucleus is the defining feature of eukaryotic cells and often represents the largest organelle.
Over the past decade, it has become apparent that the nucleus is tightly integrated into the
structural network of the cell through so-called LINC (Linker of the nucleoskeleton and
cytoskeleton) complexes, which enable transmission of forces between the nucleus and
cytoskeleton. This physical connection between the nucleus and the cytoskeleton is essential for a
broad range of cellular functions, including intracellular nuclear movement and positioning,
cytoskeletal organization, cell polarization, and cell migration. Recent reports further indicate that
forces transmitted from the extracellular matrix to the nucleus via they cytoskeleton may also
directly contribute to the cell's ability to probe its mechanical environment by triggering force-
induced changes in nuclear structures. In addition, it is now emerging that the physical properties
of the nucleus play a crucial role during cell migration in three-dimensional (3-D) environments,
where cells often have to transit through narrow constrictions smaller than the nuclear diameter,
e.g., during development, wound healing, or cancer metastasis. In this review, we provide a brief
overview of how LINC complex proteins and lamins facilitate nucleo-cytoskeletal coupling,
highlight recent findings regarding the role of the nucleus in cellular mechanotransduction and cell
motility in 3-D environments, and discuss how mutations and/or changes in the expression of
these nuclear envelope proteins can result in a broad range of human diseases, including muscular
dystrophy, dilated cardiomyopathy, and premature aging.

Introduction
Mechanotransduction defines the process by which cells `translate' mechanical stimuli into
biochemical signals, enabling cells to sense their physical environment and adjust their
structure and function accordingly. While mechanotransduction was first studied in
specialized sensory cells such as the inner hair cells involved in hearing, we now know that
virtually all cells respond to mechanical stimulation. A growing body of work over the past
two decades suggest that rather than relying on a single central `mechanosensor', cells utilize
a variety of mechanosensitive elements, ranging from stretch-activated ion channels in the
plasma membrane, conformational changes in proteins at focal adhesions and inside the
cytoskeleton to force-induced unfolding of extracellular matrix proteins, to sense applied
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forces and substrate stiffness [1–3]. Recent findings have further fueled the speculation that
the nucleus itself may act as a cellular mechanosensor, bypassing diffusion based mechano-
signaling through the cytoplasm to directly modulate expression of mechanosensitive genes
[3].

A central role in this process has been attributed to lamins, type V nuclear intermediate
filaments that constitute the major components of the nuclear lamina, a dense protein
network underlying the inner nuclear membrane, and that also form stable structures within
the nucleoplasm [4]. Lamins can be separated into A-type and B-type lamins, with lamins A
and C as the major A-type isoforms, and lamins B1, and B2 the major B-type isoforms in
somatic cells [4]. Lamins interact with a variety of nuclear envelope proteins, including
emerin, lamin B receptor (LBR), and the nesprin and SUN protein families [5], as well as
numerous transcriptional regulators [4, 5]. Lamins can also directly interact with chromatin
[6] and help tether specific chromatin regions known as lamina-associated domains (LADs)
to the nuclear periphery [7]; loss of lamins results in changes in chromatin organization,
including loss of peripheral heterochromatin [8]. Lamins, in particular lamins A and C,
provide structural support to the nucleus [9, 10] and play an important role in physically
connecting the nucleus to the cytoskeleton, thereby enabling forces to be transmitted from
the cytoskeleton and extracellular matrix to the nuclear interior [11–14].

Lamins are an extended part of the LINC (Linker of Nucleoskeleton and Cytoskeleton)
complex [15], which enables force transmission across the nuclear envelope. The LINC
complex itself is composed of two protein families, SUN proteins at the inner nuclear
membrane and KASH-domain containing proteins at the outer nuclear membrane, which
engage across the luminal space via their conserved SUN and KASH domains (Fig. 1). SUN
proteins interact with the nuclear lamina, nuclear pore proteins, and other nuclear proteins at
the nuclear interior; in the cytoplasm, KASH-domain containing proteins can bind to all
major cytoskeletal filament networks, including actin filaments (through the actin-binding
domain of the giant isoforms of nesprins -1 and-2), intermediate filaments (via interaction of
nesprin-3 with the cytoskeletal linker plectin), and microtubules (via kinesin and dynein
motor proteins binding to nesprins-1, -2, -4 and KASH5)[16]. We refer the reader to
excellent recent reviews regarding the detailed molecular organization of the LINC complex
[16], its evolutionary conserved history [17], and the diverse role of lamins and other
nuclear envelope proteins in other cellular functions [18].

The importance of nuclear mechanics and nucleo-cytoskeletal coupling in cellular function
has become strikingly evident over the past decade by the identification of a growing
number of diseases resulting from mutations in lamins and LINC complex components. In
particular, mutations in the LMNA gene, encoding the nuclear envelope proteins lamin A and
C, cause a variety of human diseases (laminopathies) that include Emery-Dreifuss muscular
dystrophy, dilated cardiomyopathy, limb-girdle muscular dystrophy, and Hutchinson-
Gilford progeria syndrome [18]. For many of these diseases, the molecular disease
mechanism remains incompletely understood, but recent reports demonstrate that mutations
in lamins A/C can disrupt LINC complex function and cause defects in skeletal and cardiac
muscle [16, 19, 20]. In addition to its role in muscle cells and tissue, proper nucleo-
cytoskeletal coupling is also essential in cell migration, for example, during wound healing,
inflammation, cancer metastasis, and development [13, 16, 21]. Cytoskeletal forces are
required to dynamically position the nucleus during migration on 2-D substrates [21]. In 3-D
environments, the cell and nucleus face additional challenges, as the dense fibrous
extracellular matrix network and tight interstitial spaces often create constrictions smaller
than the size of the nucleus, so that the deformation of the typically large and relatively stiff
nucleus can become a rate-limiting step [22].
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In the following, we provide an overview of the current understanding of the role of the
nucleus and the nuclear envelope in cellular mechanosensing and mechanotransduction
signaling and discuss how changes in nuclear structure and disturbed nucleo-cytoskeletal
coupling can contribute to human disease. We conclude with a brief outlook at new
directions in this exciting research field and how improved insights into nucleo-cytoskeletal
coupling and nuclear mechanosensing may eventually point to novel therapeutic approaches
for the various nuclear envelopathies.

The role of the nucleus in mechanotransduction
In its literal definition, mechanotransduction refers only to the immediate cellular processes
in which mechanical stimuli are transduced into biochemical signals; however, the term
mechanotransduction is often applied more broadly to describe the overall cellular response
to changes in its mechanical environment, for example, activation of specific genes or
changes in cellular structure and organization. In the following, we use the term
`mechanosensing' to describe the initiating mechanotransduction events, while denoting the
downstream signaling and changes in gene expression as `mechanotransduction signaling'.

Given the central role of the nucleus in transcriptional regulation, it has long been speculated
that the nucleus could act as a cellular mechanosensor that can directly modulate gene
expression in response to mechanical disturbances. It is well established that external forces
applied to a cell are transmitted from the plasma membrane via the cytoskeleton to the
nucleus, resulting in (intra-) nuclear deformations [23–25]. These deformations could alter
chromatin structure or induce conformational changes in nuclear proteins, e.g., release of
transcriptional regulators or translocation of chromatin segments away from
transcriptionally repressive regions, thereby activating (or repressing) mechanosensitive
genes (Fig. 2). Support for this idea comes from three recent studies. Dahl and colleagues
[26] found that fluid shear stress and compressive stress application increase intranuclear
movement of fluorescent fusion proteins binding to ribosomal DNA and RNA in a number
of cell lines, indicating that externally applied forces can indeed alter chromatin organization
and accessibility. Going a step further, Wang and co-workers [27] reported that application
of approximately nanoNewton forces to the surface of HeLa cells via magnetic microspheres
results in rapid (less than 1 s) dissociation of two major structural Cajal body proteins, coilin
and SMN (survival motor neuron protein), and that disruption of the actin cytoskeleton or
depletion of lamins A/C abolishes this response. Most recently, Discher and colleagues [28]
revealed an additional mechanism by which force-induced nuclear deformation could
initiate biochemical responses, focusing on the role of nuclear lamins. Application of fluid
shear stress to isolated nuclei caused the Ig-domain of lamin A to unfold, exposing a
previously buried cysteine residue [28]. While these findings indicate that the nuclear lamina
could function as a nuclear force sensor, in their current study, the authors did not observe
any exposed cysteines in intact cells, which may suggest that forces acting on the nucleus
under physiological conditions are insufficient to cause (partial) protein unfolding.
Furthermore, it remains to be seen whether any partial unfolding of lamins could alter the
interaction with their diverse binding partners to initiate further changes in transcriptional
regulation.

Interestingly, the same study also investigated the expression levels and phosphorylation
state of lamins in response to changes in the cellular mechanical environment, revealing that
the expression of lamins A and C (relative to B-type lamins) scales with the substrate
stiffness in vitro and in vivo [28]. In addition, softer substrates, which correspond to reduced
cytoskeletal tension, were associated with higher levels of lamin A/C phosphorylation [28],
indicative of a more soluble and mechanically weaker lamin network. As lamins A and C
are the main contributors to nuclear stiffness and stability, it is easily conceivable that cells

Isermann and Lammerding Page 3

Curr Biol. Author manuscript; available in PMC 2014 December 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



adapt the expression and organization of lamins to their mechanical environment, for
example, resulting in high levels of lamins A/C in mechanically stressed tissues such as
skeletal and cardiac muscle and low levels of lamins A/C in brain or adipose tissue, thereby
normalizing the mechanical stress acting on the lamin network. However, at the current
time, it remains to be seen whether this intriguing correlation is caused by a direct role of
lamins in mechanosensing and a corresponding feedback loop to control lamin levels, or
whether transcriptional regulation of lamins in response to substrate stiffness is downstream
of other mechanotransduction signaling pathways.

Arguing (at least in part) against the idea that induced nuclear deformations are essential for
cellular mechanosensing and mechanotransduction signaling is a recent study that found that
disruption of LINC complex proteins by dominant negative nesprin and SUN constructs
almost completely abolishes nuclear deformation when cells are subjected to substrate
strain, yet the mechanoresponsive genes tested by the authors were activated normally [24].
While these experiments do not exclude the possibility that some mechanosensitive genes
exist that directly respond to nuclear deformation, they suggests that mechanosensors in the
plasma membrane and/or the cytoskeleton may be sufficient to initiate mechanotransduction
pathways that are then transmitted via biochemical signals to the nucleus.

On the other hand, nuclear envelope proteins undoubtedly play an important role in cellular
mechanotransduction signaling. LINC complex disruption impairs intracellular force
transmission from the cytoskeleton to the nucleus, and at least in C2C12 myoblasts, LINC
complex disruption can interfere with stretch-induced proliferation [29]. In endothelial cells,
nesprins play an important role in the response to fluid shear stress, with depletion of
nesprin-3 causing altered cell morphology and impaired cell polarization and migration in
the direction of the fluid flow [30]. Even more dramatic changes are observed in cells
lacking lamins A/C or emerin, which have impaired activation of mechano-responsive genes
in vitro and in vivo [10, 31–33]. The molecular details underlying impaired activation of the
mechanosensitive transcription factor MRTF-A (myocardin-related transcription factor-A,
also known as MKL1 or MAL), were recently elucidated [32]. MRTF-A, which plays a
critical role in cardiac development and function, is normally sequestered in the cytoplasm
by interaction with monomeric actin; stimulation by mechanical stress or serum induces the
assembly of actin filaments, resulting in the release of MRTF-A and its translocation to the
nucleus, where it serves as co-activator for the transcription factor SRF (serum response
factor) to initiate expression of genes with a serum response element (SRE) that include
vinculin, actin, and SRF itself [34]. Nuclear activity and export of MRTF-A are further
modulated by polymerization of nuclear actin [34, 35]. Since emerin, which can directly
bind actin and promote its polymerization [36], requires lamin A/C for its localization to the
inner nuclear membrane, functional loss of lamins A/C or emerin reduces nuclear and
cytoskeletal actin dynamics and results in impaired translocation and activation of MRTF-A
[32], demonstrating how structural changes mediated by lamin A/C and emerin can affect
gene regulation.

Importantly, lamins and other proteins involved in nucleo-cytoskeletal coupling also directly
interact with chromatin and numerous transcriptional regulators, including retinoblastoma
protein (pRb), c-Fos, and ERK1/2 for lamins A/C, α-catenin and ERK1/2 for nesprin2, and
β-catenin, BAF, GCL and the splicing-associated factor YT521-B for emerin [4, 5, 37].
Consequently, defects in mechanotransduction signaling in lamin A/C- or emerin-deficient
cells may also be attributed to the interaction of lamins or emerin with these transcriptional
modulators, rather than their role in nucleo-cytoskeletal coupling and nuclear deformability,
although more experimental evidence is needed to distinguish between these (non-mutually
exclusive) hypotheses.
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As these findings demonstrate, nuclear structure and deformability, as well as force
transmission between the cytoskeleton and nucleus play crucial roles in activating or
modulating cellular mechanotransduction signaling. At the same time, nuclear mechanics
and nucleo-cytoskeletal coupling can also directly affect other cellular functions that require
the physical movement and positioning/anchoring of the nucleus within the cell. Examples
include the rearward nuclear position in (most) migrating cells, the peripheral nuclear
placement in striated muscle cells, or the basal nuclear position in stem cells asymmetrically
dividing in their niche [16].

Nuclear positioning in 2-D cell migration
Many cells cultured on flat substrates show a characteristic cellular reorientation
(polarization) before initiating migrating [38]. Scratch wound assays reveal that during the
polarization process, the nucleus moves rearwards, away from the wound edge, resulting in
the centrally located centrosome to be positioned ahead of the nucleus, towards the wound
edge (Fig. 3). This process requires intact nucleo-cytoskeletal coupling, as LINC complex
disruption or depletion of lamins prevents rearward nuclear movement [12, 21, 24].

A seminal study by Luxton and colleagues [21] uncovered that the nuclear repositioning
during cell polarization is mediated by coupling the nucleus to dorsal actin cables that—
driven by Cdc42 and actin-myosin II interactions—originate near the leading edge of the
cell and move rearward, thereby dragging the nucleus backwards (Fig. 3)[21]. These so
called TAN (Transmembrane Actin-associated Nuclear) lines are comprised of actin
filaments, nesprin-2 giant at the outer nuclear membrane, and Sun2 at the inner nuclear
membrane [21], and, as recently discovered, Samp1 [39]. The mobility of nesprins that are
part of the TAN lines is significantly lower than in other parts of the nucleus, indicating that
they are part of a stable complex [21]. This complex formation may be mediated by Samp1,
as depletion of Samp1 results in failure to reposition the nucleus [39]. Similarly, when the
LINC complex is disrupted by RNAi mediated depletion of lamin A or Sun2, the TAN lines
drift across the nuclear envelope without becoming sufficiently anchored, resulting in lack
of nuclear movement and defects in cell polarization and migration [21]. In single cell
migration assays, LINC complex disruption causes reduced migration speed and decreased
directional persistence [24], further demonstrating the importance of intact nucleo-
cytoskeletal coupling. We refer the reader to a recent review [16] for a more detailed
discussion of nucleocytoskeletal coupling in 2-D cell migration.

Cell migration in 3-D environments
Most in vitro migration assays are conducted on 2-D surfaces; in contrast, cell motility in
vivo—for example, cell migration during early development, infiltration of immune cells
into sites of infection, or invasion of cancer cells into adjacent tissues—typically takes place
in 3-D environments. An emerging field of research suggests that cell migration in 3-D
environments differs substantially from 2-D migration (discussed in [40]).

Nuclear deformability as rate limiting step in 3-D cell migration
While much of the research in cell migration—both in 2-D and 3-D environments—has been
focused on processes at the leading edge, particularly the dynamics of the actin cytoskeleton,
it is now becoming evident that the mechanical properties of the cell nucleus and its
connection to the cytoskeleton play an essential role in 3-D migration [22, 41]. When cells
encounter constrictions in the interstitial space that are smaller than their nuclear diameter,
cells can either proteolytically degrade the constricting extracellular matrix or attempt to
squeeze through the narrow opening, requiring substantial cellular deformation. During non-
proteolytic migration, the highly adaptable and dynamic cytoskeleton and plasma membrane
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can penetrate spaces less than 1 μm in diameter [22], but the large and stiff nucleus is much
more resistant to large deformations and imposes a rate-limiting step during migration
through narrow constrictions [22, 42]. Findings from recent studies with cells migrating
through 3-D collagen matrices, polycarbonate filters, or microfabricated channels with well-
defined pore sizes demonstrate that decreasing pore sizes beyond 20 μm gradually reduces
migration speed [22, 43]. Movement of the cell body and nucleus stalls completely when
encountering constrictions smaller than ~10% of the initial nuclear diameter [22], suggesting
a finite limit of the compressibility of the nucleus [22, 44].

Given the prominent role of nuclear envelope proteins, particularly lamins A and C, in
determining nuclear deformability, it is intriguing to speculate to what extent nuclear
envelope composition can affect cell migration in 3-D environments. Cells expressing a
lamin A mutation that increases nuclear stiffness [45, 46] have difficulties navigating
through 6 μm wide constrictions, even though they have similar migration speeds in
unconfined spaces as control cells [47]. Conversely, neutrophils have evolved highly
lobulated nuclei almost completely lacking lamins A/C, making them well suited to pass
through narrow capillaries and narrow constrictions during extravasation and interstitial
migration [48]. Ectopic expression of lamin A in neutrophil-differentiated cells causes
rounder nuclei and an impaired ability to pass through narrow constrictions during perfusion
and migration [42], further illustrating the importance of nuclear deformability in 3-D cell
motility.

Pulled or pushed? How does the cytoskeleton move the nucleus during 3-D migration?
The nuclear deformation during cell passage through narrow constrictions requires
substantial cytoskeletal forces acting on the nucleus. One can imagine several non-mutual
exclusive possibilities explaining how forces could be applied to the nucleus to move it
through tight constrictions. The cytoskeleton could exert forces from the cell front, pulling
on the nucleus, or it could apply contractile forces from the rear, pushing and squeezing the
nucleus through the constriction (Fig. 4). Pulling forces could result from molecular motors
such as dynein attached to the nuclear surface via LINC complex proteins, moving the
nucleus along the microtubules network towards the centrosome on the other side of the
constriction. Actin-myosin interactions could exert contractile forces between forward-based
focal adhesions and the anterior nuclear side. Contribution of pulling forces is supported by
the finding that integrin and actomyosin-dependent force generation is required for non-
proteolytic cell migration through dense collagen matrices [22] and observations of
herniations of the nuclear membrane at the anterior edge of the nucleus in lamin B1-mutant
neurons during migration and detachment of the chromatin from the nuclear envelope [49].

At the same time, actomyosin-generated contraction can also serve as the pushing force for
the nucleus, as seen in the interkinetic nuclear migration of neurons in the retina of zebrafish
[50]. Unlike in mammalian cells, where interkinetic nuclear movement is mainly driven by
microtubule-associated motors [51], Zebrafish neurons rely on myosin II activity at the rear
of the nucleus to push the nucleus forward [50], possibly reflecting species- or cell shape-
dependent differences [51]. While non-muscle myosin-IIa is located near the leading edge of
cells [52–54], non-muscle myosin-IIb is present in the actin network surrounding the
nucleus [55]. The idea of a contractile network consisting of F-actin and myosin-II at the
side and rear of the cell responsible for pushing the nucleus through the constriction is
consistent with the data observed by Wolf et al. [22] and further supported by the finding
that in breast cancer cells invading Matrigel scaffolds, actomyosin-based cytoskeletal
contraction is limited to the rear of the cells, and inhibiting actomyosin-contraction abolishes
invasion [56].
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As squeezing the fluid-filled nucleus from the rear may produce similar nuclear protrusions
into the constriction as expected in a pulling model (Fig. 4B), it is challenging to distinguish
between the two major modes, i.e., pulling or pushing the nucleus through the constriction,
by observation of nuclear deformations alone. Further research is necessary to elucidate the
molecular details involved in overcoming the nuclear resistance during cell migration in 3-D
environments. Importantly, it remains to be seen to what extent these processes require
nucleo-cytoskeletal coupling through the LINC complex. While at least one study reported
that LINC complex disruption impairs cell migration in 3-D environments [57], a contractile
actomyosin network at the rear of the nucleus may not necessarily require LINC complex
function to transmit forces to the nucleus. Furthermore, a LINC complex independent
nuclear positioning mechanism has been observed in the migration of nuclei in drosophila
oocytes, where polymerizing microtubules at the rear of the nucleus propel the nucleus
forward [58].

In light of the emerging importance of nuclear mechanics during cell migration in 3-D
environments, it is intriguing to speculate whether cells are capable of dynamically adjusting
the mechanical properties of the nucleus. An example of long-term adjustment can be seen
during granulopoiesis, when cells downregulate expression of lamins while increasing
expression of LBR, resulting in highly lobulated and deformable nuclei in granulocytes that
promote passage through tight spaces [42, 59]. Given the recent finding of changes in lamin
expression and phosphorylation in response to substrate stiffness [28], it is not too far-
fetched to envision that cells may dynamically reduce or partially depolymerize the nuclear
lamin network to transiently increase nuclear deformability, similar to the process of nuclear
envelope breakdown during mitosis. Alternatively, cells could enhance migration through
narrow constrictions by increasing the cytoskeletal tension, thereby exerting more forces on
the nucleus. This could be particularly relevant in the spreading of cancer cells, as cells with
increased metastatic potential were recently shown to generate higher cytoskeletal forces
[60].

LINC complex related diseases
Given the broad role of cellular functions that require intact nucleo-cytoskeletal coupling, it
comes as no surprise that mutations in LINC complex-associated proteins can result in a
large number of human diseases (Table 1). The majority of diseases are caused by mutations
in the LMNA gene, encoding lamins A/C. These laminopathies range from highly tissue-
specific diseases affecting striated muscle, adipose tissue, or peripheral nerves to systemic
disorders and include Emery-Dreifuss muscular dystrophy, limb-girdle muscular dystrophy,
dilated cardiomyopathy, familial partial lipodystrophy, Charcot-Marie-Tooth and the
accelerated aging disorder Hutchinson-Gilford progeria syndrome (reviewed in [18]).

Interestingly, diseases affecting striated muscle, i.e., Emery-Dreifuss muscular dystrophy
and dilated cardiomyopathy, can also be caused by mutations in emerin (STA or EMD gene),
nesprin-1 (SYNE1), and nesprin-2 (SYNE2), suggesting a LINC complex-associated disease
mechanism [16]. In addition to these muscular phenotypes, nesprin-1 mutations are also
responsible for autosomal recessive cerebellar ataxia [61] and arthrogryposis [62], which is
characterized by congenital joint contractures resulting from reduced fetal movements.
Mutations in nesprin-4, for which expression is limited to secretory epithelial cells and hair
cells of the inner ear [63], result in progressive high-frequency hearing loss, a phenotype
that can be recapitulated in mice lacking either nesprin-4 or Sun1 [64]. In contrast, no
disease-causing mutations have been reported for either of the SUN proteins, although a
novel mutation in Sun2 was recently described in a patient with Emery-Dreifuss muscular
dystrophy who was also carrying a mutation in nesprin-1α1, which by itself is considered
non-pathogenic [65]. Interestingly, the same study also identified a patient with Duchenne
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muscular dystrophy caused by a mutation in the dystrophin gene (DMD) carrying a
nesprin-1α2 mutation, suggesting that mutations in LINC complex proteins can act as
modifier genes in other muscular dystrophies. Mutations and gene duplications have also
been described for B-type lamins [18]. Duplication of LMNB1 results in adult onset
leukodystrophy [66], characterized by demyelination in the central nervous system.
Mutations in LMNB2 causes acquired partial lipodystrophy, which involves a progressive
loss of subcutaneous fat tissue [67, 68].

The disease etiology for the broad spectrum of nuclear envelopathies remains incompletely
understood. Patient cells are often characterized by abnormal nuclear morphology and
altered distribution of nuclear envelope proteins, including mislocalization of lamins,
nesprins, and SUN proteins [16], and lamin mutations linked to striated muscle diseases
result in impaired nucleocytoskeletal force transmission and reduced nuclear stability [11,
20]. These findings suggest that at least for the diseases affecting cardiac and skeletal
muscle, which are exposed to particularly high levels of mechanical stress, defects in
nucleo-cytoskeletal coupling and nuclear mechanics could directly contribute to the disease
phenotype. Nonetheless, it is likely that additional mechanisms, such as impaired
mechanotransduction signaling, disturbed transcriptional regulation, or impaired stem cell
function, further contribute to the disease development and are responsible for the broad
spectrum of human diseases [18].

One interesting and unexpected disease mechanism emerged from the recent crossing of
lamin A/C-deficient and Sun1-deficient mouse models. Mice that lack lamins A and C
develop severe muscular dystrophy and dilated cardiomyopathy and die at 4–8 weeks of age
[69]. Surprisingly, when crossed with Sun1-deficient mice, which lack an overt phenotype,
the resulting double deletion of lamin A/C and Sun1 expands the lifetime of the animals,
possibly by preventing toxic accumulation of Sun1 in the Golgi apparatus [70]. Similarly
increased survival was observed in mice lacking exon 9 of the Lmna gene, which causes a
progeria like phenotype when crossed with Sun1-deficient mice [70]. These findings suggest
that in addition to disrupting their normal role in nucleo-cytoskeletal coupling, displacement
of nuclear envelope proteins may cause further cellular defects by inducing Golgi stress and
compromising Golgi functionality.

Recently, altered expression of nuclear envelope proteins, particularly lamins, has been
reported in a number of cancers. For example, lamins A/C are downregulated in breast
cancer, leukemias, lymphomas, colon cancer, and gastric carcinoma, whereas expression of
A-type lamins is upregulated in prostate, skin and ovarian cancers [4, 71, 72]. Furthermore,
a recent genome-wide analysis of 100 cancer patients identified mutations in lamins A/C,
nesprin-1, and nesprin-2, which, albeit unlikely to be driver mutations, could represent
modulators of cancer progression [73]. In cancer cells, altered lamin function could directly
affect nuclear deformability required for interstitial migration or act through diverse
signaling pathways that promote cell motility [72, 74]. These changes in nuclear envelope
composition, which may provide an explanation for the often severe abnormal nuclear shape
in cancer cells, could directly contribute to the disease progression, either by altering the
mechanical properties of the cell nucleus [41] or by modulating signaling pathways and
cytoskeletal organization associated with changes in lamin expression [75].

Outlook
Over the past decade, numerous novel nuclear envelope proteins involved in nucleo-
cytoskeletal coupling and force transmission to the nucleus have been identified, including
nesprins and SUN proteins, the core components of the LINC complex. Nonetheless, many
questions remain unanswered. What is the role of nuclear envelope proteins in cellular
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mechanotransduction? Can these proteins act as nuclear mechanosensors, or do they
primarily serve as processing hubs in the cellular mechanotransduction signaling network?
In the context of intracellular force transmission, given the broad distribution of nesprins
and SUN proteins along the nuclear surface, how is the interaction of LINC complex
proteins regulated to promote (dynamic) anchoring to specific cytoskeletal structures while
avoiding `locking up' the nucleus by unwanted interaction with other cytoskeletal elements?
Which proteins are involved in this regulation? Where does the regulation take place – at the
cytoplasm, the nucleoplasm, or the luminal interaction between the SUN and KASH
domains? Are there other, yet to be characterized proteins involved in linking the nucleus to
the cytoskeleton independent of LINC complex proteins?

Answering these questions will not only advance our understanding of normal cellular
processes but also aid in the development of therapeutic approaches, targeting the many
diseases resulting from mutations in LINC complex-associated proteins. As of now, it
remains unclear to what extent direct mechanical defects such as impaired nuclear anchoring
as opposed to impaired transcriptional regulation or stem cell dysfunction contribute to the
disease mechanisms, and whether these defects are interrelated [11, 18]. Treating impaired
signaling provides a more rapidly attainable goal and has already produced some promising
in cardiac laminopathies [76], but may be insufficient to overcome structural defects.

Twenty years from now, we will probably look back with a smile at the limitations of our
current knowledge of nucleo-cytoskeletal coupling and nuclear mechanotransduction. The
concept of transmembrane connections between the actin cytoskeleton and the extracellular
matrix, leading to the discovery of integrins, is almost 40 years old [77]. That work has
evolved into a tremendously successful research field spanning cell migration, stem cell
differentiation and anti-cancer therapies. Is nucleo-cytoskeletal coupling headed the same
way? We will not find out for a while, but it is certainly an exciting ride, wherever it may
lead us.
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Figure 1. Schematic overview of LINC complex proteins and their connections to the
cytoskeleton and nuclear interior
SUN proteins at the inner nuclear membrane bind to the nuclear lamina and other
nucleoplasmic proteins while interacting with KASH-domain containing proteins at the
outer nuclear membrane. KASH-domain containing proteins directly or indirectly interact
with cytoskeletal filaments, thereby forming a physical connection between the nuclear
interior and cytoskeleton. Please note that SUN- and KASH domain proteins can exist in
multiple isoforms encoded by several genes. In human somatic cells, the most predominant
KASH-domain proteins are nesprin-1, -2, and -3 and their various isoforms, and Sun1 and
Sun2 as the predominant SUN proteins [16]. Illustrated are only the largest isoforms for
nesprins1–4; cells express many additional shorter nesprin isoforms, including some lacking
the KASH domain. Smaller nesprin isoform may also be located on the inner nuclear
membrane. Note that nesprin-1, -2, -4 and KASH5 can also interact with kinesin and/or
dynein. Samp1 and torsinA are involved in the regulation of the LINC complex. Not
depicted are KASH5 and the SUN protein isoforms Sun3–5, as their expression is restricted
to germ cells. The nuclear lamina comprises A-type and B-type lamins. Note that torsinA
can be localized in the endoplasmic reticulum and the perinuclear space, with the
distribution varying depending on expression levels.
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Figure 2. Potential mechanisms of nuclear mechanosensing
Schematic illustration of how force-induced nuclear deformation could modulate expression
of mechano-responsive genes. (A) This example shows a cell exposed to a uniaxial stretch,
resulting in nuclear deformation by forces transmitted from focal adhesions through the
(actin) cytoskeleton to the nucleus. (B) Potential molecular mechanisms for nuclear
mechanosensing: (i) Opening of chromatin structures under force, enabling access of
transcriptional regulators to the chromatin. (ii) Chromatin detachment from the lamina,
freeing genes from the often transcriptionally repressive nuclear periphery. This process
could also result in further changes in chromatin structure, promoting access to
transcriptional regulators. (iii) Stretching the lamina could result in conformational changes
or partial unfolding of lamins, altering their interaction with transcriptional regulators.
Shown here is the release of transcription factors, which can then interact with their target
genes. Phosphorylation and other post-translational modifications of nuclear envelope
proteins could further contribute to nuclear mechanosensing.
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Figure 3. Nuclear positioning during cell polarization via TAN lines
Schematic depiction of retrograde nuclear movement during early polarization in a scratch
wound assay. (A) The nucleus moves to the rear end of the cell, resulting in the centrosome
(green, with microtubule network) to become located towards the leading edge (i.e., the
wound edge) of the cell. Nuclear translocation is mediated by rearward moving dorsal actin
cables (red), which form stable connections to complexes of nesprin2, Sun2 and Samp1
(yellow), referred to as TAN lines. (B) Schematic side view of the process by which
rearward moving actin cables move the nucleus towards the rear of the cell. The inset shows
a close-up of the molecular structure of the TAN lines: F-actin cables interact with the actin-
binding domain of nesprin-2 molecules, which bind to Sun2 homotrimers across the
perinuclear space. Sun2 also interacts with Samp1 and the underlying nuclear lamina and
chromatin.
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Figure 4. Nuclear deformation during cell migration through tight constrictions
(A) Schematic depiction of a cross-section of a cell migrating through a constriction in the
dense extracellular matrix (dark fibers) that is smaller than the nuclear diameter. The white
arrow denotes the direction of cell migration. The nucleus is depicted in brown. (B)
Sideview of a cell migrating through a polycarbonate filter or microfabricated device used to
study nuclear deformation during cell migration through precisely defined pores. Illustrated
in red are actinmyosin networks, applying contractile forces (black arrows) to the nucleus,
either posterior to the nucleus, resulting in a pushing force, or anterior, pulling on the
nucleus. Molecular motors on the microtubule network (green, with centrosome) may apply
additional forces to the nucleus, particularly during neuronal migration. White arrow
indicates migration direction.
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Table 1

List of proteins/genes involved in nucleo-cytoskeletal coupling and the diseases associated with specific
mutations. Not included here are mutations in cytoskeletal and motor proteins, which can result in muscular
dystrophies, cardiomyopathies, and lissencephaly due to impaired neuronal migration [16].

Protein (Gene) Diseases [Reference]

Lamin A/C (LMNA) Emery-Dreifuss muscular dystrophy [78]

Limb-girdle muscular dystrophy [79]

Dilated cardiomyopathy [80]

Congenital muscular dystrophy (dropped head) [81]

Heart-hand syndrome [82]

Dunnigan-type familial partial lipodystrophy [83]

Generalized lipoatrophy [84]

Mandibuloacral dysplasia [85]

Charcot-Marie-Tooth syndrome [86]

Atypical Werner Syndrome [87]

Hutchinson-Gilford progeria syndrome [86, 88]

Restrictive dermopathy [89]

Lamin B1 (LMNB1) Adult onset leukodystrophy (caused by duplication) [66]

Lamin B2 (LMNB2) Partial lipodystrophy [67, 68]

Emerin (STA/EMD) Emery-Dreifuss muscular dystrophy [90]

Nesprin1 (SYNE1) Emery-Dreifuss muscular dystrophy [91]

Dilated Cardiomyopathy [92]

Cerebellar ataxia [61]

Arthrogryposis [62]

Nesprin2 (SYNE2) Emery-Dreifuss muscular dystrophy [91]

Dilated Cardiomyopathy [91]

Nesprin3 (SYNE3) None reported to date

Nesprin4 (NESP4) Hearing loss [64]

SUN1 (SUN1) None reported to date

SUN2 (SUN2) Emery-Dreifuss muscular dystrophy (patient also carried other mutations) [65]

TorsinA (TOR1A) Early-onset generalized torsion dystonia [93]
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