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Abstract
The phosphoinositide-3 kinase (PI3K) pathway plays a critical role in cancer cell growth and
survival. PI3K is activated in human cancers by elevated receptor tyrosine kinase activity, RAS
mutation, as well as by mutation, amplification, and deletion of genes encoding components of the
pathway. Additionally, PI3K pathway activation plays an important role in acquired resistance to
both chemotherapy and targeted agents. The essential role of PI3K in human cancer has led to the
development of PI3K pathway inhibitors that have shown promise in preclinical models and have
entered phase 1 clinical trials. This article reviews preclinical and clinical data on members of this
novel drug class, as well as data justifying the combination of PI3K inhibitors with other
anticancer agents.
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Introduction
Phosphoinositide-3 kinase (PI3K) is a unique kinase because it catalyzes the production of
the lipid second messenger phosphatidylinositol-3,4,5-trisphosphate (PIP3) from
phosphatidylinositol-4,5-bisphosphate (PIP2), acting as a central signal transduction
molecule that regulates several cellular processes. For example, PI3K plays a key role in the
insulin receptor pathway and contributes to the regulation of glucose homeostasis [1, 2]. In
drosophila, insulin receptor–mediated activation of PI3K also regulates cell growth. Genetic
manipulation of drosophila wings resulting in higher levels of PI3K activity causes them to
grow larger in size; conversely, drosophila wings with low level of PI3K activity are smaller
in size [2].

In mammals, PI3K function has expanded to additional pathways beyond the insulin
receptor pathway. PI3K becomes activated in response to the activation of multiple tyrosine
kinases including epidermal growth factor receptor (EGFR), human epidermal growth factor
receptor 2 (HER-2), HER-3, c-KIT, Abl, FMS-like tyrosine kinase 3, platelet-derived
growth factor receptor α (PDGFRα), PDGFRβ, insulin-like growth factor 1 receptor
(IGF-1R), MET, and vascular endothelial growth factor 2 (VEGFR2) [3•, 4•]. In addition to
these tyrosine kinases, RAS is also able to activate PI3K [5]. The PI3K pathway also
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functions as an important signaling molecule in the immune system [6]. PI3K (particularly
p110δ and p110γ) is activated in response to antigen activation of B and T cell receptors and
is also activated by co-stimulatory molecules.

There are three classes of PI3Ks: type I, II, and III [1, 4•]. The role of type I PI3K is best
established in cancer; the four type I PI3Ks are p110α, p110β, p110δ, and p110γ. Type 1A
PI3Ks (p110α, p110β, and p110δ) are heterodimers consisting of a p85 regulatory subunit
and the p110 catalytic domain [1, 4•]. The regulatory and catalytic units are encoded by
different genes [1, 4•]. The p85α and p85β subunits are encoded by PIK3R1, PIK3R2, and
PIK3R3, whereas the p110α, p110β, p110δ, p110γ subunits are encoded by PIK3CA,
PIK3CB, PIK3CD, and PIK3CG, respectively.

The p85 regulatory subunit inhibits the activity of the p110 catalytic subunit and ensures that
the catalytic domain only becomes activated at the appropriate time [1, 4•]. The binding to
p85 of activated tyrosine kinases, adapter proteins, or in some cases activated G proteins, is
the molecular switch that releases its inhibition of the catalytic activity of p110 (Fig. 1).
Additionally, the binding of the p85 subunit to specific phosphotyrosine residues on
activated tyrosine kinases in the plasma membrane localizes the PI3K heterodimer to the
plasma membrane. This allows the p110 catalytic subunit to phosphorylate membrane-
bound PIP2 to produce PIP3 [1].

A major PIP3 binding protein is the serine/threonine kinase Akt (also called protein kinase
B). The binding of Akt to PIP3 localizes Akt to the plasma membrane and allows it to be
phosphorylated by PDK1 and mammalian target of rapamycin (mTOR) complex-2 [7]. Once
phosphorylated, Akt moves to the cytoplasm and activates an array of proteins critical to cell
growth and survival. For example, Akt inhibits proapoptotic proteins, including BAD,
caspase 9, and the forkhead (FOX) family of transcription factors [8]. In addition, Akt also
phosphorylates the tuberous sclerosis gene TSC2. Under basal conditions, TSC2 negatively
regulates mTOR, so that Akt-mediated TSC2 phosphorylation activates mTOR, which in
turns activates p70S6K and 4E-BP1, promoting translation of mRNAs important to cancer
cell growth [7, 9]. An important negative regulator of PI3K is the phosphatase and tensin
homolog (PTEN) phosphatase that converts PIP3 to PIP2 [10]. The ability of PTEN to
counteract PI3K by reducing PIP3 levels is important in preventing overactivation of this
pathway.

Genetic PI3K Pathway Aberrations in Cancer
Genetic aberrations leading to the activation of the PI3K pathway are common in human
malignancies [1, 3•, 11]. One of the best examples of this is PIK3CA-activating mutations
and amplifications. PIK3CA-activating mutations cluster in “hot-spot” regions within p110α
and two of the most common PIK3CA mutations are H1047R and E545K [3•, 12]. The
H1047R mutation may increase p110α binding to the plasma membrane, whereas the
E545K mutation releases p110α from inhibition by p85α [13]. Cancers that harbor frequent
PIK3CA mutation include breast cancer, colorectal cancer, glioblastoma, hepatocellular
cancer, and ovarian cancer [1, 3•]. Notably, mutations in the other three p110 isoforms
(p110β, p110γ, and p110δ) have not been reported. However, overexpression of p110δ and
p110γ has been described in both acute myeloid leukemia (AML) and chronic myeloid
leukemia [14, 15].

Recently, PIK3R1 mutations have also been described. Interestingly, p85α mutants are able
to bind, but not inhibit, p110α [13]. Additionally, these mutants increase downstream Akt
activation and result in leukemogenesis when cells expressing the p85 mutant are injected
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into mice [16]. Furthermore, p110β and p110δ also can become activated when they are
bound to mutated p85α [13].

An Akt1-activating mutation, E17K, has been described in breast, colorectal, and ovarian
cancers. The E17K mutation alters the lipid-binding properties of Akt1 and allows it to bind
nonspecifically to the plasma membrane [12, 17]. As a result of the E17K mutation, Akt1
inappropriately localizes to the plasma membrane and becomes activated [17]. The
oncogenic potential of the E17K mutation was demonstrated by the observation that mice
injected with cells expressing this mutation developed leukemia [17].

Just as activating mutations of PIK3CA, PIK3R1 and Akt1 promote cancer, inactivating
mutation and deletion of the tumor suppressor PTEN are also frequently found in human
malignancy. PTEN is a negative regulator of PI3K and its deletion leads to inappropriately
high levels of PI3K activation [10]. Cancers with high frequencies of genetic aberrations in
PTEN include glioblastoma, prostate cancer, breast cancer, melanoma, endometrial cancer,
colorectal cancer, and gastric cancer [1, 3•]. Two genetic syndromes that convey an
increased risk of cancer, Cowden’s Disease and Bannayan–Riley–Ruvalcaba syndrome, are
caused by germline PTEN mutations [10]. Interestingly, unlike most tumor suppressors, the
loss of just one copy (ie, haploinsufficiency) of PTEN is often sufficient to cause cancer
[10].

The activation of the PI3K pathway has also been associated with acquired resistance to
molecularly targeted therapies. For example, in EGFR-mutated lung cancer, erlotinib blocks
EGFR activation and prevents it from activating PI3K and the mitogen-activated protein/
extracellular signal-regulated kinase kinase (MEK)–extracellular signal-regulated protein
kinase (ERK) pathways [18••]. Resistance to erlotinib can develop when molecular
alterations, such as MET amplification or acquisition of the secondary T790M EGFR
mutation, restore PI3K activation [19•, 20]. Similarly, in vitro models have demonstrated
that PI3KCA mutations or PTEN deletions can lead to acquired resistance to cetuximab and
trastuzumab [21, 22].

“First Generation” PI3K Inhibitors: Wortmannin and LY294002
The first PI3K inhibitor, wortmannin, was isolated from the fungus Penicillium wortmannin
in 1957 [4•]. Wortmannin has been a widely used reagent in basic science laboratories but
has not been developed clinically because of several pharmacologic shortcomings.
Wortmannin is not a specific PI3K inhibitor and has activity against proteins that are
structurally related to PI3K, including DNA-PK, ataxia telangiectasia mutated (ATM),
ataxia telangiectasia and Rad3-related (ATR), and mTOR [4]. Wortmannin is extremely
reactive, has a short half-life, and causes liver dysfunction, lymphocytopenia, and
hyperglycemia in animal models [23].

In 1994, Eli Lilly (Indianapolis, IN) synthesized the reversible PI3K inhibitor LY294002,
developed as a structural analog of quercetin, a bioflavonoid produced by plants that can
inhibit several protein kinases including PI3K [24]. LY294002 is more stable but less potent
than wortmannin [4•]. Similar to wortmannin, it is not a specific PI3K inhibitor. Poor
aqueous solubility impeded its clinical development [25].

“Second Generation” PI3K Inhibitors
The current generation of PI3K inhibitors was designed to improve upon the pharmacologic
characteristics of wortmannin and LY294002. PX-866 (Oncothyreon) is a structural analog
of wortmannin that was selected for development because it is more stable and less toxic
than wortmannin [23]. Like wortmannin, it is a potent irreversible pan-PI3K inhibitor (Table
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1) [26]. It has demonstrated significant antitumor activity in murine xenograft models of
lung, ovarian, and colon cancer [23]. Phase 1 clinical trials on PX-866 are presently
underway and preliminary results have shown several patients with stable disease, with
abdominal pain and mild diarrhea described as possible associated side effects [27].
Reduced phosphorylation of mTOR and p70S6K have been demonstrated in peripheral
blood mononuclear cells [27].

Another approach to bring wortmannin to the clinic was to increase its stability by
pegylation. PWT-458 (Pfizer; New York, NY), pegylated-17-hydroxywortmannin, is the
product of this strategy [28]. Although PWT-458 has demonstrated antitumor activity in
xenograft models, it has yet to enter into human clinical trials [28].

Efforts have also been directed at modifying the pharmaceutical properties of LY294002.
SF1126 (Semafore Pharmaceuticals; Westfield, IN) was developed by attaching the RGD
targeting peptide onto LY294002 [25]. The RGD peptide binds readily to integrins, and its
addition onto LY294002 makes the drug water-soluble, correcting a major limitation. The
integrin-targeting RGD peptide is expected to cause the drug to preferentially accumulate in
endothelial cells and tumor cells. Preclinically, SF1126 has shown activity against murine
models of breast cancer and glioblastoma [25]. In addition, it has demonstrated
antiangiogenic activity in xenografted LN229 glioma cells by substantially decreasing
microvessel formation [25]. SF1126 is currently in phase 1 clinical trials, and is one of the
few PI3K inhibitors administered intravenously. The best response to date is stable disease
of up to 20 weeks in patients with gastrointestinal stromal tumors (GIST), endometrial
cancer, and prostate cancer [29]. The most serious side effect reported has been grade 3
diarrhea [29].

Other second-generation PI3K inhibitors are chemically distinct from wortmannin and
LY294002. For example, PI-103 is a potent inhibitor of PI3K; as with wortmannin and
LY294002, this compound has undesirable pharmacologic properties because of its poor
solubility and rapid metabolism. However, a series of structural analogs has been studied,
with GDC-0941 (Genentech; South San Francisco, CA) emerging with favorable
pharmacokinetic properties and retention of potent PI3K inhibition [30]. Unlike
wortmannin, GDC-0941 is selective for PI3K and is a relatively weak inhibitor of mTOR
(Table 1). GDC-0941 has been well-tolerated in phase 1 clinical trials of once and twice
daily dosing, 3 weeks of every 4, with mild nausea, fatigue, diarrhea, peripheral edema, and
liver function test abnormalities observed [31, 32]. Scans from a HER-2–positive breast
cancer patient demonstrated diminished fluorine-18 2-fluoro-2-deoxy-D-glucose (FDG)
uptake and improvement of target lesions. Patients with sarcoma, endometrial cancer, and
ovarian cancer have also achieved prolonged stable disease, the latter with improvement of
CA125 [31, 32].

Like GDC-0941, XL147 (under co-development by Exelixis [South San Francisco, CA] and
Sanofi-Aventis [Bridgewater, NJ]) selectivity inhibits PI3K without inhibiting mTOR (Table
1) [33]. XL147 is also currently in phase 1 clinical trials evaluating schedules 3 weeks of
every 4 and continuous once-daily dosing [34, 35]. The dose-limiting toxicity is drug-
induced rash; elevated liver function tests and fatigue have also occurred. XL147 likely
augments food-induced changes in plasma insulin, but blood glucose is only minimally
affected with mild hyperglycemia noted in four of 39 patients. Extensive pharmacodynamic
studies utilizing pre- and post-treatment hair follicles, skin biopsies, and tumor biopsies
demonstrated substantial inhibition of phosphorylated PI3K pathway components, with the
PI3K pathway extinguished by ≥70% in some tumors, without compensatory upregulation
of MEK/ERK phosphorylation [34]. Six patients, including several with EGFR wild-type
non–small cell lung cancer (NSCLC), continued on treatment more than 6 months, with one
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partial response noted in an NSCLC patient. Reduced FDG–positron emission tomography
(PET) activity was demonstrated in a patient with GIST, and a patient with hormone-
refractory prostate cancer had his prostate-specific antigen (PSA) level normalize for more
than 5 months. Notably, phase 1 clinical trials combining XL147 with chemotherapy
(carboplatin and paclitaxel) or erlotinib are also underway [35, 36]. Preliminary results
indicate that these combinations are feasible, reasonably well tolerated, and have produced
responses [35, 36].

Dual PI3K and mTOR Inhibitors
The catalytic subunit of mTOR is structurally similar to PI3K, so that many PI3K inhibitors
under development also potently inhibit mTOR. At the present time, it is unclear whether
dual inhibition of mTOR and PI3K is an advantage over PI3K inhibition alone. However,
both PI3K and dual PI3K–mTOR inhibitors may have advantages over agents that solely
inhibit mTOR, largely because mTOR functions in a negative feedback loop, so that its
activation limits upstream PI3K activity [9]. Therefore, a consequence of mTOR inhibition
is activation of both PI3K and Akt, a problem circumvented by concomitant PI3K inhibition
[12].

Several dual PI3K and mTOR inhibitors have entered clinical trials, including NVP-BEZ235
(Novartis; Basel, Switzerland), GDC-0980 (Genentech), and XL765 (Exelixis/Sanofi-
Aventis) [37]. NVP-BEZ235 was derived from the imidazo[4,5-c]quinoline chemical
scaffold that was predicted to inhibit the ATP binding site of PI3K based on its crystal
structure [38]. This agent competitively inhibits all of the PI3K isoforms, and has been
shown to be effective in preclinical models of glioblastoma, melanoma, pancreatic cancer,
Waldenström’s macroglobulinemia, and multiple myeloma [38]. In breast cancer models,
NVP-BEZ235 has been shown to selectively induce apoptosis in cell lines harboring HER-2
amplification, PIK3CA mutation or both, and has also been shown to reverse lapatinib
resistance [39]. All three agents are in phase 1 trials, with XL765 investigated on twice daily
and once-daily regimens. Although overall well tolerated, dose-limiting toxicities have
occurred, including elevated transaminases, nausea/vomiting, anorexia, and rash.
Pharmacodynamic assessments in hair follicles, skin, and tumor demonstrated about 60% to
90% PI3K inhibition when phosphorylated PI3K pathway proteins were analyzed [37].

Isotype-Selective PI3K Inhibitors
p110 Isotype-specific inhibitors are also under development [3•]. This strategy may
minimize potential side effects. For example, p110α, and to a lesser extent p110β, play an
important role in transducing PI3K signals from the insulin receptor [40]. Hence, a PI3K
inhibitor that does not have activity against p110α and p110β potentially would induce less
severe hyperglycemia as a side effect. Similarly, because p110γ and p110δ play important
roles in lymphocyte signal transduction, having an inhibitor that lacked activity against
p110γ and p110δ could minimize potential immunological side effects [3•].

Because p110δ is abundantly expressed in lymphocytes and plays an important role in
antiapoptotic signaling pathways in some lymphomas and leukemias, there has been great
interest in the development of a selective PI3Kδ inhibitor [41, 42]. CAL-101 (Calistoga
Pharmaceuticals; Seattle, WA) is the first PI3Kδ specific inhibitor to be tested clinically and
thus far the results have been encouraging. Preliminary results reported from the phase 1
clinical trial have indicated that 56% of patients with non-Hodgkin’s lymphoma have had a
partial response [43••]. Significant activity was also seen in chronic lymphocytic leukemia
(CLL), with 35% of the patients achieving partial response and another 41% of patients
demonstrating at least 50% decrease in lymphocytosis [43]. CAL-101 has been well
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tolerated, causing a reversible elevation in liver function tests in 11% of the patients in this
study [43••].

Inhibitors of Akt
Several inhibitors of Akt are under development. Perifosine, recently extensively reviewed,
inhibits the ability of Akt to localize to the plasma membrane [44]. Perifosine has reached
phase 2 trials and has demonstrated activity in sarcoma and Waldenström’s
macroglobulinemia patients [44].

MK-2206 (Merck; Whitehouse Station, NJ) is an allosteric inhibitor of Akt1, 2, and 3 [45].
A phase 1 trial is underway evaluating every-other-day dosing in 28-day cycles; dose-
limiting toxicities have included rash and mucositis. At tolerable doses, MK-2206 treatment
resulted in significant Akt inhibition throughout the dosing interval [45]. Pharmacodynamic
studies showed diminished phospho-Akt at all dose levels, as well as mild hyperglycemia.
Six patients achieved stable disease for at least two cycles of MK-2206 treatment [45].

Determinants of PI3K Addiction and Development of Rational
Combinations

Although prolonged stable disease has been observed in several clinical trials utilizing PI3K
inhibitors, robust response rates among patients with solid tumors have not been achieved.
This is prompting efforts to define determinants of PI3K addiction, with the ultimate goal of
identifying tumors most likely to respond when the pathway is extinguished. For example,
the dual PI3K/mTOR inhibitor NVP-BEZ235 causes apoptosis in breast cancer cell lines
harboring either HER2 amplification and/or PIK3CA mutation [46••]. These data have
corroborated those of other reports, in which NVP-BEZ235 effectively inhibits the entire
PI3K pathway in HER2-amplified cells, with no residual mTORC1 activity detected, as
evidenced by ablated p70S6K phosphorylation [18]. Similar results have also been described
with GDC-0941, more selectively inhibiting PI3K alone, in transgenic mice bearing lung
tumors induced by expression of mutant HER-2 [47]. These data are also consistent with
observations demonstrating that resistance to lapatinib and trastuzumab can be overcome in
in vitro models of breast cancer by NVP-BEZ235, SF1126, and GDC-0941 [39, 48, 49].

Importantly, among breast cancer cell lines with inactivated PTEN, NVP-BEZ235 did not
induce substantial apoptosis [46••]. These cells expressed higher baseline levels of activated
ERK, which was capable of phosphorylation of the mTORC1 target p70S6K; continued
phospho-p70S6K expression after NVP-BEZ235 exposure correlated with preserved cell
viability in response to the drug [46••]. Therefore, in breast cancer, not all genetic
aberrations of the PI3K pathway lead to strict PI3K addiction, and resistance to
NVPBEZ235 in PTEN-deficient cell lines potentially could be overcome by addition of an
MEK inhibitor [46••].

Whether the genetic pathway alterations in other tumor types (eg, PIK3CA mutation in colon
cancer; PIK3CA amplification in NSCLC or ovarian cancer; PTEN deficiency in
glioblastoma, prostate cancer, ovarian or endometrial cancer) will result in sufficient PI3K
pathway addition to dictate objective response or prolonged disease stability to a PI3K or
PI3K/mTOR inhibitor alone remains to be determined. This issue has not been explored in
depth in the context of phase 1 clinical trials to date. Ultimately, the assessment of molecular
subsets of patients in phase 2 studies in individual tumor types will be important for defining
those patients most likely to benefit.
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Similarly, it is unclear whether the activation of receptor tyrosine kinases other than HER2
will lead to addiction to the PI3K pathway alone. Recently, it has been reported that among
a large panel of NSCLC cancer cell lines, those most susceptible to PI-103–mediated PI3K/
mTOR inhibition were those with receptor tyrosine kinase activation, including cell lines
harboring EGFR mutation or amplification, MET amplification, or HER2 mutation or
amplification [47]. EGFR mutant NSCLC xenografts, including those harboring the
secondary T790M mutation conferring erlotinib resistance, underwent substantial tumor
growth inhibition with the PI-103 pharmalog GDC-0941 [47]. However, data in the
transgenic murine model of lung adenocarcinoma induced by EGFR L858R/T790M, was
not as promising for PI3K inhibition alone; only stable disease was documented, in contrast
to the results in mice harboring lung cancers driven by mutant HER2, where pronounced
tumor shrinkage was observed [47]. Additionally, EGFR mutant NSCLC cell lines did not
undergo substantial apoptosis in response to NVP-BEZ235 alone, but rather required the
addition of the MEK inhibitor ARRY-142886 (AZD6244) [18]. The combination was as
effective as gefitinib alone in gefitinib-sensitive models, and also induced marked regression
in the EGFR L858R/T790M murine transgenic model [18]. Taken together, these data
suggest that the degree of addiction to the PI3K pathway among activated receptor tyrosine
kinases is not equivalent. In contrast to HER2-driven tumors, EGFR driven tumors may
have only partial dependency on PI3K, so that the combination of PI3K inhibition and MEK
inhibition may be necessary to achieve tumor regression. Furthermore, differences among
compounds may also exist, with the possibility of unchanged, increased, or even decreased
degrees of ERK activation present after exposure to individual compounds [34, 37].

The preclinical data in PTEN-deficient breast cancer cell lines and EGFR mutant NSCLC
models suggest that the combination of PI3K and MEK inhibition may overcome the lack of
responses observed to single-agent PI3K and PI3K/mTOR inhibitors to date. The same is
likely true in K-RAS–driven tumors. These represent a major unmet medical need because
direct pharmacologic inhibition of K-RAS has thus far been elusive. Both breast and
NSCLC cell lines with activated K-RAS did not respond to PI3K inhibition, but K-RAS
mutant NSCLC cell lines did achieve some degree of growth arrest and/or apoptosis in
response to MEK inhibition. In this case, residual PI3K activity likely mediated resistance,
such that the addition of a PI3K inhibitor to an MEK inhibitor resulted in synergy.
Importantly, these results corroborated those in the K-RAS driven model of murine lung
adenocarcinoma [50••]. In this model, the PI3K/mTOR inhibitor NVP-BEZ235 had no
antitumor activity, whereas the MEK inhibitor AZD6244 had only modest activity.
However, the combination led to a substantial reduction in tumor size and FDG avidity
[50••].

These results have generated optimism that a dual pathway inhibitory approach will be
successful in a large variety of tumor types, including both receptor tyrosine kinase-and K-
RAS–driven cancers. A number of clinical trials have been designed to develop such
combinations that will ultimately test this hypothesis, including a trial utilizing the PI3K
inhibitor GDC-0941 and the MEK inhibitor GDC-0973 (Genentech). Additionally, the AKT
inhibitor MK-2206 will be combined with the MEK inhibitor AZD6244, and similarly,
mTOR and MEK inhibitor combinations are under exploration.

On a cautionary note, it will first be important to establish the tolerability of each regimen in
carefully designed phase 1 trials. For combinations of molecularly targeted agents, dose
titrations permitting simultaneous exploration of more than one dose level in which one or
the other drug is escalated may speed the achievement of optimal safe doses. In some cases,
combination of maximum doses at the outset may be successful, with deescalation
permitted, if appropriate.
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In addition to combining PI3K inhibitors with other targeted therapy, data also suggest that
PI3K inhibitors will potentiate the effects of cytotoxic chemotherapy. Because activated Akt
can mediate resistance to chemotherapy, suppression of the PI3K-Akt axis may sensitize
cells. For example, experiments in doxorubicin-resistant CML cell lines demonstrated high
levels of PI3K and Akt activity; importantly, doxorubicin resistance could be overcome by
decreasing PI3K and Akt activity [51]. Further experimental evidence was observed in two
pancreatic cancer cell lines in which wortmannin and LY294002 treatment decreased levels
of phosphorylated Akt and increased gemcitabine-induced apoptosis [52]. Similarly, PX-866
has shown synergistic antitumor activity with cisplatin in a murine xenograft model of lung
cancer [23].

Conclusions
The PI3K pathway inhibitors represent a novel drug class addressing a pathway universally
activated in human cancer. PI3K inhibitors are still early in their development and are being
tested in phase 1 monotherapy and combination clinical trials (Table 1). To date, the most
significant clinical success has been the effectiveness of CAL-101, the oral PI3Kδ inhibitor,
in B cell malignancies [43••]. Encouragingly, preliminary data indicate that PI3K inhibitors
are well tolerated. As expected, given the importance of PI3K in insulin-receptor signaling,
patients have been observed to have high insulin levels; however, in most cases,
concomitant hyperglycemia has been mild at most. Other commonly observed toxicities thus
far include rash, nausea, vomiting, diarrhea, and elevation of liver function tests [27, 29, 31,
32, 34, 37], usually of mild or moderate severity and reversible. Importantly, for several
compounds, robust pharmacodynamic data have been generated during the course of phase 1
work, demonstrating PI3K pathway inhibition by assessment of phosphorylated targets in
tumor biopsies acquired pre- and post-treatment. It remains unclear whether 60% to 90%
decreases in pathway activation, as measured by immunofluorescence or
immunohistochemistry, are sufficient to achieve anti-tumor activity. Nonetheless, the work
suggests that the PI3K pathway is substantially modulated by several agents, so that single-
agent phase 2 trials in individual tumor types are appropriate. In the context of these trials, it
will be important to examine multiple molecular subsets both in retrospective and ultimately
prospective fashion, so that patients most likely to derive benefit will be identified.

The same is true for MK-2206 and other Akt inhibitors under development. Of note, the
genomic determinants of response may differ from those for a PI3K inhibitor, because
PI3K3CA-mutant cancers may signal through Akt-independent mechanisms in some cases,
with a PI3K-PDK1-SGK3 axis recently described [53].

The demonstration of expected pharmacodynamic effects of these compounds will also
allow the field to move forward with rationally designed combinations. Preclinical data
suggest that the addition of an MEK inhibitor to a PI3K inhibitor (or an Akt inhibitor)
represents a particularly promising strategy designed to block the two most dominant
signaling pathways operating in most cancer cells. Additionally, PI3K and Akt inhibition
may substantially improve chemotherapy-mediated cytotoxicity. Ultimately, for a large
portion of solid tumors, these agents may most likely prove their efficacy as part of
combination regimens.
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Fig. 1.
Phosphoinositide-3 kinase (PI3K) is a heterodimer consisting of p85 and p110 subunits.
PI3K becomes activated when phosphorylated receptor tyrosine kinases (RTK), or adapter
proteins (P), bind to p85. K-RAS is also able to activate PI3K. Once PI3K is activated, the
p110 catalytic subunit converts phosphatidylinositol-4,5-bisphosphate (PIP2) to
phosphatidylinositol-3,4,5-trisphosphate (PIP3). Akt binds to PIP3 in the plasma membrane
and becomes activated. Akt is then able to activate mammalian target of rapamycin (mTOR)
by blocking the ability of TSC2 to inhibit mTOR
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