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Introduction

Colorectal cancer (CRC) remains a major cancer concern world-
wide. In Russia, its incidence and mortality have significantly 
increased over the past decade. CRC poses the second highest 
morbidity due to cancer in Russian men, 10.9%, following lung 
cancer; in Russian women, the CRC mortality is 12.3%, third 
after breast and skin cancer.1 Although numerous studies have 
revealed a series of molecular alterations associated with and 
involved in CRC pathogenesis, the current knowledge remains 
insufficient for early diagnosis and adequate risk assessment. The 
last decade, however, has seen advances in new genome-scale 
technologies that have been used to characterize the full spec-
trum of molecular heterogeneity in many types of cancer cells.2-4 
At present, it is generally assumed that CRC arises as a conse-
quence of an accumulation of genetic and epigenetic alterations, 

Illumina’s Infinium HumanMethylation450 BeadChip arrays were used to examine genome-wide DNA methylation 
profiles in 22 sample pairs from colorectal cancer (CRC) and adjacent tissues and 19 colon tissue samples from cancer-
free donors. We show that the methylation profiles of tumors and healthy tissue samples can be clearly distinguished 
from one another and that the main source of methylation variability is associated with disease status. We used different 
statistical approaches to evaluate the methylation data. In general, at the CpG-site level, we found that common CRC-
specific methylation patterns consist of at least 15 667 CpG sites that were significantly different from either adjacent 
healthy tissue or tissue from cancer-free subjects. Of these sites, 10 342 were hypermethylated in CRC, and 5325 were 
hypomethylated. Hypermethylated sites were common in the maximum number of sample pairs and were mostly located 
in CpG islands, where they were significantly enriched for differentially methylated regions known to be cancer-specific. 
In contrast, hypomethylated sites were mostly located in CpG shores and were generally sample-specific. Despite the 
considerable variability in methylation data, we selected a panel of 14 highly robust candidates showing methylation 
marks in genes SND1, ADHFE1, OPLAH, TLX2, C1orf70, ZFP64, NR5A2, and COL4A. This set was successfully cross-validated 
using methylation data from 209 CRC samples and 38 healthy tissue samples from The Cancer Genome Atlas consortium 
(AUC = 0.981 [95% CI: 0.9677–0.9939], sensitivity = 100% and specificity = 82%). In summary, this study reports a large 
number of loci with novel differential methylation statuses, some of which may serve as candidate markers for diagnostic 
purposes.
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which transforms colonic epithelial cells into adenocarcinoma 
cells.5 The epigenetic changes associated with CRC, especially 
aberrant CpG island methylation in the promoter regions of 
tumor suppressor genes, have become an area of great interest in 
the field of cancer research. In general, up to 10% of CpG islands 
in cancer epigenomes may be aberrantly methylated, which can 
lead to the silencing of thousands of gene promoters in the aver-
age cancer.6,7 Moreover, recent studies have shown that CRC-
associated aberrant methylation is not exclusively limited to CpG 
islands but may be extended to “CpG island shores” or areas that 
are less dense in CpG dinucleotides within 2 kb upstream of a 
CpG island.8 The methylation of CpG island shores may also be 
associated with the transcriptional inactivation and expression of 
splice variants.

Recent technological advances now offer the ability to explore 
the processes underlying tumorigenesis at the genome level while 
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was obtained from all patients. The study protocol was approved 
by the institutional review board at the Research Institute of 
Physical Chemical Medicine in Moscow, Russia.

Normalization of methylation data. The genome-wide CpG 
methylation profiles of 22 pairs of CRC tissue and adjacent 
normal mucosa and 19 normal mucosa samples from cancer-
free patients were generated using the HumanMethylation450 
BeadChip. The estimated methylation status per sample totaled 
485 577 loci, covering 21 231 genes. Methylation at each locus was 
measured using β-values that were generated using the Illumina 
GenomeStudio software based on the intensity of the methylated 
and unmethylated probes. Before further calculations, a built-in 
Detection Score filter was used, leaving only values with signifi-
cantly higher mean signal intensities from multiple probes for a 
given CpG locus than those of the negative control in the same 
set of chip data (at the level of P < 0.05). The average number of 
loci detected (P < 0.05) for the CRC samples, adjacent healthy 
mucosa samples and healthy mucosa samples from cancer-free 
patients were 484 552, 484 035 and 484 647, respectively. These 
results suggested uniform amplification and hybridization condi-
tions for all samples.

Infinum 1 (InfI) and Infinum 2 (InfII) represent two types 
of chemistry incorporated on the HumanMethylation450 
BeadChip. Because each type utilizes different mechanisms for 
detection, some bias in β-value distributions has been shown in 
previous studies on the development of the new chip.10,11 We also 
noticed that InfI and InfII show different dynamic behaviors 
in the assay and that some data processing is required to make 
the two data sets comparable. The data normalization methods 
implemented in the current version of GenomeStudio software 
(v 2011.1) cannot remove the bias caused by the different types 
of chemistry. Therefore, to adjust β-values, we used a peak-based 
correction approach that was developed by Dedeurwaerder et al. 
and implemented in Illumina Methylation Analyzer (IMA), a 
recently published R package.12

The density plots of the β-value distributions for the InfI and 
InfII probes from the same sample before and after peak correc-
tion are shown in Figure S1. A typical distribution of β-values 
has a bimodal shape in which one peak corresponds to low or 
unmethylated probes with a β-value close to 0, while the second 

performing a large-scale search for new candidate biomarkers for 
cancer diagnosis. One of the most widely used commercial plat-
forms for methylation profiling at the genome level and at single 
CpG resolution is the Infinium Methylation Assay from Illumina, 
Inc. The recently launched Infinium HumanMethylation450 
BeadChip presents a significant improvement in CpG site den-
sity detection (482 421 CpG and 3091 non-CpG sites) and, at 
the gene level, covers 99% of RefSeq genes with multiple sites 
in annotated promoters (1500 bp or 200 bp upstream of the 
transcription start site), 5'-UTRs, first exons, gene body, and 
3'-UTRs.9

To our knowledge, no published study has focused on epi-
genetic diversity in CRC using this version of the high-density 
methylation array. In the current study, CpG-level methylation 
statuses of tumor tissue and matched healthy tissue from CRC 
patients as well as normal tissue from cancer-free donors were 
obtained using Infinium HumanMethylation450 BeadChips. 
This enabled us to characterize differentially methylated regions 
involved in colorectal cancer pathogenesis and identify novel 
DNA methylation markers that have not previously been associ-
ated with aberrant methylation in CRC.

Results

Clinical and pathological characteristics of CRC patients. 
The clinical and pathological characteristics are described in 
Table 1. We analyzed cancer tissue samples (C) and matched 
healthy mucosa tissue samples (N1) from 22 patients diagnosed 
with colorectal adenocarcinomas at the State Research Center of 
Coloproctology (SRCC), Moscow, Russia. The inclusion criteria 
were as follows: no cancer other than CRC, no indications of 
CRC heredity and no radio- or chemo-therapy before surgical 
resection. In addition to patient samples, healthy colonic mucosa 
samples (N2) were obtained from 19 neoplasia-free subjects. 
These controls underwent screening colonoscopy but presented 
no colonic abnormalities and possessed no history of colonic 
neoplasia, IBD, or chemotherapy for any malignancies. We used 
those cancer-free samples to evaluate the possible presence of field 
cancerization in affected patients. After the purpose and nature 
of all of the procedures were fully explained, written consent 

Table 1. Patient characteristics

Subject characteristics Cancer tissue (С) Normal mucosa from cancer patients (N1) Normal mucosa from neoplasia-free patients (N2)

Number 22 19

Mean age at diagnosis/obser-
vation (year)

62 51

Sex (%)

Male 10 (0.45) 9 (0.47)

Female 12 (0.55) 10 (0.53)

Tumor/Normal tissue site Rectum Rectum Rectum

AJCC cancer stage (%) -

Stage I 4 (18) -

Stage II 9 (41) -

Stage III 9 (41) -
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Finally, we used a quantile-quantile (Q-Q) plot of −log10 (P val-
ues) to visualize the association between methylation and disease 
status at each of the 444 888 CpG sites analyzed (Fig. S3). The 
observed quantiles are consistently higher than their expected 
values under the null hypothesis of no disease association, pro-
viding evidence of the site-specific disease association of a large 
number of CpG sites.

Differential methylation in colorectal carcinoma tissue 
compared with cancerous and non-cancerous colon tissue. We 
compared the genome-wide differential methylation status of 
22 CRC tissue samples (C), 22 adjacent cancer-free colonic tis-
sue samples (N1) and 19 samples of normal colonic tissue from 
cancer-free patients (N2). Two different sets of control samples 
were used to discriminate genes potentially involved in field can-
cerization, including genes already carrying hypermethylation 
events that are linked to an increased risk of carcinogenic pro-
gression.13-16 The differentially methylated regions (DMRs) were 
analyzed using the IMA-R package, as described in the methods 
section. To be conservative, we report only differentially methyl-
ated regions with absolute delta β-values of at least 0.2 at FDR 
0.05.

We initially utilized the site-level version of the test based on 
all 444 888 CpG sites. By comparing CRC to adjacent normal 
tissue (C vs. N1), we found a total of 23 793 differentially meth-
ylated (DM) CpGs. A comparison between CRC and normal tis-
sue from cancer-free subjects (C vs. N2) resulted in 23 688 CpG 
sites. In both comparisons, 17 821 CpG sites were confirmed to 
be differentially methylated. These sites were inspected for possi-
ble technical artifacts related to the cross-hybridization of probes 
with repetitive DNA regions and biases due to SNP-containing 
probes; 194 probes were found to map to multiple locations (at 
least 2 mismatches), 23 probes were located in genome repeats, 
and 1936 probes containing single nucleotide polymorphisms 
(SNP) were excluded from further analysis. After data filtra-
tion 15 667 DM CpG sites remained, of which 10 342 CpG 
were hypermethylated and 5325 were hypomethylated (Fig. 2A;  
Table S1).

Next, we implemented two variations of a region-level dif-
ferential test in IMA-R. In contrast to the site-level test, the 
comparisons are based on the average methylation values (meth-
ylation index) calculated for the incorporated number of CpGs in 
extended regions. Six gene-based regions were used to calculate the 
methylation index (TSS1500, TSS200, 5'-UTR, first exon, gene 
body, and 3'-UTR), and five CpG island-based regions were used 
(CpG island, south and north shores [regions flanking island], 
and south and north shelves [regions flanking shores]). The given 
region definition is based on the original Illumina methylation 
annotation for the Human Methylation450 BeadChip.9

A gene-based variant of the region-level test resulted in the 
identification of 1661 significant differentially methylated genes, 
which were common in both (C vs. N1) and (C vs. N2) compari-
sons. This number represents the sum of all unique gene names 
that resulted from six different, separately analyzed, gene catego-
ries: 5'-UTR (523 genes), TSS1500 (576 genes), TSS200 (633 
genes), first exon (680 genes), gene body (339 genes) and 3'-UTR 
(203 genes) (Fig. 2A; Table S2).

peak corresponds to highly or fully methylated probes with a 
β-value close to 1.

Before correction, the peaks associated with the InfII probes 
were found to have a decreased quantitative dynamic range over 
less extreme values. After peak correction, the density plots asso-
ciated with InfI and InfII were found to be more similar. During 
the subsequent calculations of differentially methylated regions, 
the corrected β-values for the InfI and InfII probes had a ran-
dom, unbiased distribution in the compared groups. In contrast, 
using uncorrected data led to the enrichment of the InfI probes, 
which had a greater dynamic range (data not shown).

Analysis of variability in the methylation data. We tested 
different approaches to estimate the most significant source of 
variability in the methylation data from the clinical samples: 
multivariate ANOVA, principal component analysis (PCA) and 
pairwise Spearman’s correlation. Of these, we used a multivariate 
ANOVA test because we expected that more than two dependent 
variables could be associated with the differences in methylation 
levels, including tissue type (cancer vs. normal), person-to-person 
variation, patient sex and chip-to-chip variation (batch effect).

Because sex chromosomes are highly methylated, we per-
formed two variations of the test. The first test was based on the 
full set of data and the second test was based on data from which 
the β-values of the sex chromosomes were excluded. Figure 1A 
shows that “tissue type” and “sex” were the most significant 
sources of variation before the sex chromosome methylation data 
were filtered. The results from the multivariate ANOVA test 
based on autosomal β-values clearly show that tissue type is the 
main source of variability in the methylation data (Mean F Ratio 
8.7), while the mean F ratio of the variability of other sources is 
still quite low.

Considering this finding, we excluded all sex chromosome 
markers from the subsequent analysis of differential methyla-
tion in CRC and control samples. In summary, after the initial 
data normalization, peak correction and filtering of sex chromo-
somes β-values, the number of analyzed CpG sites in our data set 
remained 444 888 for each type of clinical sample.

The subsequent principal component analysis executed on 
444 888 CpGs per data set suggested a clustering of samples by 
pathological status (tissue type) (Fig. 1B). The plot of the first 
two components can explain approximately 46% of the variation 
observed. As follows from Figure 1B, samples from cancerous 
(N1) and non-cancerous (N2) normal tissue form dense clusters 
in accordance with methylation status; this process is in contrast 
to the more spatially distributed values for the pathological tissue 
samples (C).

To detect cluster similarities based on the different methyla-
tion statuses in the samples, we performed a pairwise Spearman’s 
correlation between all possible pairs in the clinical samples. 
The calculated values of the correlation coefficient (0.8 to 1) 
directly corresponded to the similarity of the compared samples  
(Fig. S2). A colored heatmap visualization of Spearman’s cor-
relation data and the sample clustering data are presented in  
Figure 1C. Similar to the PCA-based plot, these data show a dis-
tinct cluster of highly correlated healthy tissue samples and more 
variability by methylation groups related to cancer tissue samples. 
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Figure 1. For figure legend, see page 925.
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CpG island tests and identifying the genes located in the islands, 
shores, and shelves. Figure 2B shows the numbers of differen-
tially methylated genes found using identical criteria (absolute 
delta β = 0.2 at FDR 0.05) in the site-level, gene-based and CpG 
island-based tests.

There were at least 896 common genes identified using all 
compared methods (central intersection in the Venn diagram, 
(Fig. 2B). The identification of this set of genes using various 
methods suggests that the genes are actually differentially meth-
ylated in CRC tissue compared with the N1 and N2 samples.

Finally, to establish a ranked list of DMRs within the results, 
we sorted our data according to the magnitude of differences 

A CpG island-based variant of the region-level test was con-
ducted in the same manner, resulting in 1488 DMRs located in 
CpG islands, 532 and 413 DMRs located inside the north and 
south shores, respectively, and 335 and 316 DMRs distributed in 
the north and south shelves, respectively (Table S3). In total, this 
test resulted in 2405 unique DMRs distributed among the five 
CpG-related regions (Fig. 2A).

All primary data on DMRs calculated using the site-level, 
gene-based region-level and CpG island-based region-level tests 
are presented in the Supplemental files.

We compared the DMR data obtained using different meth-
ods by mapping the positions identified in the site-level and 

Figure 1 (See opposite page). Variation in methylation data. (A) Bar chart of methylation in the analyzed samples estimated using multivariate ANOVA. 
Blue bars show the results for all analyzed CpG sites included in the array; violet bars indicate results only for autosomal CpGs. The F-ratio for each factor 
(source) represents the F-statistics for that factor/F-statistics for error (noise). After removing sex chromosomal markers, the main source of variability 
in the methylation data are associated with tissue type (tumor vs. normal). (B) The first two principle components identified in PCA of DNA methylation 
profiles distinguished tumor samples from healthy colon samples in the autosomal data set. Red dots indicate tumors (C); blue triangles indicate normal 
colon samples from patients with CRC (N1); green squares indicate normal colon samples from healthy donors (N2). Both N1 and N2 form dense clusters, 
while the methylation profiles in CRC samples are more variable. (C) Heatmap of Spearman’s correlations and hierarchical clustering between all pos-
sible sample pairs based on all autosomal CpG sites. Normal samples are highly correlated in contrast to low correlation between N1 and CRC samples.

Figure 2. Genomic distribution of differentially methylated regions. (A) DMRs identified by site-level (CpGs) and region-level (gene- and CpG island-
based categories) variants based on an analysis of differential methylation status. (B) Venn diagram of the intersection between DMRs identified using 
different methods. (C) Stacked bar charts showing the distribution of the hypermethylated and hypomethylated CpG sites over six gene categories: 
TSS1500, TSS200, 5' UTR, 1st exon, gene body, 3' UTR, and intergenic regions. For categorization, the CpG counts were normalized by the number of 
CpGs in the same category represented on the 450K array. The percentage of normalized CpG counts is indicated in the bars. (D) Stacked bar charts 
showing the distribution of the hypermethylated and hypomethylated CpG sites over CpG islands, CpG shores, CpG shelves, and Open Sea regions. 
For categorization, the CpG counts were normalized by the number of CpGs in the same category represented on the 450K array. The percentage of 
normalized CpG counts is indicated in the bars.
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in DNA methylation status among sample 
groups (β differences) and the statistical 
significance (adjusted P values). A volcano 
plot graphically represents the distribution 
of significant CpG sites from the site-level 
test sorted by B-differences and P values 
(Fig. S4).

Table 2 lists the 20 top-ranking mark-
ers identified by site- and region-level vari-
ants in the IMA test. The table contains 
36 unique genes, five of which (ADHFE1, 
C1orf70, CHST2, MSC, and ZNF625) 
were identified using all three methods. 
These 36 genes were significantly hyper-
methylated in CRC, and 28 of them were 
previously reported to have altered DNA 
methylation patterns in CRC.8,17-20 Eight 
of the top ranked genes (SND1, OPLAH, 
C1orf70, MIR124–3, C9orf50, ZFP64, 
DPY19L2, and ZNF829) have no published 
data on their methylation status in cancer 
development.

A direct comparison of these methods 
may not be accurate due to several limita-
tions that are related to the averaging of 
the methylation data and gene mapping. 
Such an approach may incorrectly identify 
CpG sites that are outside the gene regions 
or CpG sites corresponding to different 
regions of different genes. Additionally, it 
is not always possible to correctly identify 
gene categories in the island-level IMA-R 
test. Moreover, multiple probes for the same 
gene can be both hyper- and hypomethyl-
ated in different gene regions. For example, 
in our CRC data set, the 34 probes located 
in the 5'UTR, TSS200, and TSS1500 
regions of EYA4 were significantly hyper-
methylated, while 2 probes that hybridized 
to the gene body region showed hypometh-
ylated statuses. Of the 3152 total DM genes 
identified using the site-level test, 444 show 
both types of methylation differences.

The IMA-R approach to average the 
methylation values for the CpG sites located 
in the extended gene regions can also lead 
to either bias or data loss. In contrast to the 
site-level test, the region-level IMA-R test 
failed to identify some well-known meth-
ylation sites in CRC genes (i.e., SEPT9, 
SMAD3, TCF7L, and IGF2).17,21-23 In sub-
sequent steps, we thus focused on the CpG 
site-level methylation data analysis (15,667 
CpGs) and considered the above-men-
tioned limitations of data representation at 
the gene level.
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GREAT v 2.0. and Gene Set Analysis Toolkit V2.24,25 Using the 
basal+extension associations rule, we mapped hypermethylated 
CpG sites to the nearest genes on the GREAT web server using 
the following parameters: constitutive 1.0 kb upstream, 1.0 kb 
downstream and up to 1.0 kb max extension. An analysis of the 
1229 hypermethylated genes revealed the significant enrichment 
of multiple modules in various GO terms (Table S5). For the list 
of analyzed genes, if we used “molecular function” for categori-
zation, then we observed that the most enriched groups include 
DNA binding, transcription factor activity and large module 
of “channel activities” functional categories. Categorization by 
“biological process” showed significant enrichment for devel-
opmental and cell differentiation activities, and the “cellular 
component” category enrichment test indicated that proteins 
encoded by analyzed genes mainly associate with plasma mem-
branes. These data are consistent with the findings from recently 
published CRC methylation studies. Significant enrichment 
of hypermethylated genes for DNA binding and transcription 
factor activity categories has been shown in studies that used 
the previous version of the Illumina HumanMethylation array 
(27K).17,18 The similar findings as well as enrichment for chan-
nel activity GO categories have been described in a recent CRC 
genome-wide methylation sequencing study by Simmer et al.26 
At the same time, there are rather modest relationships between 
results of GO enrichment analysis for DNA methylation and 
published gene expression data in CRC. For “biological process,” 
two general GO categories (multicellular organismal process 
and anatomical structure developmental) were consistently over-
represented in our gene list compared with data from a recent 
systematic enrichment analysis of gene expression in CRC 
development.27

Pathway-based analyses showed a significant enrichment for 
genes involved in the Wnt and Cadherin signaling pathways and 
for genes that play a role in neuroactive ligand-receptor interac-
tion, the calcium signaling pathway and cell adhesion processes. 
Among them, the Wnt and cadherin-signaling pathways attracted 
more attention. In addition to mutations in Wnt pathway com-
ponents, the silencing of Wnt antagonists by DNA hypermeth-
ylation was confirmed for CRC and other cancers (human 
medulloblastoma and pancreatic adenocarcinoma).28-30 One of 
the key components of the WNT signaling pathway, β-catenin, 
also functions as a component of the cadherin complex. The cad-
herin gene family encodes proteins that control cell-cell adhe-
sion and influence cell migration, and they are also known to be 
involved in colorectal carcinogenesis.31

In summary, the network analysis of DM CpG sites shows 
a significant enrichment for GO and pathway categories altered 
in CRC and other cancers, providing evidence that methylation 
changes in these sites are biologically meaningful. In turn, the 
substantial predominance of hypermethylated CpG sites in the 
promoter regions and 1st exon categories, as well as the enrich-
ment of hypermethylated CpG sites in CpG islands, suggest the 
potential prevalence of gene inactivation mechanisms in CRC 
development. Most hypomethylated CpG sites are located in 
open sea and shelf regions, implying a potential role for CpG 
methylation in genomic instability.

Genomic distribution and functional annotations of differ-
entially methylated CpG sites. Of the 15 667 DM CpGs iden-
tified in the site-level test, 10 962 (70%) were mapped to 3152 
genes. The genomic and gene-related regions of the significantly 
hyper- or hypomethylated CpG sites are distributed differently. 
For comparison, we normalized CpG counts by the number of all 
CpGs in the same gene category represented on the 450K array. 
Figure 2C shows that the largest portion of hypermethylated 
CpGs (25.9%) were located in the 1st exon of the genes and sub-
sequently decreased in other categories (18.8%, TSS200; 17.0%, 
5'UTR; 14.4%, TSS1500; 11.5%, Intergenic regions; 8.6%, 
Gene body and 3.8% in 3'UTR). In contrast, almost a third 
(30.6%) of the significantly hypomethylated CpG sites were not 
associated with known genes, while the rest were mainly located 
in gene body (16.5%) and 3'UTR (14.3%) regions and, to a lesser 
extent, in other gene categories. The distribution analysis of sig-
nificantly differentially methylated CpG sites in genomic regions 
showed that 56.5% of the hypermethylated CpG sites are in 
CpG islands and that fewer are in the north (20.9%) and south 
(16.3%) CpG shores or the north (2.6%) and south (2%) CpG 
shelves (Fig. 2D). In contrast, significantly hypomethylated CpG 
sites are more common in the open sea (36.7%), north (33.5%) 
and south (36%) CpG shelves than in other genomic regions.

Table S4 lists additional biological characteristics and classifi-
cations of differentially methylated CpG sites that we identified 
in accordance with the array manufacturer’s annotated features. 
A substantial portion of these CpG sites are located within 
annotated regulatory elements and significantly enriched for 
informatics-predicted enhancers (4604 CpGs), DNase I hyper-
sensitive sites (4083 CpGs), and unclassified cell type specific 
regulatory elements (2276 CpGs). More than 29% (4614/15 667) 
of the differentially methylated CpG sites that we found coin-
cided with annotated DMRs. Nevertheless, the distributions of 
hypermethylated and hypomethylated CpG sites in these catego-
ries were asymmetrical. Hypermethylated CpG sites constitute 
24.2% of all array-annotated DMRs, whereas hypomethylated 
sites constitute only 0.8%. The prevalence of hypermethylated 
to hypomethylated CpGs was also observed in categories of 
DNase I Hypersensitive sites (3502 to 581 CpGs) and unclassi-
fied cell type specific regulatory elements (1971 to 305 CpGs). 
The ratio was different only in the predicted enhancers category 
wherein the number of hyper- and hypo-methylated CpG sites 
was approximately equal (2241 to 2363), but enrichment was 
significant only for hypomethylated CpG sites (P = 3.30E−15). 
Considerable enrichment of the hypomethylated CpGs for pre-
dicted enhancers may suggest possible transcriptional activities 
of the corresponding genes. In addition to the biological charac-
teristics, Table S4 shows the unbiased distribution of DM CpGs 
identified by InfI and InfII probes (4715/10 952 [43.05%]) when 
compared with the ratio of the total InfI and InfII probes repre-
sented on the array (135 501/350 076 [38.7%]), indicating effec-
tive data normalization.

In the next step, we analyzed the possible over-representation 
of some gene ontology (GO), Panther Pathway and KEGG 
Pathway database categories among the identified hypermethyl-
ated genes. The analysis was performed using the web-based tools 
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combined set of all unique DM CpG sites that we identified in 
sample pairs, hypermethylation slightly predominated over hypo-
methylation. Despite the great variability of methylation at the 
individual level, some DM CpG sites occurred more frequently 
in the sample pairs: at least 11 DM CpG sites are common to 
all 22 pairs, while many more are shared between fewer pairs  
(Table S8).

In a recently published study that assessed the recurrent status 
of DMR, “support” (a variable defined as the number of tumors 
in which a region was differentially methylated compared with 
the matched normal tissues) was calculated using a paired test.26 
In our study, the support values of the DM CpG sites are integers 
between 0 and 22, as 22 paired samples were analyzed. To set 
up the threshold value for support, we approximated the experi-
mental distribution of the support value using a binomial distri-
bution with parameters n = 22, P = 0.045 (see Methods). After 
Bonferroni correction, we established a minimal support value 
of 10 as being statistically significant. Therefore, the DM CpG 
sites identified using our paired test were defined as statistically 
significant if they were common to at least 10 paired samples. In 
total, 14 499 hypermethylated and 15 539 hypomethylated CpG 
sites that were common in sample pairs and had support values 
of 10–22 were selected (Table S9). There is a clear tendency of 
the proportion of hypermethylated sites to increase in CRC with 
increasing support values compared with normal tissue, whereas 
large fractions of CpGs with lower support values can be either 
hyper- or hypomethylated (Table S8; Fig. S6). The same direct 
relationship was noted by Simmer et al.,26 who suggested that 
hypermethylated CpG sites with high support may have a com-
mon functional role in the tumors. The more heterogeneous and 
sample-specific CpG sites are likely to be sporadic.

Several studies on the variability of methylation in CRC 
showed that a subset of the cancers named CpG island methylator 
phenotype (CIMP) are associated with high degrees of aberrant 
methylation at a specific set of genomic loci.33,34 CIMP cancers 
seem to have distinct epidemiology, histology, and molecular fea-
tures and can significantly contribute to the molecular heteroge-
neity of CRC.35 We analyzed our tumor samples for CIMP status 
using a five-locus marker panel (RUNX3, SOCS1, NEUROG1, 
IGF2, and CACNA1G) proposed by Weisenberger et al.34 Tumor 
samples demonstrating hypermethylation (β-value > 0.8) in the 
TSS200 region in at least 3 of the 5 loci were classified as CIMP-
positive. Only 2 of the 22 CRC samples (93p2 and 88p2) met 
this criterion, consistent with published findings demonstrating 
a low frequency (3–12%) of CIMP variants in the distal colon 
and rectal cancers.36,37 Both 93p2 and 88p2 had a large number 
of DM CpG sites (100 731 and 80 961, respectively). At the same 
time, they were negative for somatic mutations in KRAS and 
BRAF genes that are frequently found in CIMP-positive CRC 
samples.38

Finally, we assessed the possible relation between DNA meth-
ylation in CRC and available data for somatic mutations and 
clinicopathological characteristics. The combined data on the 
molecular heterogeneity of the pathological samples and available 
clinical traits are listed in Table S10. PCA and hierarchical clus-
tering based on the DNA methylation profiles were performed 

Methylation features in normal tissue from CRC patients 
and healthy donors. Initially, we used two variants of normal 
tissue, CRC-related tissue (N1) and healthy donor tissue (N2), 
to evaluate possible differences in gene methylation related to 
field cancerization. Previously, marked differences in gene meth-
ylation levels between people with and without colon neoplasms 
have been shown for a number of genes,13-16 although our data 
analysis did not reveal much difference. Principal component 
analysis (PCA) executed on the whole data set showed a clus-
tering of samples by pathological status but little substantial 
variances between N1 and N2 tissues (Fig. 1B). The results of 
the PCA analysis on normal only samples (N1 and N2) showed 
significant, but small, differences in their methylation status  
(Fig. S5). Nevertheless, no differentially methylated regions were 
found to be significantly associated with methylation differences 
using the IMA-R test (abs. delta β-value > 0.2 at FDR 0.05). 
Given that most of the published field effect genes are hyper-
methylated in CRC, less methylated in CRC-related normal tis-
sue and least methylated in the cancer-free control, we decided 
to more thoroughly review the pattern in the methylation values 
of previously identified DM CpG sites in the three data sets. We 
used a filter to sort the significantly hypermethylated sites with a 
sequential decrease in methylation in the C→N1→N2 direction 
and at least a 0.1 β difference between each group (Δβ ≥ 10

C−N1
, 

Δβ ≥ 10
N1−N2

). As a result, we generated a list of 284 CpG sites 
located in the 5'UTR, TSS200, TSS1500, and 1st exon regions 
of 171 genes (Table S6).

Of these 171 genes, at least four, NEFM, SFP1, WIF1, and 
ESR1, have been published previously as “field effect” genes. 
NEFM encodes a neurofilament medium polypeptide that was 
shown to have increased methylation levels in individuals with 
both past and present H. Pylori infection in a recent study on 
gastric cancer.32 SFRP1 is one gene that is commonly methyl-
ated and silenced in CRC. For SFRP1, Belshaw et al.13 showed 
age-dependent methylation in normal colon mucosa and found 
differences in gene methylation levels between people with and 
without CRC. In the same study, significant epigenetic modifica-
tions in apparently normal mucosa were also shown for the genes 
WIF1 and ESR1. Most of the genes identified (102, Table S6) are 
known to be frequently methylated in CRC, although their role 
in the field cancerization remains unclear.

Molecular heterogeneity of pathological samples. Figure 1B 
shows a PCA score plot for the methylation statuses of all ana-
lyzed CpG sites; these data show that the pathological samples 
are more variable than either N1 or N2. To evaluate the extent 
of variability among the pathological samples, we calculated the 
methylation differences in each of the 22 cancer and adjacent 
normal tissue pairs with absolute values of β-differences greater 
than 0.2 (see Methods). In contrast to the site-level IMA-R test, 
the number of DM CpG sites identified in each sample pair var-
ied greatly, with values ranging from 2058 to 100 731. A direct 
comparison of these tests showed that only 13 to 44 percent of 
the 15 667 core CpG sites overlapped with the sites found in the 
paired test. Moreover, hypomethylated CpG sites in 18 of the 
22 pairs appeared to be more common than hypermethylated 
CpGs in the CRC tissue samples (Table S7). Nevertheless, in the 
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the controls (P < 0.05; Table 3). The highest discriminative accu-
racy was shown by cg09296001, located in SND1 (AUROC = 1, 
CI 1–1); other candidate markers also achieved particularly high 
diagnostic accuracy (AUROC > 0.8, P < 2.2 × 10−16; Table 3;  
Fig. S10). We also compared the diagnostic accuracy of indi-
vidual CpG markers and the combined multi-locus methylation 
panel based on a multiple logistic regression of all 14 selected 
CpG sites. However, the use of the multi-locus methylation 
panel did not improve the discrimination of CRCs from healthy 
colon tissue relative to the best-performing single locus mark-
ers (AUROC = 0.981; 95% CI: 0.9677–0.9939; 100% sensitivity 
and 82% specificity). Finally, we tested the clusterization of all 
pathological and normal samples using the PCA of the reduced 
set of CpG sites, consisting of only 14 selected markers (Fig. S11). 
The PCA analysis results showed a clear separation of pathologi-
cal and normal samples into two independent clusters, which also 
confirms the discriminating ability of selected CpG sites.

Discussion

Since the first epigenetic alteration in CRC was described nearly 
three decades ago by A.P. Feinberg and B. Vogelstein, colorectal 
cancer remains one of the most studied models in the field of 
DNA methylation research.42 In fact, due to its large methyla-
tion variability, CRC is a suitable first choice for benchmarking 
numerous experimental methods developed for genome-wide 
DNA methylation mapping. Although CRC methylation studies 
use a variety of genome-scale sequencing approaches, the applica-
tion of methylation array technologies was limited, until recently, 
by relatively small genome coverage. To evaluate the diversity of 
methylation in CRC at the genome-scale level, we used a new 

to categorize the CRC samples into different subgroups. Stable 
clusters were obtained for CRC samples with a CIMP-positive 
phenotype, but they were not obtained for other traits (Fig. S7). 
Although a weak trend in clustering according to the PCA plot 
based on histological grades was observed, there were no clear 
correlations with other clinical (e.g., tumor stage, sex, age) or 
molecular (mutations) data (Fig. S8). No regions were found to 
be significantly associated with the suggested histological grade 
differences (low vs. moderately differentiated) at the gene level.

Selection of diagnostic markers. Hypermethylation of CpG 
islands is a promising biomarker that shows high potential for 
translation into non-invasive CRC detection approaches.39 Some 
methylation markers are already being used in clinical prac-
tice. Among them, stoolbased methylated vimentin (VIM) and 
bloodbased methylated septin (SEPT9) are considered to be 
non-invasive, clinically validated markers for the early detection 
of CRC.40,41 Despite the considerable variability in methylation 
associated with CRC, we decided to screen our data for potential 
markers that discriminate well between CRC and healthy tissue. 
We applied filtering criteria to our list of the 15,667 DM CpG 
sites found in the site-level group differences test to select can-
didate CpG sites with large and replicable differences in meth-
ylation levels. We selected CpG sites according to the following 
criteria: (1) sites that were hypermethylated in cancer samples 
and the β-difference between tumors and adjacent tissues (N1) 
were greater than 0.4; (2) sites showing no significant methyla-
tion differences between N1 and N2; (3) sites with Information 
Gain = 1 in which no methylation level overlapped between 
CRCs and healthy tissue samples (i.e., the minimal β-values of 
the hypermethylated sites in CRC were greater than the maxi-
mum β-values for the same sites in the normal tissue, and vice 
versa); (4) sites with a mean methylation level in healthy tissue 
less than 0.25; and (5) sites with support values greater than 10.

After filtering, we selected a list of 14 CpG sites that 
matched these criteria: cg19283840, cg01588438, cg18065361, 
cg16306898, cg08090772, cg15487867, cg06319475, 
cg09383816, cg09296001, cg26256223, cg07990546, 
cg25480336, cg16993043, and cg27546237. These mapped to 
8 known genes: ADHFE1, C1orf70, SND1, OPLAH, TLX2, 
ZFP64, NR5A2, and COL4A. Box plots showing the distribution 
of β-values of selected CpG sites are shown in Figure S9A. The 
methylation values of the selected CpG sites were used to develop 
a diagnostic model based on classifying CRC and healthy tissue. 
An Information Gain estimation, creation and validation model 
were performed in R software, as described in the Methods.

Next, we analyzed selected CpG sites and evaluated our model 
on a publicly available external methylation data set of 209 colon 
adenocarcinoma and 38 normal colon samples from The Cancer 
Genome Atlas (TCGA, http://tcga.cancer.gov/). The methylation 
status of these samples was determined using the same version of 
the 450K methylation array. CRC-associated hypermethylation 
without overlapping methylation values in the corresponding N1 
samples was observed at all 14 selected CpG sites (Fig. S9B). The 
specificity and sensitivity of the methylation levels were evaluated 
using receiver-operator curve (ROC) analysis. The methylation 
levels at all CpG sites significantly distinguished the CRCs from 

Table 3. The most informative CpG sites selected as potential biomark-
ers

CpG ID Gene AUROC AUROC CI
Support (com-

mon in pairs 
with Δβ > 0.4)

cg09296001 SND1 1.000 1–1 15

cg26256223 OPLAH 0.999 0.9973–1 15

cg08090772 ADHFE1 0.998 0.9958–1 13

cg16306898 TMEM240 0.997 0.9915–1 16

cg06319475 NA 0.995 0.9875–1 14

cg16993043 NR5A2 0.995 0.9872–1 10

cg15487867 TMEM240 0.994 0.9861–1 16

cg19283840 ADHFE1 0.991 0.9788–1 15

cg09383816 ADHFE1 0.991 0.9788–1 16

cg18065361 ADHFE1 0.991 0.9775–1 15

cg01588438 ADHFE1 0.990 0.9771–1 17

cg07990546 TLX2 0.974 0.9546–0.9928 13

cg27546237 COL4A1 0.967 0.9459–0.9878 14

cg25480336 ZFP64 0.919 0.8849–0.9532 14
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hypomethylated (5,325, 34%), which is in agreement with the 
proportions observed in previous CRC genome-scale meth-
ylation studies.4,8,17-19,26,47 Many of the differentially methylated 
CpG sites in our data set (34.8%) are located in the CpG islands 
or, if displaying their positions in corresponding genes, in the 
1st exon (21.0%) and 5'UTR (15.9%) regions. CpG sites in the 
CpG islands, the 5'UTR and the 1st exon regions were more 
likely to be hypermethylated than sites outside the CpG islands  
(Fig. 2C and D). These data are consistent with the findings from 
recently published array-based CRC methylation studies,26,47 
although initially we expected to see a substantial portion of the 
methylation variations in CpG shores, as was shown by Irizarry 
et al.8 It is interesting, however, that the CpG sites common to 
the maximum number of “cancer-normal” pairs identified using 
a stringent paired test (support > 10) were similar in that they 
were mainly hypermethylated. Furthermore, hypermethylated 
CpG sites are better enriched for known DMRs annotated on the 
array. Gene Ontology and pathway analysis showed a significant 
enrichment of the genes containing hypermethylated CpG sites 
that were related to transcription factor activities and to develop-
mental and cell differentiation processes and that were involved 
in the Wnt and Cadherin signaling pathways. These facts sug-
gest that DNA hypermethylation is a common feature of CRC 
and that at least some of the top ranking high-confidence hyper-
methylated CpG sites most likely have a pathogenic role in the 
formation of cancer (i.e., are driving epimutations). In contrast, 
the hypomethylated CpG sites preferentially localize in open 
seas and show great diversity between samples, and their repre-
sentation among the set of CpG sites common to CRC is small, 
which suggests that they are merely a consequence of pathologi-
cal processes. The absence of matching expression analysis in 
our study did not allow us to further clarify these assumptions, 
although the analysis of published data shows a rather low con-
nection between aberrant DNA methylation and gene expression 
in CRC.47,48

The use of a new, high-content methylation array allowed us 
to identify a considerably larger number of differentially methyl-
ated regions in CRC than was previously possible. Some of the 
most significant and robust of these sites could be considered 
candidates for methylation-based CRC diagnostics. In sum-
mary, all CpG sites with significant differential methylation 
after filtering for technical artifacts (related to probing for cross-
hybridization in repetitive DNA regions and SNP-containing 
probes) mapped to 3152 genes. Of these genes, 60% (1910) were 
previously reported to have altered DNA methylation patterns 
in CRC, and recently published data from the Cancer Genome 
Atlas project identified an additional 654 genes that are associated 
with CRC tumor aggression.4 A large fraction of the differentially 
methylated genes that we identified (1242) are not known to be 
CRC-related. Even considering known issues related to statistical 
significance and data representation at the gene name level, quite 
a large number of genes that were not previously associated with 
CRC were identified. These genes include several top ranking, 
high-confidence genes with large differences in β-values: SND1, 
OPLAH, C1orf70 (TMEM240), C9orf50, MIR124–3, ZFP64, 
ZNF829, and DPY19L2, whose functional role in CRC is the 

version of the lllumina HumanMethylation450 array to analyze 
DNA methylation profiles in 22 sample pairs of CRC tumors 
and adjacent tissues and in 19 colon tissue samples obtained from 
healthy donors. These two variants of healthy samples allowed us 
to eliminate possible inter-individual variation and test various 
statistical approaches for analyzing methylation data.

First, we showed that irrespective of the data processing 
methods used, the methylation profiles of tumors and healthy 
tissue samples could be clearly distinguished from one another. 
Although a growing knowledge base exists regarding tissue- and 
cancer-specific DNA methylation, we still have little informa-
tion concerning person-specific DNA methylation and its pos-
sible impact on correctly assessing the pathological status of the 
patient. Several recent reports that focused on inter-individual 
variability did not provide a sufficiently unambiguous answer on 
this issue, mainly due to the inclusion of healthy subjects in the 
studies.43-46 In addition, inter-individual variability in cancer-spe-
cific DNA methylation experiments could be an artifact related 
to the field cancerization effect. Our results showed that DNA 
methylation patterns were largely conserved across normal colon 
tissues from CRC and healthy subjects; although we have identi-
fied a number of genes potentially involved in the field effect, 
their total impact on methylation in normal tissue is rather low. 
The involvement of several of these genes in field cancerization 
has been previously shown, although the involvement of other 
such genes is the subject of further research. Even minor meth-
ylation variability should be considered for robustness and accu-
racy in the course of cancer biomarker optimization; during 
this process, it is important to select CpG sites that demonstrate 
small amounts of inter-individual variation but strong variation 
between the cancer and control groups.

Because no universally accepted methodology exists for ana-
lyzing Infinium methylation arrays, we used different statistical 
approaches to evaluate the methylation data. The IMA-R soft-
ware included several tests based on a general linear model and 
could be used to infer methylation changes associated with a 
continuous covariate.12 Alternatively, the paired test was used to 
identify CpG sites that were differentially methylated between 
CRC tumors and adjacent healthy colon tissue. There is consid-
erable overlap between the results obtained using either method. 
The paired test is better at assessing the diversity of methyla-
tion at the individual “cancer-normal” samples level, while the 
IMA-R test is better suited to comparing the average methyla-
tion values between clinical groups and can efficiently identify 
common, group-specific methylation patterns. The redundancy 
of the paired test can be overcome though the use of “support,” 
an additional variable calculated based on the number of sam-
ple pairs with common methylated CpG sites, as proposed by 
Simmer et al.26 An extra data-filtering step with a support value of 
10 after the paired test gives results comparable to those obtained 
using a site-level IMA test.

In general, at the CpG site level, we found that common 
CRC-specific methylation patterns consisting of at least 15 667 
CpG sites were significantly different from those of the healthy 
tissue samples. Most of the common CpG sites in the CRC 
tumor tissues were hypermethylated (10 342, 66%) rather than 
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to be upregulated in liver metastases of colorectal carcinoma.57 
NR5A2, also known as LRH-1, belongs to the nuclear receptor 
subfamily 5 and is associated with intestinal tumorigenesis in 
mouse models.58 Finally, nucleotide polymorphisms near NR5A2 
have been shown to be associated with pancreatic cancer in a 
genome-wide association study, suggesting a role for NR5A2 in 
tumorigenesis.59 While the functional significance of methyla-
tion in selected genes has not been studied, most of these genes 
are associated with different types of cancer to some extent.

In terms of clinical importance, epigenetic alterations are 
considered to be promising markers for the early detection, diag-
nosis, prognosis and management of patients with cancer. With 
respect to the use of methylated CpGs as biomarkers specifically 
for CRC, the most advanced uses are as DNAbased non-invasive 
CRC screening assays. Hypermethylation of promoter regions in 
CRC occurs early in some genes, and these regions are promis-
ing candidates for early detection markers. These markers can be 
used with biopsy samples obtained during endoscopy. Tumor-
specific DNA could be present in the bloodstream, and cancer 
cells and DNA could be present in the feces, both of which pres-
ent opportunities for the development of non-invasive tests. The 
first commercially available non-invasive tests for CRC diagnosis 
that are based on the analysis of methylation in VIM and SEPT9 
genes and are already being used.40,41

With respect to the our set of candidate markers, further vali-
dation studies of an independent cohort using alternative tech-
niques of testing for selected markers in different sample types 
(such as stool- and plasma-based variants) are needed to evaluate 
the frequency and possible clinical value of hypermethylation in 
CRC. Despite these limitations, we were able to use these meth-
ylated sites to successfully distinguish CRC tissues from healthy 
tissues using the large external TCGA methylation data set with 
only minor misclassifications (AUROC > 0.88). This result sug-
gests a strong diagnostic potential for the tested markers, and 
we hope that they are potentially applicable in improving early 
CRC diagnosis. Our use of the TCGA data set allowed us to 
enhance and compare our methylation marker discovery protocol 
to known CRC risk factors. Some well-known genes, including 
SEPT9, HLTF, and VIM, have been widely discussed in the con-
text of CRC diagnostics but were not found to be good markers 
in our study. These genes showed rather modest, though sig-
nificant, differences in methylation (Δβ 0.2–0.3), but were not 
included in the diagnostic set due to overlapping methylation 
values between CRCs and healthy tissue (information gain < 1).

Our study possesses some limitations due to the cohort size 
and insufficiency of some clinical characteristics. We found no 
significant associations between methylation and tumor stage, 
sex and age, except for a trend in the differences associated with 
the histological grade of tumors. Because most of the tumors 
used in our study were derived from a prospective collection, 
survival data are not available. We believe, however, that epi-
genetically related molecular heterogeneity in CRC may serve 
both as a source for early tumor marker selection and as a factor 
responsible for the substantial variability in treatment response 
among patients; it could thus be used as a tool for assessing tumor 
aggressiveness.

subject of further research. Three of these, SND1, OPLAH, and 
ZFP64, are included in the prototype of the diagnostic panel. 
All 14 CpG sites included in this group were additionally veri-
fied using different statistical approaches, confirming that their 
identification was not coincidental. Simultaneously, their cross-
validation against an external methylation data set from TCGA 
shows the reliability and reproducibility of the methylation dif-
ferences identified in the array and confirms the high discrimina-
tive potential of the selected markers.

There is little information on the possible role of the selected 
markers in CRC pathogenesis. The highest discriminative accu-
racy was shown by the cg09296001 CpG site located in SND1. 
SND1 encodes the staphylococcal nuclease domain-containing 
protein, which is a multifunctional protein that modulates tran-
scription, mRNA (mRNA)-splicing, RNA interference (RNAi) 
function, and mRNA stability.49 The upregulation of SND1 has 
been detected in numerous human tumors, including breast 
cancer, prostate cancer, hepatocellular carcinoma and colon 
cancer.50,51 The high impact of SND1 co-expression with cyto-
plasmic metadherin (MTDH) as a poor prognostic predictor in 
colorectal tumor was shown in a recent study by Wang et al.52 
However, the possible epigenetic mechanisms by which SND1 
expression is regulated remain unknown. Our results showed 
that most of the differentially methylated CpG sites in SND1, 
including selected marker cg09296001, were located in the gene 
body. In contrast, methylation in the promoter region was low, 
as in CRC and in normal samples, and does not contradict with 
gene overexpression.

Five CpG sites in our selected panel were found that are located 
in the TSS200 region of ADHFE1, a gene that encodes iron-con-
taining alcohol dehydrogenase, an enzyme responsible for the 
oxidation of 4-hydroxybutyrate in mammals.53 The hypermeth-
ylation of the ADHFE1 promoter in colorectal cancer has recently 
been demonstrated in studies using the HumanMethylation 27 
array.18,19 An inverse correlation between methylation and gene 
expression was observed for ADHFE1 in the work of B. Oster et 
al.,19 while hypermethylation in cancer samples was confirmed by 
pyrosequencing in the study of Kim et al.18 Despite these studies, 
the functional role of ADHFE1 in CRC pathogenesis remains 
unclear.

For the genes OPLAH, TMEM240, TLX2, NR5A2, COL4A1, 
and ZFP64, even less data regarding methylation and colorectal 
cancer are available. OPLAH encodes 5-oxoprolinase, an enzyme 
responsible for glutathione synthesis and degradation; OPLAH 3' 
region hypermethylation has been reported as example of a shared 
feature in some tumors.54 TMEM240 encodes the transmem-
brane protein 240 gene and was found to have seven differen-
tially methylated CpG sites in our data set. Of these, cg15487867 
has been recently described as a significant site for distinguish-
ing hepatocellular carcinoma.55 TLX2 encodes a crucial factor 
for enteric nervous system development, and it has been shown 
that TLX2 loss-of-function may play a role in the tumorigenesis 
of gastrointestinal stromal tumors.56 The hypermethylation of 
COL4A1 in CRC samples was reported by Kibriya et al., but the 
functional role of methylation remains unclear.17 ZFP64 (Zinc 
finger protein 64 homolog) was confirmed by proteomic analysis 
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Kit, as described by the manufacturer. DNA quantification was 
performed using a Qubit® 2.0 Fluorometer (Invitrogen). The 
bisulfite conversion of DNA was conducted using the Zymo 
bisulfite gold kit. The Infinium Methylation 450K assay was 
performed according to Illumina’s standard protocol. Processed 
methylation chips were scanned using an iScan reader (Illumina). 
Paired samples (CRC and corresponding healthy tissues) were 
processed on the same chip, and all samples were processed at the 
same time to avoid chip-to-chip variation.

Data quality control and preprocessing. Infinium 
Methylation data were processed using the Methylation Module 
of the GenomeStudio software package (v. 2011.1). For quality 
control, methylation measures with a detection P value > 0.05 and 
samples with a CpG coverage < 95% were removed. Ultimately 
all 63 samples passed the coverage criteria. The data were ini-
tially normalized using internal controls in the GenomeStudio 
software. The methylation levels of CpG sites were calculated 
as β-values (β = Intensity [methylated]/intensity [methylated + 
unmethylated]). The data were further normalized using a peak 
correction algorithm embedded in the IMA-R package.12 Finally, 
to avoid sex-specific methylation bias, CpG sites on the sex chro-
mosomes were removed, leaving 444 888 autosomal CpG sites to 
be used in further analyses.

Differential methylation analysis. Multivariate ANOVA 
analysis was performed using Partek Genomic Suite software (v 
6.6). The averaged methylation values were compared between 
clinical groups at the CpG site level using a general linear model 
test implemented in the IMA-R package. The following criteria 
were used: β-difference > 0.2 and a false discovery rate corrected 
P value < 0.05. These same criteria were used to calculate the 
methylation difference among the region-level variants identified 
in the IMA-R test. The methylation index of gene- and CpG 
island-based regions was calculated in IMA-R, and region-spe-
cific β-values were median-averaged. To identify the methylation 
difference in paired samples, we calculated a β-values matrix 
in which pathological β-values were subtracted from normal 
β-values for each of the 22 “cancer-normal” sample pairs with 
absolute β-difference values greater than 0.2. “Support” was cal-
culated as the number of tumors that had a statistically signifi-
cant difference in methylation status with the matched healthy 
tissues and was determined using the binomial distribution  
(Fig. S12). After modeling the probability density according 
to binomial distribution (n = 22, P = 0.045) and applying a 
Bonferroni correction for multiple comparisons, we established a 
support value of 10 as being statistically significant.

Functional annotations of differentially methylated CpG 
sites. An enrichment analysis of the hypermethylated regions for 
the gene ontology (GO), Panther Pathway and KEGG Pathway 
databases was conducted using the GREAT web service.24 
Bed files for the analyzed regions were compiled based on the 
hg19 coordinates from the 450K array manifest file using the 
Basal+extension associations rule (constitutive 1.0 kb upstream, 
1.0 kb downstream and up to 1.0 kb max extension). These files 
were used to map CpG sites to their nearest genes. Binomial 
statistics with FDR correction was used to find significantly 
enriched ontologies.

An additional feature of our study consists of analyzing rec-
tal carcinoma tumor samples. Epidemiologically and therapeuti-
cally, colon and rectal tumors are considered to be different.60 
However, recently published data from the Cancer Genome Atlas 
project indicate that the overall patterns of changes in methyla-
tion, mRNA and miRNA are indistinguishable between colon 
and rectal carcinomas.4 Thus, the methylation data obtained 
from the clinical samples studied in the present work may be ade-
quate for use in comparative analyses in other CRC methylation 
studies. All methylation data discussed above have been depos-
ited in the NCBI Gene Expression Omnibus and will be acces-
sible through GEO Series accession number GSE42752 (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42752).

Most of the studies on CRC methylation published to date 
were performed using either the previous version of Illumina 
HumanMethylation array (27K) or enrichment-based DNA 
sequencing approaches. The 27K array (comprising 27 578 CpG 
sites) provides information on a small part of the entire genome 
and mainly covers promoter regions. Although enrichment-
based DNA sequencing methods are very powerful tools, they 
have low statistical power in CpG-poor genomic regions and 
relatively low resolution. As the first 450K Human Methylation 
array validation study to focus on CRC was performed mainly on 
cell lines and several normal colon mucosa samples,61 our work is 
(to our knowledge) one of the first 450K array studies aimed at 
understanding genome-wide methylation in CRC, healthy colon 
samples from the same patient and healthy colon samples from 
cancer-free patients.

In summary, the use of the new, cost-effective high-content 
450K microarray has allowed us to successfully apply an unbi-
ased approach to the discovery of novel methylation markers 
that are associated with colorectal cancer. We have also been 
able to adequately assess the methylation diversity in CRC at the 
genome-scale level. Robust data obtained from the current study 
may be valuable in improving our understanding of the role of 
aberrant methylation and other molecular mechanisms in CRC 
pathogenesis. We believe that collaborative efforts to investigate 
these molecular mechanisms will allow epigenetically based 
approaches to be commonly used to guide CRC prevention and 
treatment in the near future.

Methods

Sample collection. Fresh frozen cancer tissue samples (C) were 
obtained from surgically removed colonic specimens. Tumor 
samples were macrodissected to ensure the purity of the tumor. 
From the same patient, adjacent normal mucosa tissue samples 
(N1) were collected from resected, unaffected parts of the colon 
located approximately 5–10 cm away from the tumor site. All 
samples were collected from the operating room immediately 
after surgical resection (C, N1) or after colonoscopy (N2). 
Samples were fresh frozen and were shipped on ice for subsequent 
DNA extraction and methylation assays.

DNA sample preparation, bisulfite conversion and methyla-
tion level measurement. DNA was extracted from frozen tissue 
samples using the Promega Wizard® Genomic DNA Purification 
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tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/coad/
cgcc/jhu-usc.edu/humanmethylation450/methylation/).

Data access. The data generated for this work have been 
deposited in the NCBI Gene Expression Omnibus (GEO) (www.
ncbi.nlm.nih.gov/geo) and are accessible through GEO Series 
accession number GSE42752.
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Diagnostic markers selection and model evaluation. The 
most significant and replicable CpG sites were selected from the 
results of the site-level differential methylation test to be can-
didate markers for CRC detection. These sites were consecu-
tively selected from C vs. N1 according to the following criteria: 
(Δβ

C−N1
 ≥ 0.4 Δβ

N1−N2
 ≤ 0.1; IG = 1; MeanN1 ≤ 0.25; Supp > 

10), where C, N1 and N2 are the average methylation β-values 
for a given CpG site in tumors, matched healthy tissues and tis-
sues samples from healthy donors, respectively; IG, Information 
Gain; Mean, mean methylation level; Supp, support value, cal-
culated as described above. Logistic regression model training 
and validation of Cancer Genome Atlas data was performed with 
R statistics using the pROC package. Estimated ROC curves 
were compared using DeLong’s test.62 Each model was validated 
on separate a data set from TCGA colon adenocarcinoma and 
normal colon methylation data (https://tcga-data.nci.nih.gov/
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