Table 4.
GLMM method estimates and standard errors (SE)
Model | Sensitivity | Specificity | ρ | AUC | σμ(SE) | σν(SE) | AIC | -2logL |
---|---|---|---|---|---|---|---|---|
logit link | 0.827 (0.042) | 0.888 (0.021) | −0.298 (0.330) | 0.908 (0.049) | 1.143 (0.243) | 0.679 (0.208) | 214.8 | 204.8 |
logit link-independence | 0.826 (0.042) | 0.887 (0.021) | 0 | 0.902 (0.026) | 1.138 (0.241) | 0.678 (0.206) | 213.5 | 205.5 |
probit link | 0.817 (0.042) | 0.885 (0.021) | −0.312 (0.325) | 0.915 (0.051) | 0.636 (0.132) | 0.359 (0.111) | 215.2 | 205.2 |
c-log-log link | 0.801 (0.045) | 0.882 (0.021) | −0.329 (0.321) | 0.925 (0.041) | 0.560 (0.119) | 0.284 (0.090) | 215.9 | 205.9 |
AUC denoted the area under the summary ROC curve. The boldfaced cells represent the best chosen model based on AIC. The ‘logit link-independece’ model uses logit link and assumes independence between sensitivity and specificity while the other models assume dependence.