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Abstract

A common problem in the longitudinal data analysis is the missing data problem. Two types of 

missing patterns are generally considered in statistical literature: monotone and non-monotone 

missing data. Non-monotone missing data occur when study participants intermittently miss 

scheduled visits, while monotone missing data can be from discontinued participation, loss to 

follow-up and mortality. Although many novel statistical approaches have been developed to 

handle missing data in recent years, few methods are available to provide inferences to handle 

both types of missing data simultaneously. In this article, a latent random effects model is 

proposed to analyze longitudinal outcomes with both monotone and non-monotone missingness in 

the context of missing not at random (MNAR). Another significant contribution of this paper is to 

propose a new computational algorithm for latent random effects models. To reduce the 

computational burden of high dimensional integration problem in latent random effects models, 

we develop a new computational algorithm that uses a new adaptive quadrature approach in 

conjunction with the Taylor series approximation for the likelihood function to simplify the E step 

computation in the EM algorithm. Simulation study is performed and the data from the 

Scleroderma lung study are used to demonstrate the effectiveness of this method.
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1 Introduction

Longitudinal study designs are frequently used in clinical studies to monitor disease 

progression and treatment efficacy over time. One of the most common problems in the 

longitudinal data analysis is the missing data problem. During the course of study, the 
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outcomes of interest can be missing due to subjects’ non-response, missed visits, dropout, 

death and other reasons. There is a rich statistical literature on the analysis of missing data1. 

If the missingness is independent of the observed and unobserved data, the missing 

mechanism is missing completely at random (MCAR). If given the observed data, the 

missingness is independent of unobserved data, it is defined as missing at random (MAR). 

For data of MCAR and MAR, the missing mechanisms are considered as ‘ignorable’ 

missingness, and likelihood methods provide valid inference without modeling the missing 

mechanisms. However, in practice it may be difficult to justify the independence 

assumptions of MCAR or MAR, and we need to consider missing not at random (MNAR), 

where the missing probability depends on unobserved data. For example, in our motivated 

example of the Scleroderma lung study, about 60% of patient dropouts are due to death and 

treatment failure, which are likely related to the lack of treatment efficacy.

In statistical literature, two types of missing data patterns are generally considered2. The first 

type is called ‘intermittently missing’ or ‘non-monotone missing’, where a subject may miss 

particular visits during the course of study follow-up and return at later scheduled visits. On 

the other hand, “monotone missing” data refer to that a subject may leave the study at some 

point and never return. Most statistical models focus on one type of missing data pattern. For 

example, to handle non-monotone and non-ignorable missing data3, a full likelihood 

approach has been used to specify the joint likelihood of the outcome and missing indicator. 

Others4,5 suggested the use of the pseudo likelihood approach for the analysis with non-

monotone missing data. On the other hand, different methods6 are developed to handle 

monotone missing data. In reality, we often observe both types of missing patterns 

simultaneously in longitudinal studies.

In this paper we are interested in making statistical inference with both monotone and non-

monotone missing data in longitudinal studies, assuming MNAR. We use the joint model 

approach to model longitudinal outcomes, intermittent missing data and patient death or 

treatment failure simultaneously. For example in the Scleroderma lung study, we will use a 

linear mixed effects model to characterize the longitudinal forced vital capacity (FVC) 

outcome, a logistic mixed effects model for the intermittent missing data, and a proportional 

hazards frailty model for the time to dropouts due to death or treatment failure. The 

correlations of the random effects in the three models represent the unobserved dependence 

among the longitudinal outcome, intermittent missingness, and time to death or treatment 

failure. This approach allows to access the dependence between missingness and 

longitudinal outcomes, to correct the bias in estimation due to missed visits, patient death or 

treatment failure, and to improve the efficiency of parameter estimation by using all 

available information.

Despite the advantages of the joint model approach, the computation of the joint model 

remains challenging due to its large number of parameters included in the models and high 

dimensional latent variables to capture the dependence among all observations. Many 

authors7,8 employed the Bayesian approach and used the Markov chain Monte Carlo 

(MCMC) to estimate the posterior distribution of the parameters. MCMC method provides a 

straightforward approach to parameter estimation. However, MCMC is computationally 

expensive, difficult to determine convergence, and necessary to specify prior distributions. 
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On the other hand, the EM algorithm is a popular frequentist approach in the joint model 

analysis9. However the computation in the E step may involve high dimensional integration 

if the number of random effects is large. Many computation strategies have been proposed to 

improve the computational efficiency for the estimation in joint models or high dimensional 

integration in general. For example, the Laplace method10-13 has been used to approximate 

the likelihood function to avoid high dimensional integration. Although many found 

satisfactory results using the Laplace approximation, others14,15 suggested poor performance 

of the Laplace approximation. Additional drawbacks of Laplace approximation include that 

it demands a larger number of repeated measurements for good approximations, and there 

are no feasible ways to control the approximation accuracy13. Alternatively, the adaptive 

Gaussian quadrature16,17 and the sparse quadrature18 provided means to reduce the 

computational burden and to improve the computational efficiency in high dimension 

integration.

In this paper, we develop a new computational strategy for the high dimension integration in 

the E step of EM algorithm. This new approach seeks to reduce the number of evaluations in 

two ways. First, the adaptive Gaussian quadrature integration makes use of the moment 

estimates of random effects in the previous EM iteration to construct the importance 

distribution. Second, we use the Taylor series expansion to approximate the integration in 

the E steps based on the current moment estimates of random effects. These two techniques 

effectively reduce the computational burden in the EM steps.

1.1 Relationship to current literature

Our proposed model is an extension of Elashoff et al.19, which used the latent random 

effects model to handle non-ignorable monotone missing data. Most missing data literature 

solely devotes to one type of missing data pattern3-6. However, both monotone and non-

monotone missing data are often observed simultaneously in longitudinal studies. Our model 

is also similar to Wu et al.20, who considered a nonlinear mixed-effects model for the 

longitudinal outcome, the proportional hazards model for the time-to-event outcome, and a 

logistic regression model for missing data. The interpretation of our model emphasizes on 

handling different types of non-ignorable missing data, whereas Wu et al.20 highlighted the 

simultaneous modeling a longitudinal outcome and a time-to-event outcome. To characterize 

the dependence among outcome and different types of missing data, we assume that each 

outcome model and missing data model has its own random effects and jointly these random 

effects follow a multivariate normal distribution. Wu et al.20 introduced single random 

effect that is shared by the longitudinal, time-to-event, and missing data models, with a 

scalar multiplying each random effect to account for the fact that the linear predictors in 

each model are measured on different scales and it is not reasonable to assume they have the 

same variance. The shared random effect model is more restricted that it only allows 

positive correlations between two outcomes21. It has some unexpected consequence such as 

the marginal distribution to be always overdispersed. Our multivariate random effects 

represent a more flexible correlated random effects model, which allows a full range of 

covariance and is a generalization of the shared parameter model in Wu et al.20.

Tseng et al. Page 3

Stat Methods Med Res. Author manuscript; available in PMC 2014 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this paper, we present a new computation strategy to reduce the computation burden on 

high dimensional integration in the EM algorithm. An efficient method will achieve same 

accuracy in integration with fewer numerical evaluations. The adaptive quadrature 

method16,17 can be viewed as a deterministic version of importance sampling, and the 

Laplace method is generally used to find a Gaussian density as the importance distribution 

with the same mode and curvature of the posterior distribution. However, the Laplace 

method may not be feasible in a multiple level random effects model, while the moment 

estimates are always available. Naylor et. al22 and Rabe-Hesketh et. al23 estimated mean 

and variance of the importance distribution in the context of Newton-Ralphson iteration in 

searching for maximum likelihood estimates. We use a Gaussian distribution with the same 

first two moments of the random effects as the importance distribution for adaptive 

quadrature. To further reduce the number of evaluations in integration, the Taylor series 

approximation is used for the integrals of complex functions. Others13,24 have proposed to 

approximate integrals through the moment generating function in the context of Laplace 

approximations. Due to the Taylor series approximation, we only need to evaluate the first 

two moments of the random effects, and we use the same importance distribution to obtain 

all the first two moments estimates to reduce the effort in searching for importance 

distributions.

The rest of the paper is organized as follows. In section 2, we present the model 

specification, the inference procedure and the description of adaptive Gaussian quadrature in 

the EM steps. Section 3 demonstrates the method with a real example from a Scleroderma 

clinical trial. In section 4, we conduct simulation studies to examine the effectiveness and 

the proposed method. We provide the conclusions in section 5.

2 The Joint Model

In this section, we formulate the joint model for non-ignorable missing data with both 

monotone and non-monotone missingness. Let Yij ∈ ℝ be the repeated measurement 

outcome of the ith subject at visit j, and Mij be the intermittent missingness indicator of the 

ith subject at visit j, where Mij=1 if Yij is missing, and Mij=0 if Yij observed. i = 1, …, N and 

j = 1, …, K; N is the number of subjects and K is the total number of visits. LetSi = (Ti, δi) 

denote the dropout data on the ith subject. Ti = min(TFi, TCi) is the minimum of failure time 

(TFi) and censoring time (TCi), and δi takes value in (0, 1), with δi = 0 being a censored 

event and δi = 1 indicating that subject i drops out for reasons associated with unfavourable 

outcomes, such as death or treatment failure.

In this model Yij is missing when Mij=1 or the subject drops out before the jth visit. Both Yij 

and Mij are censored by failure/censoring time Ti.

We use a linear mixed effects model for the repeated measurement Yij,

(1)

where X1ij ∈ ℝp1 is a vector of fixed effect covariates, Z1i ∈ ℝq1 is a vector of random effect 

covariates, σ is the dispersion parameter, β1 ∈ ℝp1 is a vector of regression coefficients and 

b1i ∈ ℝq1 is a vector of random effects. In the Scleroderma example, we use a t distribution 
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with 3 degrees of freedom for residuals, ∊ij ~ t-distribution with 3 degrees of freedom, to 

reduce the impact of outlying observations and achieve robust inference. There are various 

ways to incorporate the t distribution model for robust inferences25. For example, given 

sufficient data, one can estimate the degree of freedom based on the likelihood method. In 

this paper, we use a fixed v = 3 degrees of freedom throughout for robust inference. It 

simplifies the model and computational effort, as recommended in the literature25,26. The t 

distribution with 3 degrees of freedom has sufficient long tails and will provide a 

considerable degree of down-weighting for extreme outliers25. If outlying observations are 

not of concern, one can use a normal distribution model for the residuals; ∊ij ∈ N(0, 1).

To model the pattern of intermittent missingness, we use a mixed effects logistic regression 

model. Let πij = Prob(Mij = 1) be the probability of intermittent missingness for subject i at 

visit j,

(2)

where X2ij ∈ ℝp2 is a vector of fixed effect covariates, Z2i ∈ ℝq2 is a vector of random effect 

covariates, β2 ∈ ℝp2 is a vector of regression coefficients and b2i ∈ ℝq2 is a vector of 

random effects.

The hazard of patient dropout due to death or treatment failure is characterized by a 

proportional hazards frailty model,

(3)

where λ0(t) is the baseline hazard function, X3i ∈ ℝp3 is a vector of fixed effect covariates, 

Z3i ∈ ℝq3 is a vector of random effect covariates, β3 ∈ ℝp3 is a vector of regression 

coefficients and b3i ∈ ℝq3 is a vector of random effects.

The latent random effects of the above 3 models, bi = (b1i; b2i; b3i), are a q1+q2+q3 

dimensional vector to capture the unobserved dependence among all observations. We 

assume that the random effects follow a multivariate normal distribution, bi ~ N(0, Σ(θ)),

(4)

Combining equations (1), (2),(3), and (4), this joint model implies that missing data from 

missed visits and study dropouts are non-ignorable missing data. If the missed visits are 

considered as ignorable, then equation (2) can be removed. Similarly, if missing data dude to 

study dropouts are ignorable missing data, then equation (3) can be removed. We also note 

that all fixed effects covariates (X1ij, X2ij, X3i) and random effects covariates (Z1i, Z2i, Z3i) 

can be disjoint or overlapped.
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2.1 Likelihood and estimation

Let Yobs and Ymis be the observed and missing outcome measurements, and Mobs and Mmis 

be the observed and missing indicators for intermittent missingness. The death and treatment 

failure information Sobs is observed for all subjects. Xi = (X1i1, …, X1iK, X2i1, …, X2iK, X3i) 

and Zi = (Z1i, Z2i, Z3i) are fixed and random effects covariates of the ith subject. The 

likelihood function for the ith subject is

The latent random effects model assumes that the observed data (Yi,obs, Mi,obs) and the 

unobserved data (Yi,obs, Mi,obs) are conditionally independent given the random effects bi. 

Furthermore, because ∫ f(Yi,miss)dYi,mis = 1 and ∫ f(Mi,miss)dMi,mis = 1, the likelihood 

function is the likelihood of observed data:

Let ϕ = (β1, β2, β3, σ, θ) and . Our goal is to calculate the maximum 

likelihood estimates for Θ = (ϕ, Λ0), over a set in which ϕ is in a bounded set and Λ0 is in a 

space of all the increasing function in t with Λ0(0) = 0. Note that the random effects bi, i ∈ 1, 

…, N are unobserved and considered as missing data.

Because the maximization is straight forward with complete data, we use the EM algorithm 

to calculate the maximum likelihood estimates. In the E-step, we calculate the expectation of 

complete-data log-likelihood given the observed data and the current values of the 

parameters. More specifically, at the (k+1)th iteration, the E-step consists of evaluating the 

expected value of functions of bi with respect to its conditional distribution with parameters 

estimated in the kth iteration

where Di = (Yi,obs, Mi,obs, Si,obs) denotes the observed data of the ith subject, and Λ(k) and 

ϕ(k) are the estimates from the kth iteration. For example, the conditional expectation for 

function A(bi),

(5)
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The E steps involves at least 3 dimensional integrations, which demand intensive 

computation. We use several techniques to reduce computational burden and to achieve 

better accuracy in evaluating equation (5) in the E step. First of all, we approximate the 

numerator and denominator separately by Gauss-Hermite quadrature. It has been suggested 

in the literature13,27,28 that the two integrands in the numerator and denominator in equation 

(5) are similar in shape. By taking the ratio of the numerator and denominator, the leading 

error term in the approximation may cancel out and result in better approximation accuracy. 

However, the computational burden to evaluate the numerator and denominator in equation 

(5) can be large even with moderate number of random effects bi and if many functions 

A(bi) are evaluated in the E steps.

Here we use two strategies to reduce the computational burden: to use the Taylor series 

expansion to approximate E(A(bi)) and to use adaptive quadrature to increase the 

computational efficiency. For the first strategy, we use the Taylor series expansion to 

approximate the expectation in the numerator for all functions A(bi) by the first two 

moments of bi

where Ebi = E(bi) is the expectation of bi, V bi = E(bi − Ebi)2 is the variance of bi, and 

 is the second partial derivative of A(b). With the Taylor series 

approximation, the only integrals need to be evaluated in the E step are the first two 

moments of bi.

We use the Gauss-Hermite quadrature to evaluate the expectation of the first two moments 

of bi. The Gaussian quadrature approximates integrals of function with respect to a given 

kernel by a weighted average of integrand evaluated at predetermined abscissas. For a multi-

dimensional integral, the number of abscissas required to achieve the same accuracy rises 

exponentially as the number of dimensions increases. The adaptive quadrature applies a 

linear transformation on bi such that the integrand will be sampled in a suitable range. 

Following Liu et al.16, we use Gaussian Hermite quadrature for integrals of the form

where , m is number of nodes, xk and wk are the kth node and weight. The 

critical step for the success of adaptive quadrature is the choice of the importance 

distribution ψ and its parameters  and . It is suggested16,17 to use the Laplace method to 

estimate the mode and dispersion of g(bi) for  and . This choice of importance distribution 

is near optimal, however, it requires to find the importance distribution for every function g. 

As described above, with Taylor series approximation, we only need to compute the the first 

two moments of bi to approximate E(A(bi)).
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We propose to use a single importance distribution to compute the first two moments of bi. 

Specially, we recycle the mean and variance calculated in the previous E step as the 

importance distribution parameters (  and ) for the evaluation in the current E step. This 

choice of importance distribution parameters allows us to sample the integrand g(bi) in a 

suitable range with minimal cost in computation. Table 1 compares the bias between 

Gaussian Hermite (GH) quadrature and proposed adaptive Gaussian Hermite (AGH) 

quadrature. In this comparison, we assume  and  are known. Two random variables are 

considered in this experiment, a normal distribution Normal(1, 2) variable and a standard 

exponential distribution Exponential(1) variable. The first two moments of random variables 

are evaluated by both quadratures with number of nodes ranging from 2 to 30. The results 

suggest that the adaptive Gaussian Hermite (AGH) quadrature has no bias in estimating the 

first two moments for the normal random variable, while regular Gaussian Hermite 

quadrature has bias close to zero with 20 nodes. For the standard exponential random 

variable, the adaptive Gaussian Hermite quadrature can achieve the same accuracy with 

fewer number of nodes. For example, the adaptive Gaussian Hermite quadrature with 3 

nodes has similar accuracy with the regular Gaussian Hermite quadrature with 10 nodes in 

evaluating the first two moments of standard exponential variable. In general, the bias 

diminishes as the number of nodes increases for both regular Gaussian Hermite quadrature 

and adaptive Gaussian Hermite quadrature. However, we also note that the bias is not 

reduced in estimating E(X) for the Exponential(1) variable when the number nodes increases 

from 10 to 20 with the adaptive Gaussian Hermite quadrature.

In the M-step, we solve the conditional score equations of the complete data given the 

observed data. If the longitudinal model is a linear mixed effects model with normal random 

effects and residuals, the score equations for the regression coefficients have a closed form 

solution in the M step. However, for the regression coefficients in the mixed effects logistic 

model, proportional hazard frailty model and the t-distribution longitudinal model, there is 

no closed form solution and one-step of Newton Raphson is carried out in the M step. We 

iterate between E- and M- steps until the estimates converge. Appendix A provides the 

details of our computational algorithm.

To estimate the standard errors, a direct calculation and inversion of the Fisher information 

matrix29 is not feasible due to the infinite dimensional parameter λ0. Standard errors are 

approximated by the inverse of empirical Fisher information of the log profile likelihood 

with the nonparametric baseline hazard λ0 being profiled out. It has been suggested30 that 

the inverse of empirical Fisher information underestimates standard errors and the bootstrap 

method is recommended to obtain standard error estimates. The bootstrap method requires 

intensive computation. In our simulation study it appears that this approximation has 

satisfactory performance on the inference of longitudinal outcomes. However, under-

estimation in the standard error is observed for the parameters in the logistic model and 

proportional hazard model.

3 Scleroderma lung study data analysis

In this section, we demonstrate the use of our proposed model to handle non-monotone and 

monotone non-ignorable missingness in the analysis of the Scleroderma lung study31. The 
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Scleroderma lung study is a multi-center placebo-control double bind randomized study to 

evaluate the effects of oral cyclophosphamide (CYC) on lung function and other health-

related symptoms in patients with evidence of active alveolitis and scleroderma-related 

interstitial lung disease. In this study, eligible participants received either daily oral 

cyclophosphamide or matching placebo for 12 months, followed by another year of follow-

up without study medication. The primary endpoint of the study is the forced vital capacity 

(FVC, expressed as a percentage of the predicted value), which is measured at baseline and 

at three-month intervals throughout the study. One hundred and fifty eight eligible patients 

underwent randomization, and about 15% of them dropped out of the study before 12 

months. About 30% of dropouts are due to death and treatment failures. Intermittent missed 

visits also occurred during the course of the study. It is likely that the missing data are due to 

the ineffectiveness of treatment and related to the outcome of interest.

Here we present the analysis of the primary endpoint of FVC. Figure 1 gives the plot of 

FVC over time for each study group during the first year of the trial. In this figure, two 

subjects (01-ALS-013 and 04-JWW-010) in the placebo group are highlighted as examples 

of study dropouts at 6 and 9 months, and two subjects (08-S-L-018 and 09-NEP-005) in the 

CYC group are examples with missed visits at 6 and 9 months. Most subjects have small 

variation in FVC over time. However, a few observations show considerable changes 

between follow-ups. It suggests the possibility of outlying observations. For this analysis, 

the fixed effects model includes covariates of time, baseline FVC (FVC0), baseline 

maximum fibrosis (MAXFIB0), cyclophosphamide (CYC), and the interactions between 

treatment and baseline FVC, baseline maximal fibrosis and time. The random effects model 

includes a random intercept (b1) which represents the unobserved subject level factor 

associated with FVC, and residuals (∊) with a t-distribution with 3 degrees of freedom to 

reduce the impact of outlying observations. σ is related to the variance of FVC.

For the intermittent missing data model, the mixed effects logistic model is used to model 

the probability (p) of missed visits. The fixed effect includes time effect and the random 

effect includes a random intercept (b2).

For time to death or treatment failure, the Proportional hazards frailty model includes 

covariates of baseline FVC (FVC0), baseline maximum fibrosis (MAXFIB0), and 

cyclophosphamide (CYC). b3 is the random effect for time to death or treatment failure.
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The random effects (b1, b2, b3) in above 3 models are assumed to follow a 3 dimensional 

multivariate normal distribution to capture the unobserved dependence among FVC 

measurement, the missed visit events and time to death or treatment failure. Because there 

are 3 random effects in the joint model, the E steps involve 3 dimensional integration. With 

a 3 nodes Gaussian Hermite quadrature for each dimension, 27 nodes Gaussian Hermite 

quadrature is used for the integrations in the E steps.

As this is a randomized trial, the assignment of CYC is independent of baseline 

characteristics. We can derive the overall treatment effect at time m:

where Effi is the treatment(CYC) effect for the ith subject at time m

Table 2 gives parameter estimates in the longitudinal model for the Scleroderma lung study, 

based on 6 to 18 months data. We observed that the FVC outcome is associated with 

baseline FVC measurement and maximum fibrosis score. In addition, the treatment effect 

appears to be modified by baseline FVC measurement and maximum fibrosis. Roth et al.32 

also reported similar findings of the treatment-maximum fibrosis interaction effect using a 

different analysis. The estimated overall treatment effect is also reported in Table 2.

4 Simulation study

In this section, we carry out simulation studies to evaluate the effectiveness of the proposed 

method. The goal is to examine the amount of bias generated from the likelihood 

approximation by the Gaussian Hermite quadrature and Taylor series approximation. The 

simulation set-up includes a linear mixed model to generate longitudinal outcome data, a 

logistic mixed model for intermittent missing data, and a proportional hazard frailty model 

for time to dropout due to treatment failure or death.

Here are the specifications of 3 models:

(6)

(7)

(8)
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Yij is the longitudinal outcome value of the ith subject at the jth time i = 1, …, N, j = 1, …, K 

= 6. The sample size is n, and each subject has at most K = 6 visits including the baseline 

visit. X11ij is the longitudinal covariate for the longitudinal outcome the ith subject at the jth 

time. β11 represents the strength of the association between the outcome Yij and X11ij. For 

example, if X11ij is the indicator of treatment assignment, then β11 quantifies the treatment 

effect. Mij is the intermittent missing indicator; Mij = 1 if Yij is missing due to missed visits, 

and 0 if Yij is observed. X21ij is the longitudinal covariate for the intermittent missingness for 

the ith subject at the jth time. We assume that, for intermittent missed visit, X21ij is always 

observed before it is censored by the dropout time or the end of study. β21 indicates the 

association between missed visit Mij and X21ij, and β20 determines the prevalence of 

intermittent missingness. About 10% visits are missing. Time to death or treatment failure is 

generated with proportional hazard model with a constant baseline hazard λ0(t). The 

censoring time and the baseline hazard are simulated with constant hazard functions, such 

that about 15% subject are censored (loss to follow-up for other reasons) and ps = 20% or 

50% subjects drop out due to treatment failure or death before finishing 6 follow-up visits. 

All covariates in the models, X11ij, X21ij and X31i, are generated according to standard 

normal distribution.

The true values of the regression coefficients are (β10, β11, β21, β31) = (2, 2, 2, 2). The 

random effect (b1, b2, b3) follows multi-variate normal distribution with mean zero, 

common variance 2, and correlation 0.5 among the random effects. The residuals of the 

longitudinal outcome are generated based on a mixture of normal distributions to represent 

possible outlying observations.

where pe corresponds to the percent of outlying observations, and fe > 1 represents the 

degree that the outliers deviate from rest of the observations. A large fe generates large 

variability in the outliers. A special case pe = 0 gives normal distribution residuals without 

outliers. In the simulation we vary pe among 0%, 10% and 25%, set fe = 4, and vary sample 

size between n = 200 and 400. Five hundred simulations are carried out for each parameter 

combination. With 3 random effects in the joint model, the E steps involve 3 dimensional 

integrations. We use a 3 nodes Gaussian Hermite quadrature for the each dimension, which 

results in a 33 = 27 nodes Gaussian Hermite quadrature for the 3 dimensional integrations in 

the E steps.

Table 3 provides the simulation results. The upper table gives the summary for the estimated 

regression coefficients in the longitudinal t-distribution model. It suggests that the estimates 

of β01 and β11 have minimal biases, the estimated standard errors are close to empirical 

standard deviation of the estimates, and the 95% coverage probability is satisfactory. This 

results also suggest good performance for the t-distribution model in the presence of 

outlying observations.

The lower table provides the summary for the estimated regression coefficients in the 

intermittent missing logistic model (β21) and the time to death or treatment failure model 
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(β31). We observe that β21 is generally unbiased or minimally overestimated. A larger 

sample size (n = 400) appears to further diminish the biases. The standard errors are 

underestimated, which results in the slightly lower coverage probability ranging from 89% 

to 92%. Similar to the results in the Laplace approximation11,12, we observe a relatively 

large bias in the estimates of β31. A larger sample size (N = 400) appears to reduce the 

biases. However, the standard error are also underestimated. The 95% coverage probability 

ranges from 72% to 82%. The underestimation may be due to the approximation of 

integration with Gaussian Hermite quadrature and the Taylor series approximation of score 

function. In contrast, the longitudinal outcome in the simulation has a symmetric 

distribution, which may results in better approximation using Gaussian Hermite quadrature.

Our simulation suggests that the proposed model and our computational method can provide 

reliable inference for the parameters in the longitudinal model. In some applications, for 

example the Scleroderma lung study, the primary research interest is the treatment effect on 

the longitudinal outcome, and the underestimation of the parameters in time to event 

outcome may not be a big concern.

5 Conclusion

This paper presents a joint model approach to analyze longitudinal outcomes in the presence 

non-ignorable missing data due to both intermittent and monotone missingness. In the SLS 

clinical trial example, the intermittent missing data are due to patient missed visits and 

monotone missing data are from patient dropout due to death or treatment failure. We use a 

logistic model to describe the intermittent missingness pattern and a Cox proportional model 

for the dropout due to death or treatment failure. These probabilistic missing models reflect 

the fact that a subject may come back after missed visits, but will drop out the study if death 

or treatment failure occurs. Our proposed latent random effects model can easily be 

extended to models with multiple longitudinal outcomes, multiple intermittent missing 

outcomes processes, and a competing risk model for multiple causes of dropout. 

Alternatively, multi-state models are a viable approach to handle both intermittent and 

monotone missingness simultaneously33. In a multi state model, one can specifies observed 

visits, missed visit, death and treatment failure as different states, where missed visits are 

transient states and death and treatment failure are absorbing states.

We use a t-distribution model to reduce the impact of outlying observations25,34 in the 

longitudinal model. It is possible to consider the degrees of freedom as a parameter of the 

model and estimate it based on the data. One can also extend our model to use a multivariate 

t distribution to model outcome and random effects simultaneously35. However, this may 

involve intensive computation, require larger sample size for stable estimation and the 

improvement in efficiency might be limited. The use of Huber function36,37 also has been 

developed for the robust likelihood inference in longitudinal data analysis. Our joint model 

can easily accommodate the use of Huber function for robust inference.

We develop approximation methods to calculate the maximum likelihood estimates based on 

adaptive Gaussian Hermite quadrature and Taylor expansion approximation to reduce the 

computational burden and to improve the approximation accuracy. It will be interesting to 
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compare our approach with other numerical integration methods, such as Laplace 

approximation12,13, other adaptive Gaussian Hermite quadrature16,17, and Monte Carlo 

integration20. We observe satisfactory performance on the estimates of longitudinal model 

and logistic regression model. Methods to improve the estimation in the and time to event 

model warrant further research.

In this paper, standard errors are approximated by the inverse of empirical Fisher 

information of the log profile likelihood with the nonparametric baseline hazard λ0 being 

profiled out. In our simulation study it appears that this approximation has satisfactory 

performance for the standard error estimation for the longitudinal model. However, under-

estimation in the standard error is observed for the parameters in the logistic regression 

model and proportional hazard model, as suggested in the literature30. Because in the 

Scleroderma study, the outcome of interest is the longitudinal FVC, our method can provide 

valid inference; the logistic model and proportional hazard model are incorporated to correct 

the potential bias due to non-ignorable missing data. Other examples of joint model with the 

primary interest mostly on longitudinal outcomes include the NINDS rt-PA stroke trial with 

the main outcome of modified Rankin Scale38 and a breast cancer clinical trial with the 

quality of life outcome3. On the other hand, when the focus is on the survival outcome, the 

validity of the standard errors approximated by the inverse of empirical Fisher information 

may be questionable; for example, HIV clinical trial with patient survival as the outcome9 

and NYU Women’s Health Study with the outcome of the onset of breast cancer39. The 

bootstrap method was recommended to obtain standard error estimates30. However, the 

bootstrap method increases the computational complexity. Other less computationally 

intensive standard error estimation procedures for semi-parametric models40,41 in the 

literature may warrant further investigation.

In contrast to the Laplace approximation, the adaptive quadrature allows to control the error 

of integration approximation by the number of nodes. We use a fixed 3 nodes adaptive 

quadrature for each dimension of integration in this paper. It is possible to determine the 

number of nodes based on the some integration precision criterion. For example, the 

GLIMMIX procedure in SAS software determines the number of nodes by evaluating the 

log likelihood at the starting values at a successively larger number of nodes until a 

tolerance is met. However with a high dimensional integration, different integration function 

with different dimension (random effect) may require different number of nodes to reach the 

same precision. In our example, the integration related to the random effect of the Cox 

proportional hazards model may possibly require more nodes than the integration related to 

the random effect of the longitudinal model to achieve better efficiency in computation. 

Further research to determine optimal number of nodes for adaptive quadrature and to 

investigate the relationship between the number of nodes and the bias in parameter 

estimation is needed.

Finally, the latent random effects model provides inference for non-ignorable missingness 

with correlated random effects. However, the non-ignorable assumption is untestable. 

Fortunately, in a real life data analysis, one can often bring in knowledge and assumptions 

that are external to the data to provide evidence for missing mechanism. Therefore the non-

ignorable missing data analysis must be carried out with great care. It also implies the 
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importance of the information on the causes of missing data in data collection to determine 

possible missing mechanism. In our Scleroderma example, many missing data are due to 

lack of treatment efficacy (for example, death or treatment failure), and non-ignorability 

seems to be a reasonable assumption. In general, local sensitivity analysis can be performed 

to evaluate the effects of non-ignorability42,43.
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Appendix

Here we provide the detailed proposed computational algorithm for the EM steps to 

calculate the maximum Likelihood estimates. Let bi be the (vector of) random effects, and 

θ(k) be the (vector of) estimated parameters in the kth EM steps.

1. Start with initial θ(0)

2. For the kth EM step:

–
E step 1: calculate E(bi|θ(k)) and  with Gaussian Hermite 

quadrature. The importance distribution is set to be normal distribution 

with the first two moments of E(bi|θk−1)) and variance , 

which are readily available from the kth EM step.

– E step 2: approximate the expectation E(A(bi))| θ(k)) using the Taylor 

series expansion.

where Ebi = E(bi) is the expectation of bi, V bi = E(bi − Ebi)2 is the 

variance of bi, and  is the second partial derivative of 

A(b).

– M step: use the approximate E(A(bi)) to solve the conditional score and 

obtain θ(k+1)

3. Repeat 2 until convergence

Remarks:

1. ’E step 1’ reduces the computational effort in looking for the importance function 

in the adaptive Gaussian Hermite quadrature; we use the same importance function 

for all integrations, and the parameters in the importance function are readily 

available from previous iteration.

2. ’E step 2’ uses the Taylor series approximation to reduce the number of needed 

integrations to the first two moments of random effects. The moments estimates are 
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also re-used in the next iteration to construct the importance distribution in ‘E step 

1’.
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Figure 1. 
Longitudinal FVC in the placebo and CYC groups during the first 12 months. In the 

Scleroderma lung study, the forced vital capacity (FVC, expressed as a percentage of the 

predicted value) is measured at baseline and at three-month intervals throughout the study. 

In this figure, two subjects (01-ALS-013 and 04-JWW-010) in the placebo group are 

highlighted as examples of study dropouts at 6 and 9 months, and two subjects (08-S-L-018 

and 09-NEP-005) in the CYC group are examples of missed visits at 6 and 9 months.
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Table 1

Comparison between Gaussian Hermite (GH) quadrature and proposed adaptive Gaussian Hermite 

(AGH)quadrature.

Distribution X ~ N(1, 2) X ~ Exp(1)

method GH AGH GH AGH

No of Nodes E(X) E(X2) E(X) E(X2) E(X) E(X2) E(X) E(X2)

2 0.14 0.30 1.00 3.00 0.51 0.36 0.56 1.12

3 0.32 0.72 1.00 3.00 0.48 0.58 0.95 1.50

5 0.61 1.54 1.00 3.00 0.68 0.99 0.94 1.75

10 0.93 2.67 1.00 3.00 0.93 1.53 1.02 1.93

20 1.00 2.99 1.00 3.00 0.99 1.86 0.97 1.99

30 1.00 3.00 1.00 3.00 1.00 1.95 1.01 2.00

true value 1.00 3.00 1.00 3.00 1.00 2.00 1.00 2.00
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Table 2

Analysis of FVC in the Scleroderma study, using data over 6 to 18 months

β Est.
t model

Std p-value

β1 (Time) −0.07 0.06 0.297

β2(FVC0) 0.92 0.013 <0.001

β3(MAXFIB0) −1.62 0.16 <0.001

β4(CYC) −1.08 1.15 0.416

β5(CYC×FVC0) 0.081 0.019 <0.001

β6(CYC×MAXFIB0) 1.50 0.25 <0.001

β7(CYC×Time) 0.24 0.09 0.009

overall effect at

6 months 0.36 0.71 0.609

9 months 1.08 0.51 0.036

12 months 1.79 0.41 <0.001

15 months 2.50 0.47 <0.001

18 months 3.21 0.69 <0.001

β4 = β5 = β6 = β7 = 0 <0.001
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Table 3

Simulation results with sample sizes N = 200,400. ps is the propor tion of non-ignorable dropouts due to death 

and treatment failure. pe is the proportion of outlying observations in the longitudinal model. β10, β11, β21, and 

β31 are the average estimates in 500 simulations, with standard deviation in parenthesis. SD is the average 

estimated standard errors. CP is the coverage probability for the 95% confidence interval. The true values of 

the regression coefficients are (β10, β11, β21, β31) = (2, 2, 2, 2).

N ps pe β 10 SD(β10) CP β 11 SD(β11) CP

200 0.2 0 2.01 ( 0.14 ) 0.13 92 % 2.00 ( 0.09 ) 0.08 94 %

0.10 2.00 ( 0.14 ) 0.13 93 % 2.00 ( 0.09 ) 0.10 96 %

0.25 1.99 ( 0.17 ) 0.15 92 % 2.00 ( 0.12 ) 0.13 95 %

0.5 0 2.01 ( 0.15 ) 0.14 91 % 2.00 ( 0.09 ) 0.09 95 %

0.10 2.02 ( 0.17 ) 0.15 93 % 2.01 (0.11) 0.10 92 %

0.25 2.00 ( 0.19 ) 0.17 92 % 2.02 ( 0.12 ) 0.13 96 %

400 0.2 0 2.01 ( 0.10 ) 0.10 94 % 2.00 ( 0.06 ) 0.06 92 %

0.10 2.01 (0.11) 0.10 94 % 2.00 ( 0.07 ) 0.07 93 %

0.25 2.01 ( 0.12 ) 0.11 93 % 2.00 ( 0.08 ) 0.08 96 %

0.5 0 2.02 ( 0.11 ) 0.10 93 % 2.00 ( 0.07 ) 0.06 93 %

0.10 2.02 ( 0.12 ) 0.11 93 % 2.00 ( 0.08 ) 0.07 94 %

0.25 2.02 ( 0.13 ) 0.12 93 % 2.00 ( 0.09 ) 0.09 96 %

N ps pe β 21 SD(β21) CP β 31 SD(β31) CP

200 0.2 0 2.00 ( 0.20 ) 0.16 92 % 1.93 ( 0.23 ) 0.17 82 %

0.10 2.01 ( 0.20 ) 0.17 90 % 1.92 ( 0.24 ) 0.17 81 %

0.25 2.03 ( 0.20 ) 0.17 89 % 1.95 ( 0.26 ) 0.17 79 %

0.5 0 2.02 ( 0.21 ) 0.18 92 % 1.90 ( 0.22 ) 0.14 73 %

0.10 2.03 ( 0.21 ) 0.18 92 % 1.90 ( 0.23 ) 0.14 73 %

0.25 2.03 ( 0.22 ) 0.18 91 % 1.89 ( 0.22 ) 0.14 73 %

400 0.2 0 2.00 ( 0.14 ) 0.11 91 % 1.98 ( 0.18 ) 0.12 80 %

0.10 2.01 ( 0.14 ) 0.12 91 % 1.98 ( 0.18 ) 0.12 80 %

0.25 2.01 ( 0.14 ) 0.12 91 % 1.97 ( 0.18 ) 0.12 79 %

0.5 0 2.01 ( 0.15 ) 0.13 89 % 1.96 ( 0.17 ) 0.10 71 %

0.10 2.02 ( 0.15 ) 0.13 90 % 1.95 ( 0.17 ) 0.10 73 %

0.25 2.02 ( 0.15 ) 0.13 90 % 1.95 ( 0.17 ) 0.10 72 %
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