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Abstract

Misclassification occurring in either outcome variables or categorical covariates or both is a 

common issue in medical science. It leads to biased results and distorted disease–exposure 

relationships. Moreover, it is often of clinical interest to obtain the estimates of sensitivity and 

specificity of some diagnostic methods even when neither gold standard nor prior knowledge 

about the parameters exists. We present a novel Bayesian approach in binomial regression when 

both the outcome variable and one binary covariate are subject to misclassification. Extensive 

simulation results under various scenarios and a real clinical example are given to illustrate the 

proposed approach. This approach is motivated and applied to a dataset from the Baylor 

Alzheimer’s Disease and Memory Disorders Center.
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1 Introduction

Many epidemiological studies use binomial regression to quantify the association between a 

binary outcome variable and some continuous and categorical covariates. Researchers often 

assume the measurements, either categorical or continuous, are accurate in their analysis. In 

practice, these observations are often misclassified (for the categorical variables) or 

inaccurately measured (for the continuous variables). Misclassification involving binary 

variables is due to many factors, e.g. inaccuracy of data collection methods, limited 

sensitivity and specificity of the diagnostic tests, inadequacy of information derived from 
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medical or other records, and recall bias in assessing exposure status.1 It has been shown 

that misclassification in binomial regression yields biased estimators of the associations of 

covariates with response.2,3 Many statistical methods have been developed to account for a 

misclassified response variable,4–6 or to correct for a misclassified covariate using matrix 

method,7,8 inverse matrix method,9,10 and maximum likelihood method.11–14

Most of the available methods require the use of a gold standard, which can estimate the 

sensitivity and specificity of the imperfect measure and incorporate the external estimates 

into the likelihood to obtain corrected effect estimates.7,15–17 Moreover, when an internal 

validation subsample allowing comparison of an imperfect measure with the gold standard is 

available, a variety of techniques, e.g. those based on likelihood or on weighted estimating 

equations, have been proposed.11,18–20 However, the gold standard may be unavailable, 

impractical,21,22 or it may be expensive, time consuming, or unethical to perform on all 

subjects and is commonly difficult to obtain in clinical studies.23 When no gold standard, 

but two imperfect measures are available, one can account for the misclassification using a 

maximum likelihood approach.24 Because the likelihood function often involves 

complicated integrations that a closed form is unavailable for most models, the expectation–

maximization algorithm17 and Bayesian inference using Markov chain Monte Carlo 

(MCMC) methods5,6,25,26 have been widely used to correct for misclassification. There are 

several advantages of using Bayesian inference framework: (a) the approximation of the 

integrals in the likelihood is not required, and the unobserved variables can be sampled 

along with the model parameters from their full posterior distribution; (b) the available prior 

information of some parameters can be readily incorporated; and (c) with the development 

of BUGS projects,27 the implementation in OpenBUGS is made simple by specifying the 

likelihood function and the prior distribution of all unknown parameters.

In statistical literature of misclassification involving at least two imperfect measures, a 

common assumption is conditional independence, i.e. multiple measures are independent 

conditional on the unobserved true status. Hui and Zhou28 have pointed out that this 

assumption is relatively strong and unrealistic in many practical situations. Some methods 

have been proposed to relax the conditional independence assumption, e.g. the model with 

more than two latent classes,29–31 the random effects model,32 and the model with two 

additional parameters by Black and Craig.33 In this article, we adopt the approach by Black 

and Craig33 on relaxing the conditional independence assumption. Our article is 

substantially different in two aspects. First, our model considers covariates in binomial 

regression setting, while Black and Craig estimated disease prevalence without accounting 

for covariate effects.33 Second, a binary outcome and a binary covariate are misclassified in 

this article, while only the response, i.e. disease status, is subjected to misclassification in 

Black and Craig.33

In this article, we consider a cross-sectional study of unmatched subjects with a 

misclassified binary outcome (referred to as ‘disease’), a misclassified binary covariate 

(referred to as ‘exposure’), and other perfectly measured continuous and categorical 

covariates. We use binomial regression to assess the association between the disease and 

exposure statuses while controlling for some other covariates. We propose a model with two 

latent variables (i.e. unobserved disease and exposure statuses) using Bayesian inference to 
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correct for misclassification when two imperfect measures are available for each of the two 

latent variables in the absence of gold standard and validation subsample. The remainder of 

the article is organized as follows. In Section 2, we describe a modeling framework, a 

method to relax the conditional independence assumption, and Bayesian inference. Then, 

proposed method is evaluated via various sets of “Simulations” in Section 3. In Section 4, 

the method is applied to a motivating example, a dataset of 626 Alzheimer’s Disease (AD) 

patients who participated in a study conducted by the Alzheimer’s Disease and Memory 

Disorders Center (ADMDC) at Baylor College of Medicine. Section 5 provides a 

“Discussion” and future research directions.

2 Model and estimation

2.1 Conditional independence between tests

Consider some outcome disease state D diagnosed by two dichotomous tests that are prone 

to misclassification. Suppose y (1 if disease, 0 if non-disease) is the unobserved true disease 

status. Let y1 and y2 (1 if disease, 0 if non-disease) be the observed disease outcomes from 

the two tests that are subject to misclassification. The disease status y is associated with an 

unobserved binary exposure status x (1 if exposed, 0 if non-exposed) that is also subject to 

misclassification and some perfectly measured continuous and categorical variables. The 

exposure status is measured by two imperfect dichotomous tests whose outcomes are 

denoted by x1 and x2 (1 if exposed, 0 if non-exposed), respectively.

Let (pyj, qyj), for j=1, 2, be the sensitivity and specificity of the jth test of the disease status 

given the true status y, i.e. pyj=P(yj=1|y=1) and qyj=P(yj=0|y=0). Similarly, let (pxj, qxj), for 

j=1, 2, be the sensitivity and specificity of jth test of the exposure status given the true status 

x, i.e. pxj=P(xj=1|x=1) and qxj=P(xj=0|x=0). Covariates zy and zx are associated with the 

statuses of disease and exposure, respectively. The observed likelihood function can be 

written in terms of four submodels,12,13 i.e. the outcome model P(y|x, zy), the exposure 

model P(x|zx), the measurement model of y, P(y1, y2|y), and the measurement model of x, 

P(x1, x2|x). Specifically, the outcome model is

(1)

The exposure model is

(2)

where gy[·] and gx[·] are link functions, e.g. logit, probit, and complementary log-log. 

Specifically, we use logit function in this article. The measurement model of y is

(3)

where the overhead bar denotes one minus the variable, e.g. p̄x1 = 1 − px1. The measurement 

model of x is
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(4)

Note that in the measurement models above, we have assumed conditional independence, 

i.e. multiple diagnostic tests are independent conditional on the true status. This assumption 

will be relaxed later. For the ease of notation, let β=(β0, β1, β′2)′, γ=(γ0, γ′1)′, p=(py1, py2, 

px1, px2)′, q=(qy1, qy2, qx1, qx2)′, and πx=P(x=1|zx). The parameter vector is θ=(β′, γ′, p′, q′)′. 

The observed likelihood for one subject is

(5)

where pabcd=p(y1=a, y2=b, x1=c, x2=d|zy, zx) for a, b, c, d=1 or 0. The details of likelihood 

derivation and the expressions of pabcd are illustrated in Section A of Appendix. We 

thereafter refer to the model assuming conditional independence in both measurements of y 

and x as M1.

2.2 Conditional dependence between tests

In this section, we relax the conditional independence assumption using the approach by 

Black and Craig.33 Let  and , where 

a, b, c, d, and k are either 1 or 0. To account for the possible dependence between tests, we 

introduce two additional parameters for y, i.e.  and ; and two for x, i.e.  and 

. If conditional independence is assumed, then  and . If one 

outcome measurement is completely dependent on another one, then 

and . In general,  and  vary between complete independence 

and complete dependence. Hence, the following constraints apply: 

 and . Similar constraints exist 

for  and . The other probabilities of  are

(6)

Similarly, the other probabilities of  are

(7)
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The parameter vector under conditional dependence has four additional parameters, i.e. 

, compared to that in Section 2.1. The likelihood 

formulation remains identical to equation (5), while each component pabcd is differently 

expressed as detailed in Section A of Appendix. We thereafter refer to the model assuming 

conditional dependence in both measurements of y and x as M2.

2.3 Bayesian inference

To infer the unknown parameter vector θ, we use Bayesian inference based on MCMC 

posterior simulations. We use vague priors on all parameters. Specifically, we use normal 

priors with mean zero and variance four on each component of vectors β and γ in the 

simulation. We use uniform priors on each component of vectors p, q ~ Unif[0.5, 1], in 

which we assume the diagnosis tests are more accurate than a coin toss. While this 

assumption is slightly stronger than the conditions for identifiability (i.e. p+q>1),34 we 

believe that this assumption is reasonable for tests in practical use. For model M2, we 

impose uniform priors for the additional parameters introduced in Section 2.2, i.e. 

 and . For the ease of 

sampling in MCMC, we reparameterize , and  as

(8)

These parameters vary between 0 and 1 and represent the degree of conditional dependency 

(e.g. 0 for conditional independence and 1 for complete conditional dependence). In each 

MCMC cycle, we sample  and then back transform into 

, and  using equation (8).

The model fitting is performed in OpenBUGS (OpenBUGS version 3.2.1) by specifying the 

likelihood function and the prior distribution of all unknown parameters. We use the history 

plots available in OpenBUGS and view the absence of apparent trend in the plot as evidence 

of convergence. In addition, we use the Gelman–Rubin diagnostic to insure the scale 

reduction R̂ of all parameters is smaller than 1.1.35

To make selection among models, we adopt a model selection approach using the deviance 

information criterion (DIC) proposed by Spiegelhalter et al.36 The DIC provides an 

assessment of model fitting and a penalty for model complexity. The deviance statistic is 

defined as D(θ)=−2log f(y|θ)+2log h(y), where f(y|θ) is the likelihood function for the 

observed data matrix y given the parameter vector θ and h(y) denotes a standardizing 

function of the data alone that has no impact on model selection.37 The DIC is defined as 

DIC =2D̄ − D(θ̄) = D̄ + pD, where D̄ = Eθ|y[D] is the posterior mean of the deviance, D(θ̄) = 

D(Eθ|y[θ]) the deviance evaluated at the posterior mean θ̄ of the parameter vector, and pD = 

D̄ − D(θ̄) the effective number of parameters. Smaller values of DIC indicate a better-fitting 

model. We use OpenBUGS to compute the DIC.
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To evaluate evidence against model M1 within the Bayesian framework, we compute a 

Bayes factor.38 When equal prior probability is given to each candidate model, the Bayes 

factor of model M2, relative to model M1, is defined as: BF21=f(y|M2)/f(y|M1), where f(y|Mk), 

for k=1, 2, is the predictive probability of the observed data under model Mk and f(y|Mk)=∫ 

f(y|Mk, θk)p(θk|Mk)dθk, with θk being the parameter vector for model Mk and p(θk|Mk) being 

the prior density of the parameter for model Mk. The predictive probability is estimated 

using the Laplace–Metropolis estimator.39 Model M2 is supported when BF21>1, and model 

M1 is supported otherwise.

3 Simulation study

In this section, we conduct four sets of simulations in which both the binary response 

variable and a binary covariate are misclassified under various scenarios. We consider a 

continuous covariate (z) for both the outcome model (1) and the exposure model (2), i.e. 

zy=zx=z. This covariate (i.e. pre-progression rate) is a continuous variable representing 

disease progression prior to the first visit. Detailed explanation of this variable is provided in 

Section 4. We generate z from N(0, 2.52). We simulate 500 datasets with 400 subjects within 

each. In each simulated dataset, we run two chains with 15,000 iterations per chain. The first 

5000 iterations are discarded as burn-in, and the inference is based on the remaining 10,000 

iterations. The MCMC convergence and mixing properties are assessed by visual inspection 

of the history plots of all parameters and Gelman–Rubin diagnostic. In all sets of simulation, 

the MCMC chains mix well after the burn-in of 5000 iterations. We evaluate the 

performance of three methods: (a) the ideal analysis which is based on the true unobserved 

disease (y) and exposure statuses (x); (b) the naive analysis which ignores the 

misclassification and treats y1 and x1 as if they were the actual disease status y and exposure 

status x; and (c) the proposed models M1 and M2. Note that we only have the luxury of 

doing the ideal analysis in simulations because the true disease and exposure statuses are 

available.

3.1 Assuming conditional independence

In the first set of simulations, we assume conditional independence for both the disease and 

exposure measurements. Data are generated by the following algorithm.

1. Simulate the unobserved exposure status x using Bernoulli distribution with 

probability of exposure πx following the exposure model (2) with γ=(−0.85, 1.5)′.

2. Simulate the unobserved disease status y using Bernoulli distribution with P(y=1|x, 

zy) following the outcome model (1) with β=(−0.70, 1.5, 1.5)′.

3. Conditional on x, simulate the observed exposure statuses x1 and x2 with the 

sensitivity and specificity (px1, qx1, px2, qx2)′ = (0.9, 0.75, 0.7, 0.95)′.

4. Conditional on y, simulate the observed disease statuses y1 and y2 with the 

sensitivity and specificity (py1, qy1, py2, qy2)′ =(0.8, 0.85, 0.85, 0.75)′.

5. Repeat steps 1–4 until all subjects are generated.

Table 1 presents the simulation results of the ideal analysis, the naive analysis, model M1, 

and model M2. The rows labeled ‘EST’ provide the average of the posterior means from 500 
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replications. The rows labeled ‘BIAS’ is ESTs minus the true values. The rows labeled ‘SE’ 

provide the square root of the average of the variances. The rows labeled ‘SD’ provide the 

standard deviation of the posterior means. The 95% credible intervals are obtained from the 

2.5% and 97.5% percentiles of the posterior samples of the parameters. The coverage 

probability (‘CP’) is the proportion of the 95% credible intervals containing true parameters. 

In Table 1, the ideal analysis has negligible bias on parameter estimates and the CPs 

fluctuate around 0.95. The naive analysis yields severely biased parameter estimates and the 

CPs are far away from the nominal levels. Model M1 is the correct model in this set of 

simulations and it provides estimates with small bias and CPs reasonably close to the 

nominal level. These results indicate that model M1 can successfully recover the true values 

when conditional independence is present in both measurements of y and x. In comparison, 

under model overparameterization, the results from model M2 still have reasonably small 

bias and CPs close to nominal level, although the bias and CPs are slightly worse than that 

of the model M1. Moreover, the parameters of sensitivity and specificity are slightly 

underestimated by model M2 when no conditional dependence exists. The estimates and SDs 

(in parentheses) of , and  are 0.121 (0.049), 0.124 (0.053), 0.209 (0.080), and 

0.247 (0.107), respectively. The fact that these parameter estimates are reasonably close to 

zero suggests that model M2 is still a reasonable model even when it is overparameterized.

3.2 Assuming conditional dependence

In the second set of simulations, we simulate the conditional dependence relationship 

illustrated in Section 2.2 and investigate the performance of the proposed modeling 

framework. Data are generated by the following algorithm.

1. Let , obtain  and  from equation (8) and the other probabilities 

of  from equation (7) with the sensitivity and specificity (px1, qx1, px2, 

qx2)′=(0.9, 0.75, 0.7, 0.95)′.

2. Let , obtain  and  from equation (8) and the other probabilities 

of  from equation (6) with the sensitivity and specificity (py1, qy1, py2, 

qy2)′=(0.8, 0.85, 0.85, 0.75)′.

3. Follow steps 1 and 2 in Section 3.1.

4. Simulate the observed exposure statuses x1 and x2 from a multinomial distribution 

with probability vectors ( ) if x=1, ( ) if 

x=0.

5. Simulate the observed disease statuses y1 and y2 from a multinomial distribution 

with probability vectors ( ) if y=1, ( ) if 

y=0.

6. Repeat steps 1–5 until all subjects are generated.

Table 2 displays the simulation results using all four methods. The ideal analysis still 

performs well because it directly uses the true values of y and x, so that the two conditional 

dependent measures are not utilized. The naive analysis produces severely biased results and 
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the CPs are far from 0.95. Model M2 is the correct model in this set of simulation and it 

provides estimates with small bias and the CPs are reasonably close to 0.95. The estimates 

for the four additional parameters ( ) are reasonably good (not shown). 

These results indicate that model M2 can successfully recover the true values when 

conditional dependence exists in both measurements of y and x. The SEs and SDs in model 

M2 are larger than those in ideal and naive analysis because that our model accounts for the 

additional variability from misclassification in response and a covariate. In contrast, under 

model misspecification, the results from model M1 have large bias and the CPs for most 

parameters substantially deviate from 0.95. Moreover, when conditional dependence is 

present, the parameters of sensitivity and specificity are substantially overestimated by 

model M1. This interesting phenomenon was first reported in Vacek,40 who also presented 

the asymptotic bias as a function of sensitivity, specificity, and their covariance. In 

summary, the results in Tables 1 and 2 suggest that model M2 is more robust to model 

overparameterization than model M1 to model misspecification.

Per the suggestions by one of the reviewers, it is of interest to investigate the performance of 

model M2 in the scenarios when the degree of conditional dependency parameters vary and 

when one test is very inaccurate (e.g. p=q=0.6). In the third set of simulation, we let the 

second test for x be very inaccurate (px2=qx2=0.6) and let the degree of conditional 

dependency parameters be  and . The results in Table 3 indicate 

that bias is small and the CPs are reasonably close to 0.95.

In the fourth set of simulation, we let the second test for y be very inaccurate (py2=qy2=0.6) 

and let the degree of conditional dependency parameters be  and . 

The results in Table 4 indicate that bias is small and the CPs are reasonably close to the 

nominal level. From Tables 3 and 4, we conclude that our modeling framework performs 

reasonably well under various degrees of conditional dependency parameters and even when 

one test is very inaccurate.

4 Data example

The proposed methodology has been motivated by the dataset including 626 patients who 

participated in a study conducted by the ADMDC at Baylor College of Medicine. All 

patients in this study have probable AD as determined by criteria from the National Institute 

of Neurological and Communicative Disorders and Stroke and Alzheimer’s Disease and 

Related Disorders Association.41 Clinical and neuropsychological data are obtained at 

baseline and at annual follow-up visits. Detailed description of the data, patient recruitment, 

assessment, and follow-up procedures have been reported in the literature.42,43 Although the 

dataset is longitudinal, this article will use only the baseline data for illustration purposes.

To measure these patients’ AD severity, four major neuropsychological test scores have 

been collected, i.e. Mini-Mental Status Exam (MMSE), Alzheimer’s Disease Assessment 

Scale-Cognitive Subscale (ADAS), Clinical Dementia Rating Scale-Sum of Boxes (CDR-

SB), and Clinical Dementia Rating Scale-Total (CDR-Total). MMSE (ranges from 0 to 30 

with higher scores reflecting better clinical outcomes) is a measurement to quantify 

cognitive function and to screen for cognitive loss.44 ADAS (ranges from 0 to 70 with 
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higher scores reflecting more serious cognitive impairment) assesses cognitive domains 

often impaired in AD including memory, orientation, visuospatial ability, language, and 

praxis.45 CDR-Total (ranges from 0 to 4 with higher score reflecting worse clinical 

outcome) is based on the ratings in six domains or boxes including memory, orientation, 

judgment/ problem solving, community affairs, home and hobbies, and personal care. The 

ratings are derived from patient interview and mental status examination in conjunction with 

an interview of a collateral source.46,47 CDR-Total is computed via an algorithm47 available 

online (http://www.biostat.wustl.edu/~adrc/cdrpgm/index.html). CDR-SB score (ranges 

from 0 to 18 with higher scores reflecting more serious global impairment) is obtained by 

simply summing ratings of the same six domains.

One question of interest to neurologists is to dichotomize these patients’ cognitive severity 

and overall disease severity statuses as mild vs moderate-to-severe and investigate how the 

overall disease severity (i.e. ‘exposure’) impacts the cognitive severity (i.e. ‘disease’). This 

information has significant implications in therapeutic decision-making and patient 

management.48,49 MMSE and ADAS scores mainly quantify cognitive function. MMSE 

score is dichotomized into ‘mild’ (y1=1) if MMSE ≥ 20 and ‘moderate-to-severe’ (y1=0) 

otherwise. ADAS score is dichotomized into ‘mild’ (y2=1) if ADAS ≤ 20 and ‘moderate-to-

severe’ (y2=0) otherwise. In contrast, CDR-Total and CDR-SB scores are evaluations of 

overall functional impairment. CDR-Total score is dichotomized into ‘mild’ (x1=1) if CDR-

Total ≤ 1 and ‘moderate-to-severe’ (x1=0) otherwise. CDR-SB score is dichotomized into 

‘mild’ (x2=1) if CDR-SB ≤ 9 and ‘moderate-to-severe’ (x2=0) otherwise. Both CDR-Total 

and CDR-SB are highly popular tools for staging AD total disease severity. For example, 

Perneczky et al.48 used CDR-Total as a gold standard to evaluate the staging performance of 

MMSE, while O’Bryant et al.49 discussed the advantage of CDR-SB. We thus consider both 

in our modeling framework. The binary statuses obtained from the above rules are proxies of 

the unknown ‘true clinical’ cognitive severity (y) and overall disease severity (x) and are 

subject to misclassification.

Among all the clinical variables collected, the pre-progression rate has been shown to be 

strongly associated with cognitive severity and progression50 and has prognostic value in 

dichotomizing AD patients’ cognitive severity and overall disease severity while controlling 

for possible confounding from age at baseline, premorbid IQ, and some other covariates.43 

The pre-progression rate is calculated using clinicians’ standardized assessment of symptom 

duration in years and the baseline MMSE by the formula: (30 – baseline MMSE)/estimated 

duration of symptoms in years, with higher values reflecting worse clinical outcome. 

Detailed description of these variables as well as their relationship to the cognitive functions 

can be found in Rountree et al.43

Figure 1 shows the boxplots displaying differences in the logarithm of pre-progression rates 

(0.1 is added to avoid −∞ when it equals to 0) for patients classified as mild and moderate-

to-severe in cognitive severity and in overall disease severity. Specifically, the patients who 

are mild in cognitive severity have significantly lower log pre-progression rates compared to 

moderate-to-severe ones (p<0.001 in two-sample t-tests of both MMSE and ADAS scores). 

Similarly, the patients who are mild in overall disease severity have significantly lower log 

pre-progression rates compared to moderate-to-severe ones (p<0.001 in two-sample t-tests 
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of both CDR-Total and CDR-SB scores). The information in pre-progression rate will help 

dichotomize the cognitive severity and overall disease severity in the sense that patients with 

lower log pre-progression rates are much more likely to be mild than being moderate-to-

severe in both cognitive severity and overall disease severity. In the analysis below, the log 

pre-progression rate, standardized age, and standardized premorbid IQ are included in both 

the outcome and exposure models with x, y=1 representing mild. Normal priors with mean 

zero and variance 10 are set on each parameter in the outcome and exposure models. We 

remove 30 patients with missing values (all occur in ADAS, CDR-SB, and CDR-Total) and 

our final analysis is based on the sample size of 596.

In the data analysis, we consider four models, i.e. naive, M1, M2, and M3, the partial 

dependence model assuming conditional independence in measurements of y and 

conditional dependence in measurements of x. Table 5 presents estimated DICs and Bayes 

factors for models M1, M2, and M3. Model M3 has the lowest DIC value. Moreover, the 

Bayes factor of model M3 relative to model M1 is 10.985, indicating positive evidence 

against model M1 according to the interpretation proposed by Kass and Raftery.38 Therefore, 

model M3 is selected as the final model. Note that DIC from the naive method are not 

provided because DICs are comparable only over models with exactly the same observed 

data36 and the naive model only uses part of the observed data.

Table 6 provides the posterior means, SDs, and 95% credible intervals for some parameters 

of interest of the final selected model M3. The results from other models are provided in 

Section B of Appendix. The outcome model results suggest that the patients who are mild in 

overall disease severity have statistically significantly higher probability of being mild in 

cognitive severity. Pre-progression rate is strongly associated with both cognitive severity 

and overall disease severity, i.e. for 1 unit increase in the natural logarithmic scale of the 

pre-progression rate, the odds ratios of being mild in cognitive and mild in overall disease 

severity are 0.183 (i.e. exp(−1.698); 95% credible interval [0.105, 0.303]) and 0.483 (i.e. 

exp(−0.728); 95% credible interval [0.280, 0.785]), respectively, holding other covariates 

fixed. Premorbid IQ is also associated with both cognitive severity and overall disease 

severity, i.e. for 10 units increase from the mean premorbid IQ scores (108.7), the odds 

ratios of being mild in cognitive severity and mild in overall disease severity are 2.314 (i.e. 

exp(0.839); 95% credible interval [1.587, 3.294]) and 2.330 (i.e. exp(0.846); 95% credible 

interval [1.606, 3.854]), respectively, holding other covariates fixed. Note that age is not 

associated with cognitive severity. This finding is consistent with an article published by our 

group (Doody et al50), in which age is not significantly related to the cognitive score in the 

adjusted model (Table 3 in Doody et al).

CDR-Total and CDR-SB exhibit strong conditional dependence. Specifically, the estimates 

of  and  are 0.658 (SD: 0.257) and 0.832 (SD: 0.218), respectively. These results are not 

unexpected because both CDR-Total and CDR-SB are based on the patients’ ratings in same 

six domains with the difference being the computing algorithms. If the measurements of 

ratings incur errors, both CDR-Total and CDR-SB are likely to encounter errors in the same 

direction (positively correlated). Therefore, it is necessary to assume conditional dependence 

between CDR-Total and CDR-SB in this example. By comparing the estimates of p and q of 

CDR-Total and CDR-SB from model M3 and model M1 (Table 6 vs Table 7 in Section B of 
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Appendix), we confirm that model M1 overestimates the parameters of sensitivity and 

specificity when conditional dependence is present, as reported in Section 3.2. In addition, 

the estimates of  and  are 0.982 (SD: 0.010) and 0.663 (SD: 0.120), respectively. 

Specifically, when the true overall disease severity is mild, the probability that both CDR-

Total and CDR-SB are mild is 0.982. In contrast, when true overall disease severity is 

moderate-to-severe, the probability that both CDR-Total and CDR-SB are moderate-to-

severe is 0.663. Clinically speaking, this implies that CDR-Total and CDR-SB are more 

likely to give consistent and accurate measures for mild patients and less likely to give 

consistent and accurate measures for moderate-to-severe patients.

5 Discussion

In this article, we present a Bayesian approach to address the issue of misclassification 

occurring in both the binary response variable and one binary covariate in the absence of a 

gold standard. We relax the commonly made assumption of conditional independence using 

the approach by Black and Craig.33 Extensive simulation results show that the parameters, 

including the sensitivity and specificity of the imperfect measurements, can be successfully 

recovered by our proposed models. In addition, the simulation results suggest that the 

independence model (M1) substantially overestimates the parameters of sensitivity and 

specificity when conditional dependence exists, while the dependence model (M2) only 

slightly underestimates the parameters of sensitivity and specificity when no conditional 

dependence exists. In the analysis of the Baylor AD dataset, the cognitive severity and 

overall disease severity are highly correlated. Both pre-progression rate and premorbid IQ 

are associated with the cognitive severity and overall disease severity. In general, the 

proposed method can be broadly applied to binomial regression where misclassification 

exists in both the response variable and one binary covariate.

Adjustment for potential bias due to misclassification requires information on the 

misclassification structure to make the model identifiable.26 The covariate, i.e. pre-

progression rate, included in the models is an important determinant of both cognitive 

severity and overall disease severity. This is manifested by the clear dichotomy in log pre-

progression rate displayed in Figure 1. As pointed out by Nagelkerke et al.,51 this variable is 

an instrumental variable and it makes the model identifiable when its number of different 

possible realizations is sufficient. Since pre-progression rate is a continuous variable, its 

number of different possible realizations is potentially unlimited.

Our modeling framework has several limitations that we view as future research direction. 

One limitation is the non-differential assumption, i.e. the sensitivity and specificity do not 

depend on the covariates or response. This assumption has been relaxed in some statistical 

literature.52 Another limitation is that our model is fully parametric. It is worth investigating 

how the model inference changes under various models. In addition, because the 

information from the covariate (i.e. pre-progression rate) helps in classification, it would be 

of statistical interest to see how the covariate effect influences the model identifiability. We 

will address these issues in our future work. Moreover, Bayesian average power criterion 

has recently been used to evaluate the impact of misclassified variables in logistic regression 

models.53,54 As a direction of future research, we can use Bayesian average power to 
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investigate whether misclassification of response or misclassification of a covariate has a 

larger effect on power and bias.
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Appendix

Section A: likelihood derivation

The observed likelihood for one subject is

where P(y1, y2|x, zy)=P(y1, y2|y=1)p(y=1|x, zy)+P(y1, y2|y=0)p(y=0|x, zy). Under conditional 

independence assumption, we have 

, and ; while under conditional dependence assumption, 

we have 

, and 

.

After simplification, the observed likelihood becomes

Luo et al. Page 14

Stat Methods Med Res. Author manuscript; available in PMC 2014 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where pabcd=p(y1=a,y2=b,x1=c,x2=d|zy,zx)=P(y1=a,y2=b|x=1,zy)P(x1=c,x2=d|x=1)πx+ 

P(y1=a,y2=b|x=0,zy)P(x1=c, x2=d|x=0)π̄
x.

Section B: analysis results of Baylor AD dataset under various models

Table 7

Analysis results of Baylor AD dataset under various models.

Naive M1 M2

PMSD 95% CI PMSD 95% CI PMSD 95% CI

Outcome model

 Int 0.683.353 −0.008, 1.374 −0.044.551 −1.200, 0.946 −0.7011.141 −3.831, 0.891

 x 1.881.320 1.254, 2.507 2.674.520 1.762, 3.838 3.5391.180 1.887, 6.758

 Pre-prog −1.347.184 −1.707, −0.987 −1.681.241 −2.174, −1.222 −1.796.298 −2.431, −1.258

 Age −0.136.114 −0.360, 0.088 −0.175.148 −0.472, 0.104 −0.113.216 −0.491, 0.387

 IQ 0.606.116 0.379, 0.834 0.917.158 0.616, 1.241 0.868.212 0.445, 1.291

Exposure model

 Int 2.788.264 2.271, 3.304 2.864.278 2.347, 3.430 2.797.389 2.055, 3.598

 Pre-prog −0.603.200 −0.996, −0.211 −0.623.209 −1.034, −0.224 −0.719.259 −1.267, −0.245

 Age −0.404.141 −0.679, −0.128 −0.412.146 −0.711, −0.130 −0.508.202 −0.943, −0.155

 IQ 0.687.135 0.422, 0.953 0.680.140 0.406, 0.955 0.859.225 0.482, 1.370

MMSE

 p 0.974.014 0.942, 0.997 0.973.017 0.934, 0.998

 q 0.793.046 0.702, 0.881 0.771.052 0.666, 0.870

 ADAS

 p 0.815.027 0.762, 0.869 0.809.029 0.752, 0.865

 q 0.906.029 0.845, 0.960 0.883.038 0.803, 0.951

CDR-Total

 p 0.993.005 0.980, 1.000 0.986.010 0.962, 0.999

 q 0.982.017 0.936, 1.000 0.786.142 0.566, 0.996

CDR-SB

 p 0.997.003 0.990, 1.000 0.989.008 0.969, 0.999

 q 0.834.049 0.732, 0.923 0.664.118 0.504, 0.876

Naive: naive analysis which ignores misclassification and treats y1 and x1 as y and x, respectively; M1: the model assuming 

conditional independence in both measurements of y and x; M2: the model assuming conditional dependence in both 
measurements of y and x; pre-prog: log pre-progression rate; age: standardized age; IQ: standardized premorbid IQ; CI: 
Credible interval; MMSE: Mini-Mental Status Exam; ADAS: Alzheimers Disease Assessment Scale-Cognitive Subscale; 
CDR-Total: Clinical Dementia Rating Scale-Total; and CDR-SB: Clinical Dementia Rating Scale-Sum of Boxes.
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Figure 1. 
Box-plots of log pre-progression rates for patients classified as mild or moderate-to-severe 

in various scores.

MMSE: Mini-Mental Status Exam; ADAS: Alzheimers Disease Assessment Scale-

Cognitive Subscale; CDR-SB: Clinical Dementia Rating Scale-Sum of Boxes; CDR-Total: 

Clinical Dementia Rating Scale-Total; CDR-T: CDR-Total; and CDR-S: CDR-SB.
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Table 5

Model comparison statistics for Baylor AD dataset.

Model D̄ pD DIC BF

M1 1610.474 14.200 1624.674 Ref

M2 1613.274 11.442 1624.674 0.847

M3
a 1609.974 11.398 1621.374 10.985

D̄: the posterior mean of the deviance; pD: the effective number of parameters; DIC: deviance information criterion; and BF: Bayes factor.

a
preferred model.
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Table 6

Analysis results of Baylor AD dataset under the final selected model (M3: the model assuming conditional 

independence in measurements of y and conditional dependence in measurements of x).

PMSD 95% CI

Outcome model

 Int −0.518.990 −3.213, 0.854

 x 3.3011.029 1.900, 6.014

 Pre-prog −1.698.268 −2.254, −1.195

 Age −0.098.197 −0.450, 0.342

 IQ 0.839.185 0.462, 1.192

Exposure model

 Int 2.824.397 2.078, 3.648

 Pre-prog −0.728.260 −1.274, −0.242

 Age −0.503.199 −0.943, −0.148

 IQ 0.846.222 0.474, 1.349

MMSE

 p 0.975.014 0.943, 0.997

 q 0.795.046 0.703, 0.883

ADAS

 p 0.814.027 0.761, 0.867

 q 0.906.030 0.844, 0.907

CDR-Total

 p 0.986.010 0.962, 0.999

 q 0.796.143 0.568, 0.996

CDR-SB

 p 0.989.008 0.970, 0.999

 q 0.673.120 0.504, 0.880

MMSE: Mini-Mental Status Exam; ADAS: Alzheimers Disease Assessment Scale-Cognitive Subscale; CDR-Total: Clinical Dementia Rating 
Scale-Total; CDR-SB: Clinical Dementia Rating Scale-Sum of Boxes; CI: Credible interval; Pre-prog: log pre-progression rate; age: standardized 
age; and IQ: standardized premorbid IQ.
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