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Abstract

In Parkinson’s disease (PD) clinical trials, Parkinson’s disease is studied using multiple outcomes 

of various types (e.g. binary, ordinal, continuous) collected repeatedly over time. The overall 

treatment effects across all outcomes can be evaluated based on a global test statistic. However, 

missing data occur in outcomes for many reasons, e.g. dropout, death, etc., and need to be imputed 

in order to conduct an intent-to-treat analysis. We propose a Bayesian method based on item 

response theory to perform multiple imputation while accounting for multiple sources of 

correlation. Sensitivity analysis is performed under various scenarios. Our simulation results 

indicate that the proposed method outperforms standard methods such as last observation carried 

forward and separate random effects model for each outcome. Our method is motivated by and 

applied to a Parkinson’s disease clinical trial. The proposed method can be broadly applied to 

longitudinal studies with multiple outcomes subject to missingness.
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1 Introduction

Parkinson’s disease (PD), a degenerative disorder of the central nervous system, is one of the 

most common movement disorders affecting about 1% of people older than 60 years.1 The 

symptoms of PD include primary motor symptoms (e.g. resting tremor, slow movement, 

rigidity, and postural instability, etc.), secondary motor symptoms (e.g. speech problems, 

cramping, swallowing difficulty, etc.), and non-motor symptoms (e.g. sleep problems, pain, 

depression, etc.). Because there is no cure for PD, many drugs have been studied over the 

last 20 years to decrease the progression and disability of the disease.
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A major challenge when studying PD is that impairment is multidimensional and 

progressive. Thus, for efficient development, targeting, and evaluation of treatments, it is 

necessary to collect longitudinally multiple outcomes (e.g. clinical rating scales or patient 

completed questionnaires) of various types (e.g. binary, ordinal, continuous). Common 

approaches for handling multiple outcomes include choosing a single outcome as a primary 

outcome, the use of a linear combination of several outcomes, multiple tests with adjustment 

to the overall significance level, omnidirectional tests of any type of treatment difference 

(e.g. Hotelling’s T2 test, MANOVA, Wald test, and 2 test), and hierarchical models. Detailed 

review and discussion of these methods can be found in Pocock2 or Tilley et al.3 These 

methods address a directionless scientific question, i.e. whether there is any difference 

between two treatments in these outcomes. However, the major scientific question of many 

PD clinical trials is directional, i.e. whether target treatment is preferred over placebo in 

slowing PD progression based on all primary outcomes measured. When the treatment slows 

progression across all outcomes, the aforementioned approaches tend to statistically obscure 

findings and lose power.2,3 To address this issue, O’Brien4 has introduced a global statistical 

test (GST) to combine information across outcomes and to examine whether a treatment has 

a global benefit without the need of multiple tests. The GST is more powerful than a 

univariate test or other multiple test procedures when there is a common dose effect across 

outcomes (i.e. treatment effect is of similar magnitude across all outcomes). The GST was 

further extended and discussed by many authors,5-15 and has found broad application in 

medical studies on toxicity,16 stroke,17,18 dermatology,19 asthma,20 lower back pain,21 

restless legs syndrome,22 neuropsychological impairment,23 multiple sclerosis,24,25 and 

breast cancer.26

The rank-sum-type GST proposed by O’Brien4 is conducted as follows. First, for each 

outcome, all individuals are ranked based on their measured outcomes. Then each 

individual’s ranks are summed to obtain a rank sum. Finally, a two-sample t-test is applied 

to compare the rank sums between the treatment and placebo groups. This rank-sum-type 

GST can combine the treatment effect in all outcomes without making any parametric 

assumption on the outcome distributions and their correlation. However, Huang et al.12 has 

proved that O’Brien’s rank-sum-type GST cannot control type I error asymptotically when 

two groups have different joint cumulative distribution functions. To address this issue, 

Huang et al.12 proposed an adjusted rank-sum-type GST (referred to as adjusted GST) for 

the case where variances in two groups are different. The adjusted GST is computed 

similarly to O’Brien’s rank-sum-type GST, but it is divided by an adjustment factor. In 

addition, Huang et al.13 introduced the concept of global treatment effect (GTE), which 

measures a treatment’s overall benefit across multiple outcomes. In this article, we have 

selected the adjusted GST and GTE to assess the efficacy of PD treatment in a clinical trial.

Another challenge in longitudinal PD clinical trials is that missing data are ubiquitous due to 

missed visits, withdrawals, lost to follow-up, death, etc. However, when missing values are 

present in the response variables, the adjusted GST and GTE cannot be computed unless all 

individuals with missing values are excluded. The primary efficacy evaluation in 

confirmatory clinical trials is often required by agencies to follow the ‘intent-to-treat’ (ITT) 

principle, i.e. the analysis includes all randomized individuals regardless of the treatment 

they actually received, drop-out, or withdrawal of consent. By including all patients who are 
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randomized, the ITT analysis preserves the benefits of randomization and is commonly 

accepted as the most unbiased approach. However, if the individuals drop out of the study, 

the data after dropout are missing. Therefore, the ITT analysis requires a method of dealing 

with the missing data. Complete-case (CC) analysis excludingall individuals with any 

missing values is seriously biased when the missing is not completely at random (MCAR) 

and less efficient27 and it violates the ITT principle. Other standard methods such as last 

observation carried forward (LOCF), i.e. imputing with the value at the last available 

observation or with the worst observation for the group have been used in multiple PD 

studies.28,29 Although the LOCF and worst observation imputation methods follows the ITT 

principle, neither are ideal in this context. They are single imputation methods and 

underestimate the true variability leading to biased tests.30 The LOCF method 

underestimates disease progression because the last observed visit (when patient is expected 

to be less affected) is used in lieu of the final time point. Additionally, when there are 

multiple outcomes, both the LOCF and worst observation methods fail to account for the 

correlation among outcomes. A good review of the missing data methods for longitudinal 

studies can be found in Ibrahim et al.31 and Ibrahim and Molenberghs.32

A better approach is to impute the missing outcomes using some imputation model. 

Imputation uncertainty is handled by multiple imputation (MI), where M > 1 sets of imputed 

values are created for the missing values in the dataset, as draws from the predictive 

distribution of the missing values under an assumed imputation model.33 Among the 

multivariate longitudinal outcomes, there are three-sources of correlation, i.e. inter-source 

(different measures at the same visit), intra-source (same measure at different visits), and 

cross correlation (different measures at different visits).34 One may conduct multiple 

imputation for each outcome using separate random effects models. But this method 

(referred to as separate models) ignores the inter-source and cross correlation. To the best of 

our knowledge, there is no available method that readily imputes the missing values in 

multivariate longitudinal response variables of mixed type while accounting for all sources 

of correlation. Our objectives in this article are to develop a Bayesian method based on item 

response theory (IRT) to perform multiple imputation (MI) for the missing multivariate 

longitudinal outcomes while accounting for all sources of correlation and to assess a 

treatment’s global effect across multiple outcomes. Because imputation and statistical 

inference are carried out separately with the MI method, the MI method has the flexibility 

that the imputation model differs from the model used for assessing treatment effect.35

The remainder of the article is organized as follows. In section 2.1, we introduce a 

motivating ongoing PD clinical trial where a moderate amount of missing values has been 

occurring and in section 2.2 we illustrate the primary analysis methods for this trial. In 

section 3, we describe the imputation model, multiple imputation using MCMC, and the 

specification of prior distributions. In section 4, sensitivity analysis is performed under 

various scenarios to evaluate several methods. Section 5 applies the proposed methodology 

to a PD clinical trial dataset. A discussion is provided in section 6.
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2 A motivating ongoing clinical trial and the primary analysis methods

2.1 A motivating ongoing clinical trial

This article is motivated by the ongoing NIH Exploratory Trials in Parkinson’s Disease 

(NET-PD) Long-term Study-1 (referred to as LS-1 study) funded by the National Institute of 

Neurological Disorders and Stroke (NINDS). The enrollment ended in 2010 and follow-up 

will be completed in 2015. The LS-1 study is a randomized, multi-center, double-blind, 

placebo-controlled Phase III study of creatine (the study drug, 10 g daily) in individuals with 

early treated PD. A total of 1741 individuals from 45 sites in the US and Canada were 

equally randomized to either 10 g creatine/day or matching placebo with annual follow-up 

for a minimum of 5 years. The LS-1 study evaluates the long-term effects of creatine as 

measured by change from baseline in a variety of clinical domains including modified 

Rankin score (Rankin), Schwab and England activities of daily living (SEADL), ambulatory 

capacity (AC), PDQ-39 summary score (PDQ-39), and symbol digit modalities (SDM). 

Rankin (an ordinal variable with integer value from 0 to 5, with larger value reflecting worse 

clinical outcomes) is a measurement of overall clinical assessment.36 SEADL (an ordinal 

variable with integer value from 0 to 100 incrementing by 5, with larger value reflecting 

better clinical outcomes) is a measurement of activities of daily living.37 AC is an ordinal 

variable with integer value from 0 to 20, with larger value reflecting worse clinical 

outcome.38 PDQ-39 (an approximate continuous variable with integer value from 0 to 156, 

with larger value reflecting worse clinical outcomes) is a measurement of quality of life.39 

SDM (an approximate continuous variable with integer value from 0 to 110, with larger 

value reflecting better clinical outcomes) is a measurement of cognitive function.40 The 

measurement of these five outcomes are taken at baseline, annual visits from year 1 to 5. The 

LS-1 study represents the largest number of patients with early treated PD ever enrolled in a 

clinical trial. Details of the LS-1 study can be found on the study website http://

parkinsontrial.ninds.nih.gov/index.htm. It is expected that there will be approximately 20% 

missing data across the various outcomes. The primary analysis is to compare the creatine 

versus placebo groups using the adjusted GST and GTE based on these five outcomes’ 

changes from baseline to the last visit of year 5. Because the computation of the adjusted 

GST and GTE requires all outcomes to be in the same direction, we recode outcomes 

SEADL and SDM so that higher values in all outcomes are worse clinical conditions. We 

will next illustrate how to compute the adjusted GST and GTE in section 2.2.

2.2 The primary analysis methods

Suppose K outcomes are measured for N individuals at a total of J visits. Let yijk (binary, 

ordinal, and continuous) be the observed outcome k (k = 1, …, K) from individual i (i = 1, 

…, N) at visit j(j = 1, …, J, where j = 1 is baseline). We assume that the first n1 individuals 

are in the placebo group and the next n2 individuals are in the treatment group, and then N = 

n1 + n2. Let zik = yiJk − yi1k be the change from baseline to the last visit (e.g. 5 years) for 

outcome k (referred to as outcome change). Throughout the article, we code all outcomes so 

that larger observation values are worse clinical conditions. Because the clinical outcomes of 

PD patients generally deteriorate over time, we expect zik to be positive. For each outcome 

change, we rank all N individuals. Define the midrank of an observation as either the regular 

rank when there is no tie on the observation or the average rank among the tied 
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observations.41 Let Rik = midrank(zik). In general, higher zik values correspond to larger Rik. 

The rank sum of individual i is . O’Brien’s rank-sum-type test statistic T is 

defined as the regular univariate two-sample t-test with pooled standard deviation for the two 

rank sum samples from the placebo and treatment groups.4 Specifically

(1)

where , , , and 

. O’Brien’s test statistic T rejects the null hypothesis of no 

treatment effect at significant level α when |T|>tdf,α/2, where tdf,α/2 is the (1−α/2)th 

percentile of the tdf distribution with df degree of freedom, with df=[ζ2/(n1−1)+(1−ζ)2/

(n2−1)]−1 and .12

However, Huang et al.12 has proved that O’Brien’s unadjusted rank-sum-type GST cannot 

control type I error asymptotically when two groups have different joint cumulative 

distribution functions. Instead, Huang et al.12 proposed an adjusted rank-sum GST test 

statistic Ta (referred to as adjusted GST statistics)

(2)

where  (see Huang et al.12 for the details of computation) is the estimate of the asymptotic 

variance of O’Brien’s test statistic when the variances in the two groups are different. Huang 

et al.13 has shown that as the N increases, Ta converges to a normal distribution with 

asymptotic mean  and variance 1, where J is a K-dimensional 

vector with all its elements equal to one,  is GTE defined next. Please see Huang et al.13 

for the formula to compute Σ and . In this article, we use the adjusted GST statistics to test 

the efficacy of the treatment. We refer to  in Ta as rank sum difference and 

 as estimated variance of the rank sum difference. Note that if the 

treatment is efficacious in slowing the PD progression, we expect  and Ta>0.

To measure a treatment’s overall benefit across multiple outcomes, Huang et al.13 defined 

GTE as the difference of two probabilities: the probability that a control group individual 

will do better if the individual is in the treatment group, and the probability that a treatment 

individual will do better if the individual is in the control group. Let Z1k and Z2k be the 

change from baseline to the last visit (e.g. 5 years) for outcome k in the placebo and 

treatment groups, respectively. We expect Z1k and Z2k to be positive and Z1k > Z2k if a 

treatment is efficacious in slowing the PD progression. Let the treatment effect on outcome k 
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be ψk = p(Z1k > Z2k)−p(Z1k < Z2k). The GTE across all K outcomes is . 

The GTE takes values between −1 and 1 and it measures the degree of dissimilarity between 

two groups. When , there is no global preference between groups. When , the 

treatment group is preferred the most. When , the placebo group is preferred the 

most. Higher positive  corresponds to a higher degree of treatment group preference. We 

will next illustrate how to impute the missing data so that the ITT principle can be followed 

when computing the adjusted GST and GTE.

3 Models used in MI inference

3.1 Imputation model

In this section, we propose the imputation model based on the item response theory for the 

multivariate longitudinal data. Let yij = (yij1, …, yijk, …, yijK)’ be the vector of observation 

for individual i at visit j, with elements possibly being binary, ordinal, and continuous. Let yi 

= (yi1, …, yiK)’ be the outcome vector across visits. We model the binary outcomes, the 

cumulative probabilities of ordinal outcomes, and the continuous outcomes using a two-

parameter model,42 graded response model,43 and common factor model,44 respectively.

(3)

(4)

(5)

where random error ,ak is the outcome-specific ‘difficulty’ parameter and bk 

is the outcome-specific ‘discriminating’ parameter that is always positive and represents the 

discrimination of outcome k, i.e. the degree to which the outcome discriminates between 

individuals with different latent disease severity θij. In model (4), the ordinal outcome k has 

nk categories and nk − 1 thresholds ak1, …, akl, …, aknk−1 that must satisfy the order 

constraint ak1< …, akl< … <aknk−1. The probability that individual i selects category l on 

outcome k at visit j is p(Yijk = l|θij) = p(Yijk ≤ l|θij)− p(Yijk ≤l − 1|θij). The latent variable θij 

is continuous and it indicates individual i’s unobserved disease severity at visit j, with a 

higher value denoting more severe status. We refer to θij as disease severity. The mean of θij 

is modeled as a function of covariates and visit time

(6)

where Xi is individual i’s covariate vector including some covariates of interest (e.g. 

treatment assignment) and potential confounding variables (e.g. age, gender), tj is the visit 

time variable with t1 = 0 for baseline. For example, if Xi only includes the treatment 

assignment, μij = [β0 + β1Ii(trt)]tj, where I(·) is an indicator function, Ii(trt) = 1 if individual i 
is in the treatment group. The significant negative coefficient β1 indicates that the treatment 

significantly improves the disease severity. Model (6) is a latent trait regression model 
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assuming that the disease severity is expected to change linearly over the course of the study, 

with slope depending on the covariate vector Xi.45

The latent disease severity vector θi = (θi1, …, θiJ)’ is assumed to be independently and 

identically distributed with normal probability density function h(θi, Σ), i.e. θi|Σ ~ NJ(μi, Σ), 

where μi = (μi1, …, μiJ)’ is the mean vector of θi, Σ is the J × J covariance matrix of θi with 

σlm being the (l, m) element. Various assumptions can be made on the covariance matrix, 

e.g. uniform (equal variance and equal correlation), autoregressive (correlation decreases as 

time separation increases), heteroscedastic (unequal variance and equal correlation), and 

more generally, unstructured (unequal variance and unequal correlation).46 We use an 

unstructured covariance matrix in this article. This IRT model accounts for all three sources 

of correlations illustrated in section 1. Specifically, the inter-source correlation (different 

measures at the same visit) is modeled by the disease severity θij. Both the intra-source 

correlation (same measure at different visits) and cross correlation (different measures at 

different visits) are modeled by the correlation between θij and θij’ with j ≠ j’ through the 

off-diagonal elements of covariance matrix Σ.

It is well-known that the item-response models are over-parameterized because they have 

more parameters than can be estimated from the data.47,48 Hence additional constraints are 

required to make models identifiable. In the longitudinal setting discussed here, the mean 

and variance of θij at one visit may be specified to establish the location and scale of the 

disease severity distribution.49 Specifically, we set σ11 = 1 (the variance of θij at baseline) 

and additionally we set t1 = 0 at baseline to make μi1 = 0 through model (6) to ensure 

parameter identifiability.

Under the local independence assumption (i.e. conditioning on the disease severity θij, all 

components in yij are independent), the full likelihood of individual i across all visits is

(7)

For notation convenience, we let the difficulty parameter vector be a = (a1, …, aK)’, the 

discrimination vector be b = (b1, …, bK)’, and the parameter vector Φ = (a, b, β, Σ)’.

3.2 Bayesian multiple imputation

In this section, we illustrate how to use Markov chain Monte Carlo (MCMC) algorithm to 

iteratively draw samples for the parameter vector Φ and the missing outcome data from 

conditional distributions and how to perform multiple imputation to make appropriate 

statistical inference. Let Ymis and Yobs be the missing and observed responses, respectively. 

Multiple imputations under models (3), (4), and (5) are M independent draws 

from the posterior predictive distribution for the missing data, 

. The observed-data posterior density 

is , where π(Φ) is the prior distribution, the observed 

likelihood function . As in most missing data 

problems with unknown missing patterns, the posterior predictive distribution p(Ymis|Yobs) 
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cannot be simulated directly. We use a Gibbs sampling algorithm to draw the missing values 

from p(Ymis|Yobs). Specifically, the current versions of the parameter vector Φ(t), the missing 

data , and the disease severity θ(t) are updated in three steps:

Starting from a reasonable initial values Φ(0) and , these steps define a cycle of Gibbs 

sampler. Repeating the above Gibbs sampling algorithm with large enough number of 

iterations, it creates stochastic sequences  and  whose 

limiting distributions are p(Φ|Yobs) and p(Ymis|Yobs), respectively. We implement this 

algorithm in WinBUGS.50 We use the trace plots available in WinBUGS and view the 

absence of apparent trend in the plots as evidence of convergence. In addition, we run 

multiple chains with overdispersed initial values and compute the Gelman-Rubin scale 

reduction statistics  to ensure  of all parameters are smaller than 1.1.51 The length of 

burn-in is assessed by trace plots and autocorrelation for each parameter. If diagnostics tools 

suggest that convergence is achieved after T0 iterations, we would retain simulated missing 

values every (T − T0)/M iterations starting from t = T0 + 1 and treat them as M imputed 

datasets.

After M imputed datasets have been created, they can be analyzed using the primary analysis 

methods illustrated in section 2.2, resulting in M sets of rank sum differences and associated 

estimated variances computed based on the change of all outcomes from baseline to the last 

visit. The M sets of rank sum differences and associated estimated variances are combined to 

create one multiple-imputation inference by Rubin’s MI rules33 as follows. Let Dm and Vm 

denote the estimated rank sum difference and the associated estimated variance from the mth 

imputed dataset, respectively. The overall rank sum difference D is estimated by 

 and its variance is estimated by  where the 

between-imputation variance . The test statistic 

has approximately a central t-distribution under the null hypothesis of no treatment effect 

with degree of freedom .

Multiple imputation usually provides good MI efficiency and minimizes sampling variability 

with a moderate M. Specifically, we use M = 100 in this article. After M sets of GTE are 

computed based on M imputed datasets, the overall GTE is computed as the average of M 
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sets of GTE, but its variance cannot be computed because the variance formula is 

unavailable.

3.3 Specification of prior distribution

In this section, we illustrate selection of the prior distribution π(Φ). We use vague prior 

distributions on all elements in the parameter vector Φ. Specifically, the prior distributions of 

ak, k = 1, …, K, all elements in β are N(0, 100). We use the prior distribution bk ~ 

Uniform[0, 20], k = 1, … K, to ensure positivity. To obtain the prior distributions for the 

threshold parameters of ordinal outcome k, we first define unconstrained auxiliary 

parameters  such that  for l = 1, …, nk − 1, and set 

akl equal to the l-th order statistic of the auxiliary parameters. This approach to modeling 

threshold parameters is recommended by Plummer.52 For the ease of sampling for Σ, we use 

an approach based on the Cholesky decomposition.53 Let Σ=ΩΩ’, where Ω is a matrix with 

zero entries above the main diagonal, and let ωlm be the (l, m)th entry for 1 ≤ m ≤ l ≤ J. 

Consider a latent vector zi = (zi1, …, ziJ)’ with N(0, 1) independent components. Then the 

linear reparameterization of  (with element being , e.g. 

) has mean μi and variance Σ. The entries of the matrix Σ are 

computed as , 1 ≤ l, m ≤ J, where l ∧ m = min(l, m). We impose 

Uniform(0, 20) prior distribution on ωkk to ensure non-negativity and N(0, 100) prior 

distribution on ωlm where l ≠ m to allow for possible negative correlation.

To summarize the multiple imputation methods illustrated in section 3, we fit item-response 

models (3), (4), and (5) with mean model (6) to obtain M full datasets with missing outcome 

values at all visits imputed, compute the change from baseline to the last visit for each 

outcome, rank all individuals on each outcome, add up each individual’s ranks to obtain a 

rank sum, compute the estimated rank sum difference and the estimated variance using 

equation (2) and compute the GTE, the results are combined using Rubin’s MI rules.

4 Simulation

In this section, we perform a sensitivity analysis under various scenarios. We conduct 

extensive simulation studies to evaluate the performance of the LOCF, separate models (use 

linear mixed models and proportional odds models as imputation models for continuous and 

ordinal outcomes, respectively), and MI method. We simulate the datasets with data 

structure similar to the LS-1 study, e.g. five outcomes (with the first three ordinal outcomes 

representing Rankin, SEADL, and AC, respectively and with the last two continuous 

outcomes representing PDQ-39 and SDM, respectively) and six visits (baseline, annual 

visits from year 1 to 5). The outcome data are generated from multivariate normal 

distributions using the following algorithm.

1. From the baseline data in the ongoing the LS-1 study, we obtain the baseline mean 

vector of the five outcomes μ0 = (1.2, 91.1, 1.7, 13.2, 44.5)’ and the baseline inter-

source covariance matrix V of the five outcomes
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2. We select the intra-source correlation coefficient matrix

The covariance matrix Σ of five outcomes across six visits is Σ = V ⨷ W, where ⨷ 

is a Kronecker product and the dimension of Σ is 30 × 30.

3. From the protocol of the LS-1 study, the expected one year outcome change for the 

placebo and treatment groups are dP = (0.2, −2, 0.25, 3, −1.1)’ and dT=(0.16, −1.6, 

0.184, 2.4, −0.8)’, respectively. The mean vector across six visits for the placebo 

and treatment groups are 

and , respectively.

4. Simulate 400 individuals in the placebo group from a multivariate normal 

distribution with mean μP and covariance matrix Σ.

5. Simulate 400 individuals in the treatment group from a multivariate normal 

distribution with mean μT and covariance matrix Σ.

6. If the simulated outcomes are out of the reasonable bounds illustrated in section 

2.1, they are truncated to the closest bound. Round the outcomes Rankin, AC, 

PDQ-39, and SDM to the closest integers. Divide the outcome SEADL by 5 and 

round it to the closest integer because SEADL increments by 5.

7. Rescale outcomes SEADL and SDM so that larger values in all five outcomes 

represent worse clinical outcomes. To avoid that some categories have zero 

observations, we combine some categories in outcomes SEADL and AC so that 

they have seven and six categories, respectively.

We totally simulate 100 datasets. Let rijk (1 if missing, 0 otherwise) be the missing indicator 

of individual i’s outcome k at visit j. To simulate the missing data, we specify a model that 

describes the missing data process as follows.

(8)
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where φk1 = 0 implies that missingness only depends on the observed data in the last visit 

and is ignorable dropout mechanism (missing at random, MAR), while φk1 ≠ 0 implies an 

outcome-dependent non-ignorable dropout mechanism (missing not at random, MNAR).33 

We do not simulate any missing data at baseline and hence j = 2, …, 6 in model (8). In the 

simulation studies, we investigate two missing data mechanisms (MAR and MNAR), and 

two missing data patterns, i.e. non-monotone (an individual can be missing at one visit and 

then measured again at later visit) and monotone (sequences of measurements on some 

individuals terminate prematurely). To generate monotone missing pattern, we exclude yij’k 

for j’ ≥ j if rijk = 1. We select the appropriate φk,MAR = (φk0, φk2)’ and φk, MNAR = (φk0, φk1, 

φk2)’ for k = 1, …, 5 so that the overall missing percentages are 20%, 30%, and 40% in all 

combinations of missing mechanisms and missing patterns.

After the datasets with missing data are simulated, we first compute the adjusted GST 

statistics Ta and GTE based on the LOCF method, which does not require multiple 

imputation. Next, we compute Ta and GTE based on the separate models and MI methods. 

Specifically, we first fit separate models to generate 100 multiply imputed full datasets for 

each simulated dataset with missing values, then compute the adjusted GST statistics Ta and 

GTE based on Rubin’s MI rules illustrated in section 3.2. Next, we fit IRT models (4) and 

(5) and include the binary treatment assignment variable in the mean model (6), i.e. μij = [β0 

+ β1 Ii(trt)]tj, to each simulated dataset. We run two chains with 10,000 iterations per chain. 

The first 5000 iterations are discarded as burn-in, and the inference is based on the 

remaining 5000 iterations. The MCMC convergence and mixing properties are assessed by 

visual inspection of the history plots of all parameters and the Gelman–Rubin statistics. In 

all simulation studies, the MCMC chains mix well after a burn-in of 5000 iterations. For 

each simulated dataset with missing data, we obtain M = 100 full datasets imputed by 

retaining simulated missing values every 100 iterations starting from the 5001th iteration on 

each chain. We then compute the Ta and GTE based on Rubin’s MI rules. To evaluate and 

compare the performance of the LOCF, separate models, and MI methods, we compute the 

root mean square error (RMSE) of Ta and GTE defined as  and 

 respectively, where the subscript n denotes the nth with missing 

data,  and  are the estimated adjusted GST and GTE using various methods, the 

asymptotic mean μTn, (see Huang et al.,13 p.3090) and ψn are computed based on the nth 

simulated dataset without generating any missing data (i.e. the true dataset).

Table 1 displays the RMSE of Ta and GTE using the LOCF, separate models, and MI 

methods under various scenarios, i.e. the combinations of three missing percentages (20%, 

30%, and 40%), two missing data mechanisms (MAR and MNAR), and two missing data 

patterns (non-monotone and monotone). Within each combination of missing data 

mechanism and missing data pattern, RMSE increases as the missing percentage increases. 

All methods perform better under MAR than under MNAR. While both the LOCF and 

separate models methods performs better under non-monotone than under monotone pattern, 

there is no obvious trend observed for the MI method in this comparison. In all simulation 

settings, the separate models method has the largest RMSE and the MI method always 
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outperforms the LOCF method (except in the first scenario) with a larger advantage as the 

missing percentage increases.

In the first simulation scenario, the RMSE of GTE based on the MI method is slightly larger 

than that based on the LOCF method. We have run additional simulation for this scenario. 

Specifically, we have doubled the expected one year outcome change in both groups to dP = 

(0.4, −4, 0.5, 6, −2.2)’ and dT = (0.32, −3.2, 0.368, 4.8, −1.6)’. The RMSE of Ta from 

methods LOCF, separate models, and MI are 4.044, 4.331 and 1.812 and the RMSE of GTE 

are 0.094, 0.101, and 0.055, respectively. The results suggest that the advantage of the 

proposed MI method over the LOCF and separate models methods increases as the outcome 

rates of change get larger. This is because the LOCF method assumes no disease progression 

after dropout and its performance deteriorates as the disease progression rate increases.

In conclusion, the LOCF method dampens the treatment–response relationships and 

produces misleading results. The separate models method fails to account for the inter-

source and cross correlations. It is not surprising that the LOCF method outperforms the 

separate models method in the simulation studies because slow disease progression is 

simulated. In contrast, the proposed MI method based on the IRT model can account for the 

within-subject correlation across visits and successfully model the treatment effect of the 

multiple longitudinal outcomes. As a result, the proposed MI method performs better than 

the LOCF and separate models methods, with larger advantage as the missing percentage 

and the outcome rates of change increase.

5 Data analysis

In this section, we apply the proposed methodology to analyze a clinical trial dataset. 

Because the LS-1 study illustrated in section 2.1 is ongoing and the final dataset is not 

available until 2015, we use the data from a PD clinical trial with the data structure similar 

to the LS-1 study. DATATOP (Deprenyl And Tocopherol Antioxidative Therapy Of 

Parkinsonism) was a double-blind, placebo-controlled multicenter clinical trial to determine 

if deprenyl and/or tocopherol administered to patients with early PD will slow the 

progression of PD. Totally 800 individuals were randomly assigned in a 2 × 2 factorial 

design to receive double-placebo, active tocopherol alone, active deprenyl alone, and both 

active tocopherol and deprenyl. We combine the individuals who did not receive deprenyl 

(double-placebo and active tocopherol alone groups, 401 individuals) and refer to as placebo 

group. We combine the individuals who received deprenyl (active deprenyl alone and both 

active tocopherol and deprenyl groups, 399 individuals) and refer to as treatment group. The 

details of DATATOP trial can be found in Shoulson et al.54

The outcomes collected include UPDRS (Unified Parkinson’s Disease Rating Scale) total 

score, Schwab and England activities of daily living (SEADL), Mini-Mental State Exam 

(MMSE), and Hamilton Depression Scale, measured at five visits, i.e. baseline, 1 month, 3 

months, 9 months, and 15 months. UPDRS total score is the sum of 44 questions each 

measured on a 5-point scale (0–4) and it is approximated by a continuous variable with 

integer value from 0 (not affected) to 176 (most severely affected). SEADL is illustrated in 

section 2.1. Mini-Mental State Exam, a measurement of cognitive impairment, is an ordinal 
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variable with integer value from 0 (severe) to 30 (normal). Hamilton Depression Scale, a 

depression test measuring the severity of clinical depression symptoms, is an ordinal 

variable with integer value from 0 (normal) to 52 (severe). For ordinal variables, we combine 

some categories with zero or small number of individuals and have 7, 7, and 10 categories in 

SEADL, MMSE, and Hamilton depression scale, respectively.

Before the end of the study, some individuals (222 and 154 individuals in the placebo and 

treatment groups, respectively) reached a level of functional disability sufficient to warrant 

the initiation of dopaminergic therapy, which is a symptomatic therapy to provide temporary 

relief of PD symptoms for a short period. In this case, only the observed outcomes before 

the initiation of dopaminergic therapy can be used in the assessment of treatment efficacy 

because dopaminergic therapy can significantly change the values of the outcomes collected. 

Therefore, these individuals would have missing data after the initiation of dopaminergic 

therapy and this missing mechanism is most likely MAR because the missingness depends 

only on the observed variables before therapy start. In addition, missing data occurred due to 

withdrawals, lost to follow-up, missed visits, etc. To visualize and explore the missing 

patterns in the dataset,55 we plot the missingness map of four outcomes in the placebo and 

treatment groups in Figures 1 and 2, respectively. The observed values are plotted with dark 

gray and the missing values are in white. The sporadic white bars indicate non-monotone 

missing pattern. The numbers in the figures are the number of individuals and the 

corresponding percentage (in parenthesis). For example, in the placebo group, the numbers 

and percentages of individuals who have measurements of UPDRS up to 15 months, 9 

months, 3 months, 1 month, and baseline only are 119 (29.7%), 130 (32.4%), 113 (28.4%), 

30 (7.5%), and 6 (1.5%), respectively. Figures 1 and 2 suggest that most of the missing data 

are monotone. Although the overall missing percentages are roughly 24% and 16% in the 

placebo and treatment groups, respectively, the missing percentages at the last visit are 

around 70% and 50% in the placebo and treatment groups, respectively. In order to compute 

the adjusted GST and GTE based on the change from baseline to the last visit and follow the 

ITT principle, we need to impute the missing values.

In the LOCF analysis, we use the last observed value of the missing outcome to impute the 

observation at the last visit (15 months) and obtain the sample size of 401 and 398 in the 

placebo and treatment groups, respectively, after deleting one individual in the treatment 

group who did not have any data for UPDRS. In separate models analysis, we use linear 

mixed models and proportional odds models as imputation models for continuous and 

ordinal outcomes, respectively. In MI analysis, we use item-response models (4) and (5) and 

include the binary treatment assignment variable in the mean model (6), i.e. μij = [β0 + β1 

Ii(trt)]tj. We have run two parallel chains with overdispersed initial values and 10,000 

iterations per chain. After discarding a burn-in of 5000 iterations, we obtain 100 multiply-

imputed datasets by taking every 100 iterations from the remaining 5000 iterations of each 

chain. To assess the efficacy of deprenyl, we compute the change from baseline to the last 

visit for all four outcomes, from which we compute the rank sum difference, the associated 

variance, and the adjusted GST statistics Ta and GTE using the LOCF, Separate, and MI 

methods.
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Table 2 displays the estimates of the rank sum difference, the associated standard errors, the 

adjusted GST statistics Ta, p-values, and GTE based on the three methods. The treatment 

deprenyl shows significant efficacy in all three methods. After consolidating the 100 sets of 

estimates using Rubin’s rules, the MI method has the most negative rank sum difference, the 

most negative adjusted GST statistics Ta (with degree-of-freedom being 205), and the 

smallest p-value. The results of extremely small p-values are consistent with the published 

DATATOP study results.54 The estimated GTE (i.e. 0.161) from the MI method is the largest 

among all three methods, indicating that the MI method estimates the largest global 

treatment effect from deprenyl. The interpretation of GTE is that an individual in the control 

groups would have a [(100% + 16.1% − P)/2 = (58.1% − P/2)] probability of having a better 

overall outcome if he/she had been assigned to the treatment group, where P is the 

probability that the placebo and treatment groups have tied observations. If no ties are 

observed, then the probability would be equal to 58.1%. Moreover, after fitting the IRT 

model, we obtain the following estimates of latent variable regression parameters, i.e. 

(0.179, sd: 0.013, CI: [0.152, 0.207]), and  (−0.110, sd: 0.016, CI: [−0.140, −0.079]). The 

CI of  not covering zero indicates the significant benefits of deprenyl in slowing PD 

progression. This is consistent with the significant adjusted GST statistics Ta in Table 2.

6 Discussion

In clinical trials for many complex diseases, a single outcome is often insufficient to 

determine the efficacy of treatments. In PD clinical trials, researchers have longitudinally 

measured multiple mixed type outcomes including quality of life, motor fluctuations, 

depression, and cognition, etc. During the course of follow-up period, missing values have 

become a common phenomena in clinical trial practice. In this article, we present a Bayesian 

method based on the item response theory (IRT) to impute the missing data in the 

multivariate longitudinal data structure, and the inference based on the adjusted GST and 

GTE is combined using Rubin’s MI rules. In the IRT models, the outcomes are 

representations of a latent variable which is a function of individual-specific covariates and 

visit time. All sources of correlation have been accounted for in the IRT modeling 

framework. We have performed sensitivity analysis under various scenarios. The simulation 

results suggest that the proposed MI method generally performs better than the standard 

methods such as last observation carried forward and separate random effects model for each 

outcome, with larger advantage as the missing percentage and the outcome rates of change 

increase. Although we did not compare it to other ad hoc methods such as imputation with 

the mean or imputation with the worst observation, it is likely that such single imputation 

methods are inferior because they fails to incorporate the missing-data uncertainty and do 

not account for all sources of correlation.30 The proposed method offers a novel and flexible 

way to impute the missing multivariate longitudinal data and allows the imputation model to 

differ from the final analysis model. In the analysis of a PD clinical trial (DATATOP), the 

treatment of deprenyl has efficacious global effects across all four outcomes indicated by the 

significant adjusted global statistical test and the significant treatment effect coefficient in 

the IRT model.
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Our modeling framework based on the item response theory has some limitations that we 

view as future research directions. Note that the discrimination parameter bk controls both 

within-individual correlation in different outcomes and outcome-specific treatment effect β 

expressed in equation (6). If there is low within-individual correlation but a large treatment 

effect, this model may underestimate the treatment effect and overestimate the correlation.56

Acknowledgments

The authors are grateful to our colleague Dr Wenyaw Chan for helpful discussion and to Rong Ye for preparing the 
analysis dataset. Computations were performed on the high-performance computational capabilities of the Linux 
cluster system at University of Texas School of Public Health (UTSPH). The authors express their appreciation to 
UTSPH information technology staff for their technical support of the cluster.

Funding

This work is supported by two NIH/NINDS grants, U01NS043127 and U01NS43128.

References

1. Samii A, Nutt J, Ranson B. Parkinson’s disease. Lancet. 2004; 363:1783–1793. [PubMed: 
15172778] 

2. Pocock S. Clinical trials with multiple outcomes: a statistical perspective on their design, analysis, 
and interpretation. Control Clin Trials. 1997; 18(6):530–545. [PubMed: 9408716] 

3. Tilley, B.; Huang, P.; O’Brien, P. Global assessment variables. In: D’Agostino, R.; Sullivan, L.; 
Massaro, J., editors. Wiley encyclopedia of clinical trials. John Wiley & Sons; New york, NY: 2008. 
p. 1-11.

4. O’Brien P. Procedures for comparing samples with multiple endpoints. Biometrics. 1984; 40(4):
1079–1087. [PubMed: 6534410] 

5. Pocock S, Geller N, Tsiatis A. The analysis of multiple endpoints in clinical trials. Biometrics. 1987; 
43(3):487–498. [PubMed: 3663814] 

6. Tang D, Gnecco C, Geller N. An approximate likelihood ratio test for a normal mean vector with 
nonnegative components with application to clinical trials. Biometrika. 1989; 76(3):577–583.

7. Lehmacher W, Wassmer G, Reitmeir P. Procedures for two-sample comparisons with multiple 
endpoints controlling the experimentwise error rate. Biometrics. 1991; 47:511–521. [PubMed: 
1912258] 

8. Tang D, Geller N, Pocock S. On the design and analysis of randomized clinical trials with multiple 
endpoints. Biometrics. 1993; 49:23–30. [PubMed: 8513104] 

9. Tang D, Lin S. An approximate likelihood ratio test for comparing several treatments to a control. J 
Am Stat Assoc. 1997; 92(439):1155–1162.

10. Tang D, Geller N. Closed testing procedures for group sequential clinical trials with multiple 
endpoints. Biometrics. 1999; 55(4):1188–1192. [PubMed: 11315066] 

11. Karrison T. A rank-sum-type test for paired data with multiple endpoints. J Appl Stat. 2004; 31(2):
229–238.

12. Huang P, Tilley B, Woolson R, et al. Adjusting O’Brien’s test to control type I error for the 
generalized nonparametric Behrens-Fisher problem. Biometrics. 2005; 61(2):532–539. [PubMed: 
16011701] 

13. Huang P, Woolson R, O’Brien P. A rank-based sample size method for multiple outcomes in 
clinical trials. Stat med. 2008; 27(16):3084–3104. [PubMed: 18189338] 

14. Huang P, Woolson R, Granholm A. The use of a global statistical approach for the design and data 
analysis of clinical trials with multiple primary outcomes. Exp Stroke. 2009; 1:100–109.

15. Liu A, Li Q, Liu C, et al. A rank-based test for comparison of multidimensional outcomes. J Am 
Stat Assoc. 2010; 105(490):578–587. [PubMed: 21625372] 

Luo et al. Page 15

Stat Methods Med Res. Author manuscript; available in PMC 2014 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16. Hothorn L. Multiple comparisons in long-term toxicity studies. Environ Health Perspect. 1994; 
102(Suppl 1):33. [PubMed: 8187721] 

17. Tilley B, Marler J, Geller N, et al. Use of a global test for multiple outcomes in stroke trials with 
application to the National Institute of Nurological Disorders and stroke t-PA stroke Trial. Stroke. 
1996; 27(11):2136. [PubMed: 8898828] 

18. Kwiatkowski T, Libman R, Frankel M, et al. Effects of tissue plasminogen activator for acute 
ischemic stroke at one year. N Engl J Med. 1999; 340(23):1781. [PubMed: 10362821] 

19. Kaufman K, Olsen E, Whiting D, et al. Finasteride in the treatment of men with androgenetic 
alopecia. J Am Acad Dermatol. 1998; 39(4):578–589. [PubMed: 9777765] 

20. Shames R, Heilbron D, Janson S, et al. Clinical differences among women with and without self-
reported perimenstrual asthma. Ann Allergy Asthma Immunol. 1998; 81(1):65–72. [PubMed: 
9690575] 

21. van Kleef M, Barendse G, Kessels A, et al. Randomized trial of radiofrequency lumbar facet 
denervation for chronic low back pain. Spine. 1999; 24(18):1937. [PubMed: 10515020] 

22. Wetter T, Stiasny K, Winkelmann J, et al. A randomized controlled study of pergolide in patients 
with restless legs syndrome. Neurology. 1999; 52(5):944. [PubMed: 10102410] 

23. Matser E, Kessels A, Lezak M, et al. Neuropsychological impairment in amateur soccer players. 
JAMA. 1999; 282(10):971. [PubMed: 10485683] 

24. Goodkin D, Rudick R, Medendorp S, et al. Low-dose (7.5 mg) oral methotrexate reduces the rate 
of progression in chronic progressive multiple sclerosis. Ann Neurol. 1995; 37(1):30–40. 
[PubMed: 7818255] 

25. Li D, Zhao G, Paty D. Randomized controlled trial of interferon-beta-1a in secondary progressive 
MS: MRI results. Neurology. 2001; 56(11):1505. [PubMed: 11402107] 

26. Poole C, Earl H, Hiller L, et al. Epirubicin and cyclophosphamide, methotrexate, and fluorouracil 
as adjuvant therapy for early breast cancer. N Engl J Med. 2006; 355(18):1851. [PubMed: 
17079759] 

27. Rubin, D.; Little, R. J Wiley & Sons; Hoboken, NJ: 2002. Statistical analysis with missing data. 

28. NINDS NETPD. A randomized, double-blind, futility clinical trial of creatine and minocycline in 
early Parkinson disease. Neurology. 2006; 66(5):664. [PubMed: 16481597] 

29. NINDS NETPD. A randomized clinical trial of coenzyme Q10 and GPI-1485 in early Parkinson 
disease. Neurology. 2007; 68(1):20. [PubMed: 17200487] 

30. Schafer, J. Analysis of incomplete multivariate data. Vol. 72. Chapman & Hall/CRC; Boca Raton, 
FL: 1997. 

31. Ibrahim J, Chen M, Lipsitz S, et al. Missing-data methods for generalized linear models. J Am Stat 
Assoc. 2005; 100(469):332–346.

32. Ibrahim J, Molenberghs G. Missing data methods in longitudinal studies: a review. Test. 2009; 
18(1):1–43. [PubMed: 21218187] 

33. Rubin, D. Multiple imputation for nonresponse in surveys. Vol. 17. John Wiley & Sons Inc; New 
York, NY: 1987. 

34. O’Brien L, Fitzmaurice G. Analysis of longitudinal multiple-source binary data using generalized 
estimating equations. J Roy Statist Soc: Series C. 2004; 53(1):177–193.

35. Little R, Yau L. Intent-to-treat analysis for longitudinal studies with drop-outs. Biometrics. 1996; 
52(4):1324–1333. [PubMed: 8962456] 

36. Van Swieten J, Koudstaal P, Visser M, et al. Interobserver agreement for the assessment of 
handicap in stroke patients. Stroke. 1988; 19(5):604. [PubMed: 3363593] 

37. Schwab, R.; England, A. Projection technique for evaluating surgery in Parkinsons disease. In: 
Gillingham, FJ.; Donaldson, MC., editors. Third Symposium on Parkinsons Disease. Livingstone; 
Edinburgh: 1969. p. 152-157.

38. Siderowf A, Ravina B, Glick H. Preference-based quality-of-life in patients with Parkinson’s 
disease. Neurology. 2002; 59(1):103. [PubMed: 12105315] 

39. Bushnell D, Martin M. Quality of life and Parkinson’s disease: translation and validation of the US 
Parkinson’s disease questionnaire (PDQ-39). Quality Life Res. 1999; 8(4):345–350.

Luo et al. Page 16

Stat Methods Med Res. Author manuscript; available in PMC 2014 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



40. Smith, A. Symbol digit modalities test manual. Western Psychological Services; Los Angeles, CA: 
1973. 

41. Lehmann, E. Nonparametrics: statistical methods based on ranks. Holden Day; New York, NY: 
1975. 

42. Lord, F. Applications of item response theory to practical testing problems. L. Erlbaum Associates; 
Hillsdale, NJ: 1980. 

43. Samejima, F. Graded response model. In: van der Linden, WJ.; Hambleton, R., editors. Handbook 
of Modern Item Response Theory. New York, NY: 1997. p. 85-100.

44. Lord, F.; Novick, M.; Birnbaum, A. Statistical theories of mental test scores. Addison-Wesley; 
1968. 

45. Douglas J. Item response models for longitudinal quality of life cata in clinical trials. Stat Med. 
1999; 18:2917–2931. [PubMed: 10523750] 

46. Andrade D, Tavares H. Item response theory for longitudinal data: population parameter 
estimation. J Multivar Anal. 2005; 95(1):1–22.

47. Fox, J. Bayesian item response modeling: theory and applications. Springer Verlag; 2010. 

48. Skrondal, A.; Rabe-Hesketh, S. Generalized latent variable modeling: multilevel, longitudinal, and 
structural equation models. CRC Press; 2004. 

49. Tavares H, Andrade D. Item response theory for longitudinal data: item and population ability 
parameters estimation. Test. 2006; 15(1):97–123.

50. Lunn D, Thomas A, Best N, et al. WinBUGS-a Bayesian modelling framework: concepts, 
structure, and extensibility. Stat Comput. 2000; 10(4):325–337.

51. Gelman, A.; Carlin, J.; Stern, H., et al. Bayesian data analysis. CRC Press; 2004. 

52. Plummer, M. JAGS Version 2.1.0 user manual. Lyon, France: 2010. 

53. Anderson, T. An introduction to multivariate statistical analysis. 3rd edn. John Wiley & Sons; New 
York, NY: 2003. 

54. Shoulson I. DATATOP: a decade of neuroprotective inquiry. Parkinson Study Group. Deprenyl and 
tocopherol antioxidative therapy of parkinsonism. Ann neurol. 1998; 44(3 Suppl 1):S160. 
[PubMed: 9749589] 

55. Honaker J, King G, Blackwell M. Amelia II: A program for missing data. J Stat Software. 2011; 
45(7):1–47.

56. Dunson D. Bayesian methods for latent trait modelling of longitudinal data. Stat Meth Med Res. 
2007; 16(5):399.

Luo et al. Page 17

Stat Methods Med Res. Author manuscript; available in PMC 2014 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The missing patterns for four outcomes in the placebo group. Dark gray area indicates 

observed data while white area indicates that missing data. The sporadic white bars indicate 

non-monotone missing pattern. The numbers in the plots are the number of individuals and 

the percentage (in parenthesis) in the placebo group.
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Figure 2. 
The missing patterns for four outcomes in the treatment group. Dark gray area indicates 

observed data while white area indicates that missing data. The sporadic white bars indicate 

non-monotone missing pattern. The numbers in the plots are the number of individuals and 

the percentage (in parenthesis) in the treatment group.
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Table 1

Root mean square error (RMSE) of the adjusted GST statistics Ta and GTE for change from baseline to 5 

years using the LOCF, separate models, and MI methods under various scenarios.

Ta GTE

Missing mechanism Missing pattern Missing % LOCF Separate MI LOCF Separate MI

MAR Non-monotone 20 1.257 2.963 1.248 0.035 0.079 0.039

30 2.078 3.714 1.631 0.057 0.098 0.049

40 2.938 4.366 1.874 0.078 0.113 0.056

Monotone 20 1.529 3.047 1.192 0.043 0.082 0.037

30 2.370 3.884 1.632 0.064 0.101 0.049

40 3.314 4.516 1.908 0.087 0.116 0.056

MNAR Non-monotone 20 1.803 3.383 1.642 0.049 0.089 0.049

30 2.639 4.164 2.233 0.070 0.107 0.063

40 3.469 4.709 2.805 0.091 0.120 0.076

Monotone 20 1.864 3.405 1.534 0.051 0.089 0.046

30 2.717 4.184 1.976 0.073 0.108 0.057

40 3.717 4.817 2.666 0.098 0.123 0.073

LOCF: last observation carried forward; MI: multiple imputation; GST: global statistical test; GTE: global treatment effect; MAR: missing at 
random; MNAR: missing not at random.
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Table 2

Results by various imputation methods for change of last visit.

Method
Rank sum
difference (SE) Ta p-value GTE

LOCF −202.6 (37.8) −5.4 8.32 e–8 0.127

Separate −111.5 (40.1) −2.8 5.71 e–3 0.070

MI −257.1 (42.9) −6.0 9.20 e–9 0.161

LOCF: last observation carried forward; MI: multiple imputation.
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