
Deformable Image Registration of CT and Truncated Cone-beam
CT for Adaptive Radiation Therapy*

Xin Zhen1,2, Hao Yan1, Linghong Zhou2, Xun Jia1, and Steve B. Jiang1,‡

Linghong Zhou: smart@smu.edu.cn; Xun Jia: xunjia@ucsd.edu; Steve B. Jiang: Steve.Jiang@UTSouthwestern.edu
1Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and
Applied Sciences, University of California San Diego, La Jolla, CA 92037-0843, USA
2Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong
510515, China

Abstract
Truncation of a cone-beam computed tomography (CBCT) image, mainly caused by the limited
field of view (FOV) of CBCT imaging, poses challenges to the problem of deformable image
registration (DIR) between CT and CBCT images in adaptive radiation therapy (ART). The
missing information outside the CBCT FOV usually causes incorrect deformations when a
conventional DIR algorithm is utilized, which may introduce significant errors in subsequent
operations such as dose calculation. In this paper, based on the observation that the missing
information in the CBCT image domain does exist in the projection image domain, we propose to
solve this problem by developing a hybrid deformation/reconstruction algorithm. As opposed to
deforming the CT image to match the truncated CBCT image, the CT image is deformed such that
its projections match all the corresponding projection images for the CBCT image. An iterative
forward-backward projection algorithm is developed. Six head-and-neck cancer patient cases are
used to evaluate our algorithm, five with simulated truncation and one with real truncation. It is
found that our method can accurately register the CT image to the truncated CBCT image and is
robust against image truncation when the portion of the truncated image is less than 40% of the
total image.

1. Introduction
Adaptive radiation therapy (ART) is a novel radiotherapy technology that adjusts a
treatment plan to account for patient anatomical variations over a treatment course. In this
process, deformable image registration (DIR) is a crucial step to establish the voxel
correspondence between the current patient anatomy and a reference one (Gao et al., 2006;
Paquin et al., 2009; Yang et al., 2009; Godley et al., 2009). The deformation vector fields
(DVFs) generated by DIR algorithm can be used for many purposes, for instance, to deform
the contours of the target and organs at risk from the planning computed tomography (CT)
images to the daily cone-beam computed tomography (CBCT) images. Hence, the
effectiveness and robustness of DIR algorithms has a great impact on the accuracy of
treatment re-planning and the consequent treatments in ART.

One challenge for DIR between CT and CBCT images is the CBCT truncation problem,
which is common in ART due to the following several reasons. Firstly, limited size of the
detector of a CBCT yields a field of view (FOV) roughly 27cm (full fan) or 48cm (half fan)
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in diameter (Oelfke et al., 2006), which is much smaller than the FOV of a conventional
helical CT scanner. Secondly, the patient is usually positioned such that the tumor centroid
is near the isocenter of the linac. If the tumor is located far from the body center, part of the
patient body may be outside the FOV. Thirdly, in order to reduce the imaging dose to a
patient, it is sometimes preferable to further restrict the CBCT FOV to the volume of interest
(VOI) that is sufficient for the positioning purpose, as recommended by AAPM Task Group
75 (Murphy et al., 2007). This can be achieved by collimating down the CBCT fan angle
(Sheng et al., 2005; Oldham et al., 2005; Cho et al., 2009), leading to a truncation in the
CBCT image.

One fundamental assumption of most DIR algorithms is that there should be one-toone
correspondence for every voxel in the moving image and the static image. Some feature-
based DIR methods (Lian et al., 2004; Schreibmann and Xing, 2006; Xie et al., 2008; Xie et
al., 2009) might rely slightly on this assumption, however, it is a prerequisite for most of the
intensity-based DIR algorithms. If this assumption is violated when truncation in CBCT
exists, the intensity-based DIR algorithm cannot deliver correct results in the truncated
region. This will also cause inaccuracy in the nearby area (Yang et al., 2010; Crum, 2004).
Moreover, truncation also results in ‘bowl’ artifacts and Hounsfield Unit (HU) inaccuracy in
the reconstructed CBCT image (Ruchala et al., 2002a; Seet et al., 2009). This further poses
challenges to those DIR algorithms that are based on the assumption that corresponding
voxels at the two images attain the same intensity, e.g. Demons (Thirion, 1998), leading to
severely distortions in the deformed image after DIR (Nithiananthan et al., 2011; Hou et al.,
2011; Zhen et al., 2012).

Some researchers have studied the DIR problem in the presence of truncation. Periaswamy
et al (2006) incorporated an expectation maximization algorithm into the registration model
to simultaneously segment and register image with partial or missing data. However, this
algorithm is based on an affine transformation model, which might not be sufficient to
describe complicated deformations between the two images. Yang et al (2010) proposed to
assign those missing voxels outside of the FOV with NaN (not-a-number) value.
Nonetheless, since the resulting DVFs on the NaN voxels are essentially obtained through a
diffusion process from neighboring voxels containing valid intensity values, the result might
not be sufficiently accurate. On the reconstruction side, efforts have also been made to
retrieve the missing information outside of the FOV as much as possible (Ohnesorge et al.,
2000; Ruchala et al., 2002b; Hsieh et al., 2004; Wiegert et al., 2005; Zamyatin and
Nakanishi, 2007; Bruder et al., 2008; Kolditz et al., 2011). The validity of using images as
such in the subsequent registration problem has not been investigated comprehensively.

In this paper, we propose to solve this problem from a different angle. As opposed to finding
the DVFs that deforms a CT to match a truncated CBCT directly, we deform the CT image,
such that the x-ray projections of the deformed image match the projection measurements of
the CBCT. This idea is inspired by the works (Prümmer et al., 2006; Zikic et al., 2008;
Bodensteiner et al., 2009; Groher et al., 2009; Marami et al., 2011) in the field of 2D/3D
image registration for image guided surgical interventions, whose goal is to find the
appropriate deformation field to register the 3D image (e.g. CT) and the 2D projection
image (e.g. fluoroscopy image) by optimizing an objective function consisting of an image
matching term and a regularization term of the DVFs. Similar objective function is also
pursued for other applications such as 3D and 4D CBCT estimation. Ren et al (2012)
proposed to deform the patient’s previous CBCT data to estimate a new CBCT volume by
minimizing the deformation energy and maintaining new projection data fidelity using a
nonlinear conjugate gradient method. Wang and Gu (2013) also estimated the DVFs by
minimize the sum of the squared difference between the forward projection of the deformed
planning CT and the measured 4D-CBCT projection to deform the planning CT as the high-
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quality 4D-CBCT image in lung cancer patients. Similarly, in this paper, we also formulate
the estimation of DVFs to deform the CT image to match the measured CBCT projection
with truncation as an unconstrained optimization problem. Instead of solving it directly
using the gradient-type optimization method, in which optimal result may not be obtained
for low-contrast or small-size object if zero initials are used (Wang and Gu, 2013), we
rewrite the objective function and introduce auxiliary terms which make it easy to solve with
a hybrid deformation/reconstruction scheme. It is found that our method is robust against
image truncation and can effectively and accurately register CT image to the truncated
CBCT image.

2. Methods and Materials
An illustration of CBCT truncation geometry is shown in Fig. 1. Although the patient
volume is truncated in the CBCT image, the information outside the FOV may still exist in
some projections. For instance, the volume t′ is not included in the projection 1 but is in the
projection 2. Hence, we prefer to utilize all the information in the CBCT projection domain
for DIR instead of merely the truncated CBCT image in the image domain. Specifically, we
would like to compute the DVFs, such that when being applied to the CT image, the
projections of the deformed CT image match the measured ones for the CBCT.

2.1 The truncation DIR model
Let us consider a patient volumetric image (CT image) represented by a function f(x), where
x = (x, y, z) ∈ R3 is a vector in three-dimensional Euclidean space. In this paper, the CT
image (termed as the moving image) is the one to be registered to a reference CBCT image
(termed as the static image). A displacement mapping ν(x) is used to deform the CT image
f0(x) to the CBCT image: f(x) = f0(x + ν(x)). We also define P as an x-ray projection matrix
in cone beam geometry that maps f into the projection domain. As opposed to registering the
CT image and the reconstructed CBCT image in the image domain directly, we attempt to
estimate the displacement ν based on the CT image function f0 and the measured CBCT
projection g by minimizing the following energy function:

(1)

where ||·||2 denotes l2 norm of functions and ∇ is the gradient operator. In equation (1), the
first term is a fidelity term, which ensures the consistency between the deformed CT image
and the CBCT image in the projection domain. The second term is a regularization term
with λ being a constant weight, and it is used to enforce the smoothness of the displacement
field.

Let us consider the optimality condition of the problem:

(2)

where PT denotes the transposition matrix of P, and Δ is the Laplacian operator. By
introducing an auxiliary function s(x) and a term ∇f0[f0 − s], we can split equation (2) into

(3)

(4)
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We notice that equation (4) is essentially the Euler-Lagrange equation of a function

, which is an energy function of the DIR problem between
the moving image f0(x) and the static image s (Lu et al., 2004). Assuming ∇f0 ≠ 0, s can be
obtained from equation (3) as

(5)

which is a typical gradient descent update step for a CBCT reconstruction problem.

This inspires us that the optimization problem of equation (1) can be solved by alternatively
performing DIR and CBCT reconstruction update as in Eq. (5). The underlying
interpretation of this approach is that s is an intermediate variable representing a CBCT
volumetric image. It is updated during the iteration process based on the current deformed
image f0(x + ν). The moving image f0 is then deformed via a DIR step to match this image,
yielding the solution DVFs as well as an updated f0(x + ν) to be used in the next iteration
step.

In practice, these two steps are modified for the considerations of both resulting quality and
convergence rate. Specifically, for the registration part, because of unavoidable
contaminations in the projection measurement g, the updated intermediate image s contains
reconstruction artifacts and its HU value is not consistent with that of f0. Hence, the DISC
(Zhen et al., 2012) algorithm is adopted as the DIR algorithm as opposed to conventional
DIR algorithms based on intensity consistency, e.g. Demons (Thirion, 1998). DISC itself is
an iterative algorithm with two steps alternatively performed. First, a linear transformation
of voxel intensity is estimated at each voxel to unify the intensities of s and f0. This is
achieved by matching the first and the second moment of intensity distributions at a cubic
area around a voxel. After that, a registration step is applied to estimate the DVFs based on
the images with unified intensities. By iterating these two steps, the intensity of the CBCT is
gradually corrected and the displacement field can be hence accurately calculated.

As for the step to compute s, we note that it corresponds to an typical gradient descent
update step for a CBCT reconstruction problem based on an initial solution of f0(x + ν). In
practice, we substitute the backprojection operator PT by a filtered backprojection operator F
for CBCT reconstruction, e.g.

(6)

It has been demonstrated by Zeng et al. (2000) that the convergence speed of Eq. (6) is
faster than that of Eq. (5) in terms of CBCT reconstruction.

2.2 Implementation
Our algorithm is implemented under the Compute Unified Device Architecture (CUDA)
programming environment and GPU hardware platform. This platform enables parallel
processing of the same operations on different CUDA threads simultaneously, which speeds
up the performance of the entire algorithm. In the rest of this subsection, we will present a
few practical issues pertaining to the algorithm implementation.

Before starting the algorithm, the CBCT image is first reconstructed using the conventional
FDK algorithm (Feldkamp et al., 1984), and then a mutual information based rigid
registration is performed between the CT image and the truncated CBCT image to align
them to a satisfactory degree. The mutual information based rigid registration algorithm has
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been demonstrated to be effective in matching CT and truncated CBCT image (Ruchala et
al., 2002a).

During each iteration of our algorithm, operations corresponding to the operators P and F
are calculated repeatedly, as seen in the equation (6). For the operation P, it actually
corresponds to the calculation of forward x-ray projection. This can be easily performed in
parallel on GPU by making each thread responsible for one ray line using, e.g. Siddon’s ray
tracing algorithm (Siddon, 1985). As for the latter one F, namely FDK CBCT
reconstruction, we implemented it on GPU in the way as described previously (Sharp et al.,
2007).

A multi-scale strategy is also adopted. This strategy helps to reduce the magnitude of the
displacement vectors with respect to the voxel size and hence avoid the local minima
problem in registration to a certain extent (Gu et al., 2010). It also improves efficiency by
enhancing convergence speed and reducing number of variables. As such, the CT image is
down-sampled in the image domain, while the CBCT projection images are down-sampled
in the projection domain, both to a set of different resolution levels. The iteration starts with
the lowest resolution images, and at the end of each level, the moving vectors are up-
sampled to serve as the initial solution at the finer level. In this work, we consider two
different resolution levels. Further down-sampling was found to be unnecessary to improve
registration accuracy or efficiency.

For the stopping criteria regarding whether the moving image has been correctly deformed,
we use a convergence criterion based on the difference between successive deformation
fields. We define a relative norm l(k) = Σ|dr(k+1)|/Σ|r(k)|, and use l(k−10) − l(k) ≤ ε, where ε =
1.0×10−4 as our stopping criterion. This measure is found to have a close correspondence
with accuracy, as DIR is stopped when there is no ‘force’ to push voxels any more (Gu et
al., 2010).

In summary, our algorithm is implemented as follows:

2.3 Clinical data and truncation simulation
The performance of our algorithm has been evaluated using clinical CT and CBCT data of
six head-and-neck cancer patients. The truncations in the Cases 1~5 are simulated, while
that in the Case 6 is a real. The benefit of simulating truncation with real clinical data is that
the complete CBCT image can be used as the ground truth, as well as the impacts of
different truncation levels on the performance of our algorithm can be evaluated.

For all the cases, each patient has a planning CT image acquired before treatment and a set
of CBCT projection images acquired 2–8 weeks after the first fraction of treatment on a
Varian On-board-Imaging (OBI) system (Varian Medical Systems, Inc., Palo Alto, CA)
using a full-fan mode. For the planning CT images, the image resolution in the transverse
plane is 512×512 and the pixel size in the transverse plane varies from 0.68 to 1.07 mm. The
slice thickness is either 1.25 or 2.5 mm. For the CBCT projection images, the source to axes
distance is 100 cm, while the source to detector distance is 150 cm. The detector size is
40×30 cm2 with a resolution of 1024×768 pixels. The number of projections is 364 for Case
4 (with scan angle of about 198°), and is down-sampled from 656 to 328 for Case 1, 2, 3, 5,
6 (with scan angle of about 358°) for the consideration of computational efficiency. We also
down-sample all projections to a resolution of 512×384 while maintain the area of the
projection image. The CT images are resampled to yield voxel size and dimension of
1.02×1.02×1.99 mm3 and 256×256×88 for Cases 1–5, respectively, and 1.54×1.54× 2.98
mm3 and 256×256×62 for Case 6. The range of the planning CT in superior-inferior (SI)
direction is generally larger than that of the CBCT. The planning CT image is therefore
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cropped and re-sampled to match the dimension and the resolution of the CBCT image after
rigid registration. Hence, the image resolution for both the CT and the CBCT images after
rigid registration are the same.

Truncation in CBCT image can be easily simulated by adjusting the sizes of the projection
images. In this study, we simulate the truncation by cutting the projection images at the two
sides symmetrically and keeping the middle portion. To evaluate the influence of different
truncation levels on the DIR result, CBCT images with different percentage of truncation are
reconstructed. We perform DIR between the CT image and the non-truncated CBCT image
and the results are regarded as the ground truth in the simulation studies.

The percentage of truncation is quantified differently for two scenarios. At the truncation
simulation stage, the percentage of truncation is defined as t1 = 1 − r′/r, where r′ is the
radius of the FOV corresponding to the truncated imager, while r is that corresponding to
the original imager, as illustrated in Figure 2 left. We truncated the projection images so that
t1 increases from 10% to 80% with an increment step of 10%. However, the purpose of
simulating truncation with different t1 values is to find out how the truncation level to the
patient volume would affect the DIR. Since for a given t1 level, some part of the patient
body could be well contained inside the FOV (see e.g. Figure 2 right), which is not affected
by the truncation, it is necessary to have another metric to quantify the actual degree of
truncation to the patient volume in the image domain. Therefore, we define the truncation
percentage for each transverse CT slice, termed as t2, as the ratio between the number of
patient body voxels that are outside the FOV and the total number of patient body voxels in
this slice. Note that t2 could vary among slices even for the same t1 value.

2.4 Quantification of registration performance
Since ultimately it is of clinical interest to deform the CT image to the CBCT, we therefore
evaluate the registration accuracy by comparing the deformed CT image and the CBCT.
Specifically, we use three similarity metrics to quantitatively evaluate the DIR results in this
work. The first metric is the normalized mutual information (NMI), scoring from 0 to 1 with
1 representing the highest image similarity. The second metric is the feature similarity index
(FSIM) (Zhang et al., 2011; Yan et al., 2012), which tries to simulate the mechanism of the
human visual system by capturing the main image features such as the phase congruency of
the local structure and the image gradient magnitude. The score of FSIM varies between 0
and 1 with 1 representing the most image similarity. The third metric is the root mean
squared error (RMSE) between two edge images:

(7)

where  and  are the binary Canny edge images of image I1 and I2,
respectively (Canny, 1986), N is the number of voxel of image I1 or I2. When two images
are perfectly registered, RMSEedge should be zero. These three similarity metrics serve as
quantitative evaluation tools in addition to the visual inspection of the registration results,
namely comparing the deformed CT and the CBCT.

3. Results
For clarity, here we use the following symbols to represent different images used in the
algorithm evaluation. CToriginal is the CT image before DIR; projcomplete and projtruncated are

the CBCT projection images without and with truncations, respectively;  and

 are the non-truncated and the truncated CBCT images before DIR,
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respectively;  and  are the deformed CT images using the
original demons, the NaN method (Yang et al., 2010), and our new algorithm, respectively;

 is the deformed CT image to the  using the DISC algorithm.

3.1 Simulated truncation cases
Figure 3 shows an example (Case 5) of the simulation and the registration results. Figure
3(a) and 3(b) are the complete CBCT projections and the corresponding reconstructed
CBCT image, respectively. Figure 3(c) and 3(d) are the truncated CBCT projection
(t1=30%) and the corresponding reconstructed CBCT image with truncation. Note that the
CBCT projection image is truncated symmetrically and the pixels in the truncated regions
are set to zero. In order to alleviate artifacts in the reconstructed CBCT images, such as
‘bowl’ artifacts, smooth boundary condition at the boundary of truncation is imposed in our

CBCT reconstruction algorithm. Therefore, the ‘bowl’ artifacts in  are not as
severe as those reported in other literatures (Ruchala et al., 2002a; Ruchala et al., 2002b).
Figure 3(e) is the CT image before DIR. Figure 3(f) is the deformed CT image using the
original demons algorithm between the original CT and the truncated CBCT. As shown in
Figure 3(f), tissues in the truncated region in the deformed CT image are distorted (as
indicated by the arrow in Figure 3(f)) mainly caused by the loss of information and
inaccurate HU value in this region (as indicated by the arrow in Figure 3(d)). The NaN
method can mitigate this effect visually, as can be seen in Figure 3(g). However, since only
those DVFs from the vicinity of the outside of the FOV can be propagated by smoothing,
this method yields incorrect images outside the FOV and unrealistic artifacts near the edge
of the FOV, as indicated by the arrow in Figure 3(g). On the contrary, our method can
generate a much more accurate result, as shown in Figure 3(h).

Figure 4 shows the results of checkerboard comparisons before and after DIR. The
misalignment is evident between the CT image and the non-truncated CBCT image before
DIR, as shown in Figure 4(a). The original demons algorithm and the NaN method perform
quite well while registering those structures inside of the FOV, but both fail in regions near,
and especially outside the FOV (Figure 4(b) and Figure 4(c)). Our method, on the contrary,
can produce a more accurate registration result even outside of the FOV, which can be
clearly seen in the zoomed-in views of the transverse and sagittal images in Figure 4(d)-2
and Figure 4(d)-4. In the other four simulated cases, we observed similar results.

3.2 Effect of truncation percentage on DIR
It is also of interest to find out how the truncation percentage t2 would affect the DIR results.

Hence, we calculate the similarities between  and  slice by slice for
all the five cases using metrics NMI, FSIM and RMSE of Canny edge image, as described in
Section 2.4, and normalize them by the corresponding similarity quantities for the case

between  and  (the ground truth similarity). The dependence of
these quantities on the truncation levels t2 for different simulation cases are depicted in
Figure 5. Note that all the similarity values plotted in Figure 5 are the normalized ones, with
1 representing the closest to the ground truth similarity. We can see that for all three
similarity metrics and for all the five cases, the relative similarity changes monotonically as
the percentage of truncation is increased, indicating decreased registration quality. The solid
lines are the linear fitting results to show the trend of the points. This reduction of relative
similarity is less than 10% for NMI and FSIM and the increasing is less than 20% for RMSE
of Canny edge image, when the truncation level increases up to 80%. Visual inspection
informs us that a good DIR result, in general, corresponds to those cases when reduction of
relative similarity of NMI and FSIM is less that 5%, or the increase of RMSE of Canny edge
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image is less than 10%. We observe that when the truncation is less than 40%, the relative
similarity is above 0.95 for NMI and FSIM, and below 1.1 for RMSE of Canny edge image.
These numbers reveal that our method is very robust against truncation, especially when the
truncation percentage is lower than 40%. In order to evaluate the effects of the truncation
percentage t2 on the estimation accuracy of DVFs out of FOV, we also calculated the above-
mentioned three similarity metrics only in the region outside FOV before DIR (between

CToriginal and ) and after DIR (between  and ). The
corresponding results for the five cases are shown in Figure 6. We can see that both NMI
and FSIM have increased, and RMSE of Canny Edge has decreased after DIR for all five
cases. This reveals that our algorithm is also effective in estimating the DVFs out of FOV.

3.3 A real truncation case
The DIR result of a real truncation case of the head-and-neck cancer patient is shown in
Figure 7. As we can see in Figure 7(a), some volume of the patient’s head is truncated in the
CBCT projection image. Reconstruction of the truncated projection leads to artifacts and
inaccurate HU values near and outside the FOV in the CBCT image, as indicated by the
arrow in Figure 7(b). However, these artifacts do not affect the DIR in the registered CT
image using our method, as shown in Figure 7(d). Checkerboard comparisons in Figure 7(e)
show the evident misalignment between the CT and the CBCT images before DIR. Demons
algorithm can align those structures inside the FOV, however, the skull (as indicated by the
arrow in Figure 7(f)) near the FOV has been distorted severely due to the artifacts caused by
truncation. The NaN method also fails in matching those regions outside the FOV, as shown
in Figure 7(g). On contrast, our algorithm can successfully register the two images (Figure
7(h)). Here, we want to point out that, because of the absence of a non-truncated CBCT
image as the ground truth in this case, it is difficult to quantitatively evaluate the
performance of our DIR algorithm on those regions near and outside of the FOV.

4. Discussion and Conclusions
In summary, we have successfully developed an algorithm and implemented it on a GPU
architecture under NVIDIA CUDA platform for the DIR between a CT image and a CBCT
image with truncation. As opposed to finding the DVFs that deforms a CT to match a
truncated CBCT directly, we deform the CT image, such that the x-ray projections of the
deformed image match the projection measurements of the CBCT. Specifically, we try to
solve this DIR problem by minimizing an energy function, as shown is equation (1). A two-
step algorithm is invented to solve the problem. In this process, the image information is
borrowed from the CBCT projections at each iteration to compensate those missing image
contents outside the CBCT FOV, and form an intermediate image as the static image. A
DISC algorithm is then employed to register CT and this intermediate image. As the DIR
proceeds, the CT image can gradually deform to match the non-truncated CBCT image.
Results of five simulated truncation cases and one real clinical truncation case show that our
algorithm can robustly and accurately register the CT image and the truncated CBCT image.

In fact, equation (1) can be solved directly by using some optimization strategies, e.g.
gradient-type optimization. However, because of the highly non-convex nature of this
problem, the solution quality may be impacted by local minima. It is hence necessary to
employ some techniques to avoid this issue. As pointed out in the work (Wang and Gu,
2013), estimation of the DVFs is very sensitive to the initial values, and therefore DVFs
obtained from demons registration of the CT image and a CBCT image reconstructed by
total variation minimization is utilized as initials instead of the zero initials in the
optimization process. However, in our application, such initial DVFs are usually difficult to
obtain, because if CT is registered to the truncated CBCT image directly, DVFs that
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calculated in the region near and out of FOV is far from the true ones. Using such DVFs as
initials may deteriorate instead of facilitating the optimization process. It is mainly for this
reason that we designed a two-step algorithm. As for substituting the backprojection
operator PT by a filtered backprojection operator for CBCT reconstruction, it is motivated
by the so-called iterative-FBP algorithm. In CBCT reconstruction problem, it was observed
that such a scheme can increase the rate of convergence (Xu et al., 1993; Lalush and Tsui,
1994; Zeng and Gullberg, 2000; Sunnegardh and Danielsson, 2008), which is also observed
in our studies.

The key reason for the success of this algorithm is the introduction of the intermediate
variable s, which is also the feature that distinguishes our algorithm from other DIR
algorithms that work on image domains directly. Specifically, at any iteration step, the
intermediate variable s is computed according to equation (6), which can be interpreted as a
temporary target CBCT image for registration. Such an image is obtained via a typical
iterative CBCT reconstruction step using the current deformed CT image as an initial guess.
Because there is no truncation in the CT image, the term Pf0(x + ν) − g in (6) is relatively
small, and hence the resulting variable s does not have much truncation-caused artifacts. The
relatively good quality of s facilitates the registration process to a satisfactory extent. Note
that the variable s is actually updated at each iteration. It serves as a guide that gradually
leads the deformation of the CT image towards the CBCT image. When the CT image is
fully deformed to the CBCT image, the term Pf0(x + ν) − g vanishes and further iteration
will not change s any more, namely, the DIR process converges.

However, the intermediate image s not only has intensity inconsistency with the CT image,
but also contains lots of reconstruction artifacts. Therefore, we adopt the DISC algorithm as
opposed to conventional DIR algorithm based on intensity consistency for the calculation of
the displacement field at each iteration step. Here, we would like to point out that other CT-
CBCT DIR algorithms, such as the works by Hou et al. (2011) and Nithiananthan et al.
(2011) which are capable of handling intensity inconsistency, may potentially be used here
as well. Further investigations of the overall gains of using other DIR models other than
DISC are needed.
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Figure 1.
Illustration of CBCT geometry with truncation. While part of the patient volume, t′, is
truncated in projection 1, but as the gantry rotates, it is still included in other projections
such as projection 2.

Zhen et al. Page 12

Phys Med Biol. Author manuscript; available in PMC 2014 November 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Definitions of the truncation percentages. Left: in the truncation simulation stage, the
percentage of truncation is calculated by the ratio between the radius of the truncated FOV r′
and the radius of the non-truncated FOV r; Right: in the evaluation stage, for a given
truncation level, the degree of truncation to the patient volume is calculated by the ratio
between the truncated volume t′ and the entire patient volume V.
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Figure 3.
Truncation simulation and registration results (Case 5). (a)projcomplete: complete CBCT

projection; (b) : reconstructed CBCT image using complete projection; (c)

projtruncated: truncated CBCT projection; (d) : reconstructed CBCT image

using truncated projection; (e)CToriginal: CT image before DIR; (f) : deformed

CT image using demons; (g) : deformed CT image using NaN method; (h)

: deformed CT image using our method. The arrows indicate regions that affected
by truncation.
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Figure 4.
Checkerboard comparisons of the DIR results (Case 5). Columns: (a)

; (b) ; (c) ;

(d) . Rows: (a)-1 ~ (d)-1: transverse images; (a)-2 ~ (d)-2:
zoomed-in views of the transverse images; (a)-3 ~ (d)-3: sagittal images; (a)-4 ~ (d)-4:
zoomed-in views of the sagittal images. Circles in (a)-1 ~ (d)-1 and lines in (a)-3 ~ (d)-3
indicate the FOV after truncation, and the dashed rectangles indicate the regions to be
zoomed in.
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Figure 5.
Similarity scores of each transverse slice at different levels of truncation. The similarity

score is calculated between  and , and normalized to the similarity

score between  and . (a), (b) and (c) are results of NMI, FSIM
and RMSE of Canny edge image, respectively. The solid lines are the linear fitting curves of
the points, and five rows correspond to Case 1 to Case 5, respectively.
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Figure 6.
Similarity scores calculated in the region out of FOV at different levels of truncation. The

similarity scores are calculated between CToriginal and  before DIR and

between  and  after DIR. (a), (b) and (c) are results of NMI, FSIM
and RMSE of Canny edge image, respectively.
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Figure 7.
DIR results for a real truncated head-and-neck cancer patient case. (a) CBCT projection with

truncation; (b)~(d) transverse and sagittal view of , CToriginal and ;
(e)~(h) checkerboard image of the transverse and sagittal view of CToriginal and

 and  and 

and . The arrow indicates the region affected by truncation.
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Algorithm A1

Rigidly register the CT image to the reconstructed CBCT image with truncation

Initialize the moving vector ν to zero

Down-sample the CT image f0 and the CBCT projection g to the coarsest resolution

Repeat for each resolution level

 while l(k−10) − l(k) ≤ ε, do

  1. Compute the static image s based on Eq. (6)

  2. Use the DISC algorithm to register f0(k) and s to obtain ν, and update f0(k+1) = f0(k)(x + ν).

 Up-sample the moving vector ν to a finer resolution level

Until the finest resolution is reached
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