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ABSTRACT

Parenteral nutrition (PN) is a life-saving nutritional support for a large population of hospitalized infants, and lipids make a substantial

contribution to their energy and essential fatty acid (FA) needs. A challenge in the care of these infants is that their metabolic needs require

prolonged PN support that increases the risk of PN-associated liver disease (PNALD). In recent years, the emergence of new parenteral lipid

emulsions containing different source lipids and FA profiles has created nutritional alternatives to the first-generation, soybean oil–based lipid

emulsion Intralipid. The limited U.S. introduction of the new-generation fish-oil emulsion Omegaven has generated promising results in infants

with PNALD and spawned a renewed interest in how PN and lipid emulsions, in particular, contribute to this disease. Studies suggest that the

lipid load and constituents, such as specific FAs, ratio of n–3 (v-3) to n–6 (v-6) long-chain polyunsaturated FAs, phytosterols, and vitamin E

content, may be involved. There is an existing literature describing the molecular mechanisms whereby these specific nutrients affect hepatic

metabolism and function via lipid and bile acid sensing nuclear receptors, such as peroxisome proliferator–activated receptor a, liver X receptor,

and farnesoid X receptor, yet virtually no information as to how they interact and modulate liver function in the context of PN in pediatric

patients or animal models. This article will review the recent development of parenteral lipid emulsions and their influence on PNALD and

highlight some of the emerging molecular mechanisms that may explain the effects on liver function and disease. Adv. Nutr. 5: 82–91, 2014.

Introduction
Parenteral nutrition (PN)7 is a life-saving nutritional support
for more than half a million premature and low-birth-weight
infants and other hospitalized infants in the United States annu-
ally. The immaturity and dysfunction of their gastrointestinal

tract contributes to increased morbidity, and thus many pre-
mature infants receive PN to fulfill their nutritional needs. A
recent analysis of all infants admitted to the neonatal intensive-
care units in a multicenter health care network found that
79% received PN for up to 2 wk, and 15% got PN for up
to 1 mo (1). Importantly, those infants that were smaller and
more premature received longer duration of PN support. A
challenge in the care of premature infants is to provide suffi-
cient nutrition to meet their high metabolic needs for growth,
but aggressive administration of PN increases the risk of
metabolic liver disease (2,3).

Cholestatic liver disease is one of the most common met-
abolic problems associated with PN in premature infants. In
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infants that receive PN for at least 2 mo, the incidence of
cholestatic liver disease may be as high as 50% and can even-
tually lead to end-stage liver disease and need for transplant
(4). Cholestatic liver disease, a key element of PN-associated
liver disease (PNALD) in infants presents clinically as in-
creased serum biochemical markers, such as bilirubin,
g-glutamyl transpeptidase, bile acids, and liver transami-
nases (1,4), and, in many patients, steatosis may occur, but
this often goes undetected because of the risk of a liver bi-
opsy (5). The risk factors associated with PN-associated
cholestasis include developmental immaturity in the hepatic
transport and metabolism of bile acids, lack of enteral feed-
ing, and infection, including sepsis. Despite these known
risk factors, the etiology of PN-associated cholestasis and
liver disease in infants is not established, and currently there
are no proven effective therapeutic treatments. The goal of
this review is to examine recent reports demonstrating ben-
eficial effects of new-generation lipid emulsions and discuss
several emerging cellular and molecular mechanisms that
could explain how the composition of parenteral lipids af-
fect hepatic metabolism, function, and disease susceptibility.

New-Generation Lipid Emulsions
Lipids make a significant contribution to the energy and es-
sential FA needs of parenterally fed infants. In the United
States, the primary FDA-approved lipid emulsion is Intrali-
pid, a soybean-oil emulsion, along with Liposyn II, a
50%:50% soybean oil/safflower oil blend. Intralipid is en-
riched with the FAs linoleic acid (n–6, 53%) and oleic acid
(n–9, 24%) but is devoid of DHA and EPA (n–3) long-chain
PUFA (LC-PUFA). Intralipid also contains phytosterols,
which are steroid compounds with cholesterol-like structure
occurring naturally in vegetable oils and their products. Sev-
eral newer parenteral lipid emulsions have been developed
in the past 10–15 y containing single-source lipid or blends
of lipids (6); these more recently developed lipid emulsions
have been termed “new generation.” New-generation paren-
teral lipid emulsions containing pure olive oil (Clinoleic),
pure fish oil (Omegaven), or various blends of soy, olive,
medium-chain TGs, and fish oil (Lipofundin, SMOFlipid,
Lipoplus) have been approved in Europe (Table 1).

Recent clinical studies in infants show that parenteral
soybean-oil lipid emulsions are linked to cholestasis and

that reducing the lipid load gives reduced cholestasis; this
strategy has been referred to as lipid minimization (7,8).
Omegaven is currently under FDA review but is approved
under a restricted, compassionate-use protocol for adminis-
tration of no more than 1 g $ kg21 $ d21 lipid to infants with
cholestasis. Several pediatric centers are providing this to
children who develop PNALD (9–13). Omegaven is en-
riched in n–3 LC-PUFA (DHA and EPA) and vitamin E
but low in linoleic acid and devoid of phytosterols compared
with Intralipid. Recent positive reports from small pediatric
trials of PN-fed short-bowel patients have shown that in-
fants that were given previously 1–3 g $ kg21 $ d21 Intralipid
experienced a reduction in cholestasis and triglyceridemia
after they were switched to 1 g $ kg21 $ d21 Omegaven in-
fusion (10,11,13). Most previous clinical studies did not
control for the lipid load between Intralipid and Omegaven
groups, and thus it remains unknown whether the reduction
in lipid load or type of lipid emulsion explains the metabolic
benefit. Furthermore, there are no established mechanisms
that would explain why either lipid load or FA composition
confers the optimal metabolic function and prevention of
PNALD.

Parenteral n–3 LC-PUFA Metabolism in Infants
There is a large body of evidence showing that fish oil and its
constituent FAs have numerous biologic actions that result
in improved metabolic health and reduced risk of diseases,
especially those associated with inflammation, such as ische-
mic heart disease (14,15). This has prompted a recent push
for the development of dietary recommendations for intake
of specific FAs that are enriched in fish oil (16). The benefi-
cial health effects of fish oil are believed to be mediated by
the key bioactive n–3 LC-PUFA, namely DHA and EPA. Hu-
man breast milk contains DHA and EPA, and, in recent
years, commercial infant formulas have been reformulated
to contain DHA and arachidonic acid (n–6 LC-PUFA),
mainly to support neurodevelopment.

The influence of n–3 LC-PUFA when given parenter-
ally on the health, metabolic function, and development
of human infants is essentially unknown at present but is rap-
idly becoming a topic of interest in pediatric nutrition. As
mentioned previously, most parenterally fed infants in the
United States are given the soybean oil–based lipid emul-
sion (Intralipid), which is devoid of DHA and EPA (n–3)
LC-PUFA. However, given the recent positive reports from
small pediatric trials of PN-fed short-bowel patients, there
is considerable interest in the fish oil–based lipid emulsion
Omegaven (10,11,13). Omegaven is enriched in the n–3
LC-PUFAs DHA and EPA but low in the n–6 LC-PUFA lino-
leic acid. An emerging consensus based on studies in adults
and recently in premature infants suggests that increasing
the ratio of dietary n–3 to n–6 LC-PUFA promotes health
and metabolic function (17). Despite this evidence, there
is a wide range in the doses of n–3 LC-PUFA administered
in adult supplementation, infant formula studies, and the
low-dose, parenteral Omegaven as monotherapy trials.
Thus, there is a compelling rationale to establish whether

TABLE 1 Lipid sources and proportions for Intralipid and
new-generation emulsions

Product Soybean Safflower Olive Medium-Chain TGs Fish

%
Intralipid1 100 50
Liposyn II2 50
Omegaven1 100
SMOFlipid1 30 25 30 15
Lipoplus3 40 50 10
Lipofundin3 50 50
Clinoleic4 20 80
1 Fresenius Kabi.
2 Hospira.
3 B. Braun.
4 Baxter Corporation.
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the beneficial metabolic effects of n–3 LC-PUFA occur in
parenterally fed infants and what dose ranges are safe and
effective.

Role of n–3 LC-PUFA on Metabolic Function
and PNALD
Fish oil has emerged as a dietary supplement to ameliorate
the metabolic dysfunction associated with symptoms of obe-
sity, such as increased serum lipids, glucose, insulin resis-
tance, and steatosis. Studies in obese adult humans and
rodents show that dietary fish-oil supplements increase in-
sulin sensitivity, reduce serum lipids, and also appears to re-
duce serum liver transaminases and histologic signs of
steatohepatitis (18,19). One of the important mechanisms
by which n–3 LC-PUFA, especially DHA and EPA, affect
metabolic function is via changing the expression of genes
involved in fat and glucose metabolism (20,21). Their action
suppresses the transcription of genes encoding transcription
factors, such as sterol regulatory element binding protein
and carbohydrate-responsive element-binding protein (20)
and specific lipogenic enzymes and induces the expression
of genes encoding specific enzymes involved in peroxisomal
and microsomal FA oxidation. The net effect of n–3 LC-
PUFA on gene expression is to reduce lipid accumulation
in the liver. The beneficial metabolic effects of n–3 LC-
PUFA or the resultant change in the balance of the ratio of
n–3 to n–6 LC-PUFA have also been linked to other cellular
mechanisms, including suppression of inflammation via
mechanisms involving eicosanoids metabolism and/or pro-
duction of resolvins E and D (22,23).

At the cellular level, the actions of these bioactive FAs
are thought to be mediated by their uptake via FA transport
protein and binding to FA binding protein, which acts as
a chaperone to facilitate molecular binding and activation
of nuclear receptors, specifically peroxisome proliferator-
activated receptor (PPAR) a/g (24,25). The transcriptional
induction of PPARa-responsive genes promotes hepatic
intracellular FA uptake, the conversion of FAs to their acyl-
CoA derivatives, and channeling toward mitochondrial/
peroxisomal oxidation (19,26). The hepatic expression of
PPARa is significantly reduced in mice fed a high-fat diet
(18). Thus, the presence of PPARa or its activation by fish-
oil supplementation has been found to be protective against
diet-induced obesity in mice. Fish oil–mediated activation of
PPARa induces peroxisome proliferation and upregulation
of genes involved in mitochondrial and peroxisomal FA ox-
idation, leading to partitioning of lipid metabolites toward
degradation and reduced accumulation in the liver. Further-
more, PPARa acts to reduce serum TG concentrations by
transcriptional regulation of high- and very-low-density ap-
olipoproteins, resulting in increased lipolysis and clearance
of remnant particles (27,28). Studies in mice also showed
that fish oil prevents fat-induced hepatic insulin resistance
in vivo in a PPARa-dependent manner (18). PPARa regu-
lates hepatic glucose metabolism via both direct effects of
glycolytic and gluconeogenic pathways and indirect effects
on insulin signaling (28).

Parenteral Lipid Nutrition and Hepatic
Lipotoxicity
PNALD is marked by a metabolic phenotype with many
similarities to nonalcoholic fatty liver disease (NAFLD) evi-
dent as hepatic lipid accumulation, steatosis, tissue injury, as
well as insulin resistance and inflammation (4,5,29–32).
NAFLD is the most common cause of chronic liver disease
in children and adolescents and has been listed as a comor-
bidity of obesity (33,34). One of the most severe forms of
NAFLD is nonalcoholic steatohepatitis. The pathobiology
of nonalcoholic steatohepatitis has been described by the
“two-hit” hypothesis, in which, first, relatively benign hepa-
tic lipid accumulation occurs but is followed by the second
hit that is an inflammatory insult that triggers tissue injury
and fibrosis. In the context of obesity, the process of hepato-
cyte lipid accumulation occurs as a result of the increased
circulating load of FFAs released from adipose tissue. During
steatosis, it is the FFAs rather than TGs that are inherently
toxic to liver cells (35). Moreover, studies have demonstrated
that saturated FAs, especially palmitate, induced hepatocyte
lipid accumulation and are more toxic than unsaturated FAs
(31,36–38). Treatment of cultured cells, including hepato-
cytes, with palmitate induces lipotoxicity resulting from ox-
idant stress attributable to overproduction of mitochondrial
reactive oxygen species (ROS) and endoplasmic reticulum
stress (36,39,40). Hepatocyte lipotoxicity induced by treat-
ment with palmitate triggers c-Jun N-terminal kinase signal-
ing, nuclear factor kB activation, proinflammatory cytokine
production, and ultimately apoptotic cell death (37,41,42).
One of the metabolic phenotypes found in NAFLD in
the context of obesity is insulin resistance, yet there is lim-
ited clinical evidence for insulin resistance associated with
PNALD. Our recent studies in neonatal pigs show that, after
only 2 wk of total PN (TPN) vs. enteral nutrition, there is a
striking increase in insulin resistance associated with hepatic
steatosis, cholestasis, and inflammation (43,44). The induc-
tion of insulin resistance in TPN-fed piglets was associated
with increased hepatic c-Jun N-terminal kinase signaling
and diminished intracellular insulin signaling.

Mechanisms to explain why saturated vs. unsaturated
FAs are more hepatotoxic have been linked to the activa-
tion of FA oxidation pathways via nuclear receptors, such
as PPARa (24,25). The transcriptional induction of PPARa-
responsive genes promotes hepatic intracellular FA uptake
and mitochondrial/peroxisomal oxidation (19,26). Fish oil–
mediated activation of PPARa induces peroxisome prolifera-
tion and upregulation of genes involved in mitochondrial and
peroxisomal FA oxidation and reduced accumulation in
the liver. Thus, similar to obesity, parenteral lipid infusion
leads to continuous exposure of liver cells to high concen-
trations of FAs, which can induce steatosis, oxidative stress,
and lipotoxicity. Given the similarities between the metabolic
phenotypes observed in PNALD and NAFLD, we hypoth-
esize that there are common underlying mechanisms that
explain the tissue injury and dysfunction observed with these
diseases.
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FA Composition and Hepatic Inflammation:
Role of Toll-Like Receptor 4
Inflammatory stress is a common comorbidity found in PN-
fed infants attributable to the high incidence of bacterial
sepsis that originates from either central-line catheters or
intestinal translocation (45,46). An unfortunate and well-
established complication of sepsis-induced inflammation is
cholestasis (47–51). Mechanistic studies (48–50) in animals
and hepatocytes show that treatment with lipopolysaccha-
ride from gram-negative bacteria reduces the expression of
hepatic farnesoid X receptor (FXR) and bile salt export
pumps (BSEPs), leading to hepatocyte bile accumulation,
yet bile acid activation of FXR suppresses inflammation
via nuclear factor kB (52,53). In addition to cases of central
catheter–derived bacterial sepsis, studies indicate that intes-
tinal absorption of bacterial-derived endotoxin in condi-
tions of PN is linked to hepatic steatosis, cholestasis, and
tissue injury (43,47). Our previous studies in neonatal pigs
confirm that TPN erodes the intestinal barrier and increases
permeability to luminal bacterial toxins (54). Additional ev-
idence to support this idea comes from studies showing that
metronidazole treatment inhibited intestinal bacterial over-
growth and reduced PN-associated steatosis and signs of
cholestasis (55,56). Moreover, the stimulation of inflamma-
tion by bacterial endotoxin is mediated by lipopolysaccha-
ride activation of the toll-like receptor 4 (TLR4). Recent
studies in a mouse model confirm the idea that PN-induced
liver injury is associated with gut translocation of bacterial
endotoxin and is dependent on activation of TRL4 in
Kupffer cells (57). In addition, saturated FAs, especially pal-
mitate, can also activate cellular inflammation not only as a
trigger of lipotoxicity but also act as a ligand for TLR4
(58,59). More importantly, this group has shown that n–3
LC-PUFA, especially DHA, inhibit palmitate-induced TLR4-
activated inflammation. Thus, the absence of DHA in soy-
and safflower-based lipid emulsions and DHA enrichment
in fish oil–containing lipid emulsions could alter the balance
between hepatic inflammation pathways and metabolic func-
tion during PN.

FXR Function and Bile Acid Homeostasis: Role
of Phytosterols
Recent reports that Omegaven substantially reduces the ele-
vated concentrations of serummarkers of cholestasis in chil-
dren suggest a role for FXR (9,12). FXR is the primary bile
acids sensor, and it activates the expression of short hetero-
dimer partner. Short heterodimer partner binds to and inac-
tivates liver receptor homolog 1, thus potently inhibiting the
expression of cholesterol 7a-hydroxylase (CYP7A1), the
rate-limiting enzyme in bile acid synthesis. In general,
FXR maintains hepatocyte bile acid homeostasis by regulat-
ing the expression of genes involved in synthesis (CYP7A1),
uptake (Na+-taurocholate cotransporter polypeptide and or-
ganic anion-transporting peptide 2/8), and export of bile
acid (BSEP and multidrug resistance protein 2). One mech-
anism implicated in PN-induced cholestatic liver disease is
that plant phytosterols in soybean-oil emulsions disrupt

bile acid homeostasis (60,61). The principal phytosterols
present in soybean-oil emulsions are b-sitosterol, the most
abundant, and campesterol and stigmasterol. Numerous
studies have reported evidence of phytosterolemia in PN-
fed patients, and some show that they correlate positively
with bilirubin concentrations and poor liver function tests
(60,62–66). A key study in cultured hepatocytes revealed a
potential molecular link in which stigmasterol antagonized
the bile acid–dependent activation of FXR target genes
(67). Studies that demonstrate the direct effects of different
lipid emulsions and phytosterols on hepatic bile acid synthe-
sis and bile acid transport in vivo are emerging. Our recent
studies in a preterm piglet model of PNALD compared 2
new-generation lipid emulsions (Omegaven and SMOFli-
pid) with Intralipid. The results show that both Omegaven
and SMOFlipid prevented the development of hepatic cho-
lestasis and steatosis that occur in piglets given Intralipid.
Importantly, the hepatoprotective effect of new-generation
emulsions was associated with reduced phytosterolemia
(H. Vlaardingerbroek, K. Ng, B. Stoll, N. Benight, S. Chacko,
L.A.J. Kluijtmans, W. Kulik, E.J. Squires, O. Olutoye, M.L.
Finegold, J.B. van Goudoever, D.G. Burrin, unpublished re-
sults). This was despite the fact that SMOFlipid contains
phytosterols derived from the soy and olive oils, albeit at
40% of the concentration compared with Intralipid. We
also showed that phytosterols antagonize bile acid–induced
FXR target gene (BSEP) expression in cultured primary pig-
let hepatocytes. A recent report in a mouse model showed
direct evidence that plant sterols, specifically stigmasterol,
in lipid emulsions are a key factor responsible for PNALD.
They showed that adding stigmasterol to Omegaven induced
a similar liver injury to that of Intralipid in mice given a
combination of gut injury and TPN (68). Interestingly,
this work implicates phytosterol activation of Kupffer cells
and cytokine-mediated downregulation of hepatocyte phy-
tosterol transporters, leading to intracellular accumulation.
Together, these findings imply that the hepatoprotective re-
sponses reported with lipid minimization strategies and
pure fish-oil emulsion (i.e., Omegaven) therapy may be
linked to the presence or absence of phytosterols that act
to induce inflammation and antagonize hepatic FXR func-
tion in bile acid homeostasis.

FXR–Fibroblast Growth Factor 19 Signaling: A
Novel Enterokine Mechanism in PNALD
Studies in mice showed that FXR stimulates the transcrip-
tion of fibroblast growth factor 15 (FGF15) and its human
ortholog FGF19 (69,70). Before the discovery of FXR, it
was known that intestinal administration of bile acids sup-
presses hepatic CYP7A1, implicating a secreted intestinal
factor that acts to suppress bile acid synthesis. The first ev-
idence that FGF19 was the secreted factor came from studies
showing that FGF19 repressed CYP7A1 expression in both
isolated hepatocytes and mice. Subsequently, the studies by
Inagaki et al. (70) showed that tissue-specific FXR knockout
in either the liver or intestine increases the bile acid pool
size. In addition, treatment with GW4064 (FXR-selective
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agonist) significantly repressed CYP7A1 in liver-specific
FXR knockout mice but not in intestine-specific FXR
knockout mice. This suggests that CYP7A1 repression is me-
diated primarily by FXR activation in the intestine and not
in the liver. More recent evidence confirms this by showing
that selective activation of intestinal FGF15 in mice protects
against hepatic cholestasis (71). The induction of intestinal
FGF19 secretion via FXR is thought to occur primarily in
epithelial cells in the distal region of the ileum because
this is where the bile acid transporters are most highly ex-
pressed (72). The tissue-specific localization and molecular
regulation of the FXR–FGF19 axis in intestinal epithelial
cells are poorly understood. The receptor for FGF15/19 is
FGF receptor 4 (FGFR4), which is abundant in the liver,
and mice lacking FGFR4 have an increased bile acid pool.
Activation of FGF19 signaling in cells via FGFR4 also re-
quires the coreceptor b-Klotho, and tissue-specific expres-
sion of this coreceptor is an important determinant of
FGF19 responsiveness (69).

The importance of FGF19 in human bile metabolism has
been shown in individuals treated with cholestyramine and
the FXR ligand chenodeoxycholic acid (CDCA). Treatment
with cholestyramine led to an increase in serum C4 (marker
for CYP7A1 activity) and a reduction in FGF19 concentra-
tions whereas CDCA treatment increased plasma FGF19
and decreased serum C4 (73). Our recent work demon-
strated the importance of luminal bile acid stimulation for
maintenance of circulating FGF19 secretion in TPN-fed ne-
onatal pigs (44). We showed that TPN markedly decreased
concentrations of circulating FGF19, whereas duodenal in-
fusion of CDCA significantly induced FGF19. We also found
that liver pathology associated with TPN was markedly im-
proved with CDCA infusion. The finding that TPN results in
reduced FGF19 secretion is novel and may provide a mech-
anism to explain the cholestasis and steatosis observed with
PNALD. Because FGF19 production in the small intestine
causes suppression of CYP7A1 in hepatocytes, diminished
FGF19 concentrations in PN-fed patients could increase
CYP7A1 expression in the liver, resulting in persistent acti-
vation of bile acid synthesis and further resulting in chole-
stasis (Fig. 1). These studies showed that FGF19 is a novel
enterokine that is induced via intestinal FXR bile acid acti-
vation and functions as an enterohepatic signal in the feed-
back suppression of bile acid synthesis. Whether altered
FGF19 signaling is involved in the differential effects of par-
enteral lipid emulsions is unclear. However, in the absence of
any enteral stimulation from either food or bile acid secre-
tion, it is unlikely that differences in parenteral lipid emul-
sion FA composition alter gut FGF19 secretion, but this
warrants additional examination.

In addition to bile acid homeostasis, FGF19 exerts impor-
tant regulatory effects on lipid, carbohydrate, and protein
metabolism (74,75). Overexpression or infusion of FGF19 in
mice reduces adiposity, serum TGs, and hepatic acetyl-CoA
carboxylase while also increasing metabolic rate and glycemic
control (76,77). Conversely, FGFR4-deficient mice exhibit in-
creased white adipose tissue mass, glucose intolerance, insulin

resistance, and hyperlipidemia, further confirming an impor-
tant role of FGF19 in glucose and lipid metabolic regulation
(78). Studies in mice also showed that FGF19 functions as a
postprandial activator of hepatic protein and glycogen synthe-
sis that is independent of insulin (79).

Parenteral Lipid Emulsions and Vitamin E
A key nutritional component that is also present in most
parenteral lipid emulsions that has well-known biologic
functions is vitamin E. Vitamin E (tocopherol) is a lipid-sol-
uble antioxidant that protects the integrity of biologic mem-
branes by inhibiting lipid peroxidation (80,81). Tocopherol
occurs as a, b, g, or d isoforms, depending on the number
and position of methyl groups attached to the chromanol
ring. The composition and biologic activity of the different
natural vitamin E isoforms varies considerably. The biologic
activities of the b, g, and d isoforms are 0.5, 0.25, and 0.01,
respectively, compared with a-tocopherol (82). Natural
a-tocopherol has the highest vitamin E activity given its 3
chiral centers in which methyl groups are in the R configu-
ration and is referred to as RRR-a-tocopherol. The most
common form of synthetic vitamin E consists of 8 stereoiso-
mers but has substantially less (12.5%) RRR-a-tocopherol
content. The a-tocopherol isomer is found in the highest
concentration in human plasma and tissues. Interestingly,
plant-derived oils are the most abundant dietary sources
of vitamin E and all 4 isoforms are present, but they are mostly
enriched with g-tocopherol (81). Plant germs and seed oils
(wheat germ, sunflower seeds, cotton seed, and olive oil) are
rich sources of RRR-a-tocopherol (50–100%), whereas
g-tocopherol dominates in soy and corn oil. Thus, the vi-
tamin E present in most commercial soy oil–based emul-
sions is predominantly the g-tocopherol isoform (82).
However, in several new-generation emulsions, vitamin

FIGURE 1 Schematic illustration showing the gut FXR–FGF19
axis and influence of TPN on hepatic CYP7A1 function. CYP7A1,
cholesterol 7a-hydroxylase; FGF19, fibroblast growth factor 19;
FXR, farnesoid X receptor; RXR, retinoid X receptor; TPN, total
parenteral nutrition.
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E is added usually as a-tocopherol isoforms to act as an
antioxidant to prevent lipid peroxidation attributable to
the high content of LC-PUFA. Lipid peroxidation, the process
involving incorporation of an oxygen molecule into the un-
saturated FA carbon chain producing lipid peroxides, may oc-
cur during parenteral infusion of PUFA-rich lipid emulsions.
Lipid peroxides are unstable molecules that, by enzymatic or
nonenzymatic decomposition, are converted to volatile
malondialdehydes and hydrocarbons that can trigger ox-
idative stress. Therefore, as a protective measure, the reported
a-tocopherol content of some emulsions, including Ome-
gaven, SMOFlipid, and Lipoplus, is up to 4- to 5-fold higher
than the g-tocopherol content of soy-oil emulsions. This
combined effect of increased concentration and bioactivity
of a-tocopherol in some new-generation emulsions may
have substantial biologic effects on hepatic lipid peroxida-
tion and oxidative stress.

Vitamin E and PNALD
In the pathogenesis of fatty liver disease, regardless of
whether it occurs in the context of PN (i.e., PNALD) or obe-
sity (i.e., NAFLD), oxidative stress has been proposed as an
important cellular process that triggers cell injury and death
(31,39,40). Oxidative stress results from an imbalance be-
tween pro-oxidant and antioxidant chemical species that
leads to oxidative damage of cellular macromolecules. The
dominant molecules responsible for oxidative stress are pro-
ducts of various oxidative metabolic pathways, collectively
referred to as ROS and include singlet oxygen molecules, su-
peroxide anions, hydrogen peroxide, and hydroxyl radicals
(40). The increase in ROS triggers additional intracellular
damage by causing lipid peroxidation and formation of toxic
byproducts, such as trans-4-hydroxy-2-nonenal and malon-
dialdehyde, often used as markers of oxidative stress. Under
normal nutritional conditions, mitochondrial b oxidation is
the dominant oxidative pathway for disposal of short-,
medium-, and long-chain FAs (83). However, when intracel-
lular FAs accumulate, especially very-long-chain FAs (>20 car-
bon), and overload the mitochondrial b-oxidation pathway,
alternate pathways are activated, including peroxisomal
b oxidation and microsomal v oxidation involving enzymes
such as acyl-CoA oxidase and cytochrome P450 (CYP4A
and CYP4F) (83,84). Thus, the presence of steatosis during
PNALD/NAFLD eventually leads to oxidative stress from over-
production of ROS to dispose of excessive hepatic FA accumu-
lation. Moreover, the accumulation of bile acids associated
with cholestasis and PNALD also can induce oxidative stress
and thus compound the injury (85).

The cellular evidence linking oxidative stress and in-
jury has prompted a search for antioxidant therapies, in-
cluding vitamin E, for prevention and treatment of NAFLD
and PNALD. Recent large, randomized, controlled trials
in adults [PIVENS (Pioglitazone, Vitamin E, or Placebo
for Nonalcoholic Steatohepatitis)] and pediatric [TONIC
(Treatment for NAFLD in Children)] populations have
shown that vitamin E treatment results in significant im-
provement in steatosis, inflammation, ballooning, and

resolution of steatohepatitis in adults without diabetes or
cirrhosis but provided no sustained benefit in children
(86–88). The mechanisms to explain how vitamin E protects
against PNALD have been primarily attributed to the cellu-
lar antioxidant functions and prevention or reduction of ox-
idative stress. Additional molecular mechanisms have been
postulated whereby vitamin E is involved in the activation
of pregnane X receptor (PXR) and constitutive androstane
receptor (CAR). Both PXR and CAR function as hepatic
xenobiotic sensors that, during activation, trigger the ex-
pression of a host of drug metabolizing enzyme pathways in-
volving cytochrome P450 and other enzyme systems
involved in oxidation, conjugation, sulfation, glucuronida-
tion, and efflux transporters (89–91). The expression of
both PXR and CAR and treatment with their selective ago-
nists have been shown to have hepatoprotective actions in
various models of cholestatic liver injury, including bile
duct ligation and bile acid treatment (92–95). The PXR lig-
and and antibiotic rifampicin has been shown to suppress
CYP7A1 expression. The mechanistic link between vitamin
E and PXR was demonstrated by evidence that various ster-
eoisomers of tocopherol and tocotrienol activated PXR–
reporter construct and endogenous CYP3A expression in
hepatocytes (96,97). Interestingly, some of the downstream
targets of PXR are enzymes systems involved in microsomal
v-oxidation of vitamin E (98). Thus, the hepatoprotective ac-
tions of vitamin E treatment in conditions of cholestatic liver
injury also may be mediated by activation of PXR and CAR
target genes involved in bile acid homeostasis. This could
also be a mechanism to explain the protective effects of
new-generation lipid emulsions with high levels of added
a-tocopherol.

Conclusions
In the past 10 y in Europe and other countries outside the
United States, the emergence of new parenteral lipid emul-
sions containing different source lipids and FA profiles has
created an opportunity to optimize the nutritional needs
of infants and children requiring PN. In the United States,
the soybean oil–based lipid emulsion Intralipid has been
the mainstay for PN support for decades, and the new-
generation lipid emulsions are only now being considered
by the FDA for approval in the United States. Concurrent
with these developments has been an expanding scientific
understanding about how different lipids and specific FAs
affect cellular function and metabolism. The molecular
mechanisms whereby cells sense lipids and FAs, namely nu-
clear receptors, and how these nutrients activate intracellu-
lar signaling pathways have rapidly expanded in the past 10 y
(Fig. 2). These events have converged and spawned a re-
newed interest to understand how PN and lipid emulsions,
particularly, contribute to or prevent PNALD in infants.

Clinical studies in infants on prolonged PN suggest that
either the practice of lipid emulsion minimization when In-
tralipid is infused or the complete switch to low-infusion
dose of Omegaven can reduce the serummarkers of PNALD.
The components present in various lipid emulsions that are
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postulated to contributed to or prevent PNALD include spe-
cific FAs, the ratio of n–3 to n–6 LC-PUFA, phytosterols, and
vitamin E content. Evidence from clinical studies and those
in experimental animals and cell culture suggest that phyto-
sterols are associated with PNALD and that they disrupt the
cellular mechanisms of bile acid synthesis and transport by
antagonizing hepatocyte FXR. Additional mechanistic stud-
ies are required to fully establish how phytosterols affect liver
function, the specific cells affected, and disease susceptibil-
ity. There also are several reports showing that n–3 LC-
PUFA and vitamin E when supplemented in a high-fat
diet can reduce measures of NAFLD, such as steatosis, in-
flammation, and insulin resistance in human and animal
studies. However, despite the clinical reports that Omegaven
reduces the measures of PNALD induced by Intralipid, there
is limited direct information that these effects are mediated
by n–3 LC-PUFA or vitamin E specifically. Current literature
would suggest that several nuclear receptors involved in lipid
sensing are promising candidates, such as PPARa/PPARg,
LXR, and liver receptor homolog 1. In addition, the role
of xenobiotic receptors, such as PXR and CAR, may mediate
the actions of vitamin E and its metabolites and modulate
the function of a host of enzyme systems and transporters
involved in liver function.

Additional studies are needed to establish the significance
and regulation of the gut FXR–FGF19 signaling axis in the
context of PNALD. The lack of intestinal FXR stimulation
by enteral bile acids under conditions of TPN may be influ-
enced by the altered gut microbiome as well, because bacterial
play an influential role in bile acid metabolism. Short-bowel
syndrome is a clinical condition frequently associated with
PNALD, and substantial loss of intestinal tissue may limit
the capacity of the gut FXR–FGF19 signaling axis and contrib-
ute to cholestatic liver injury. The capacity to activate the gut
FXR–FGF19 signaling axis is also influenced by the chemical
form of bile acids, and groups are actively developing analogs
that selectively activate FXR, e.g., obeticholic acid, and that
may be more effective in treating cholestatic liver diseases

than those used previously, such as ursodeoxycholic acid,
that are weak FXR agonists (99).

Some of the hurdles that have delayed research in the
United States on parenteral lipid emulsions in experimental
animal models in vivo stem from the availability of commer-
cial lipid emulsions and technical challenges of modifying
the physiochemical composition of FAs and particles while
maintaining compatibility for intravenous infusion. Fur-
thermore, the application of PN approaches in mice has
been technically challenging, but recent reports suggest
that these issues are being resolved so that the power of
mouse genetic models can be used to explore molecular
mechanisms (57,100). New developments to established
pig models will also facilitate lipid emulsion studies in a va-
riety of clinically relevant conditions that affect pediatric
liver disease, such as prematurity, short-bowel syndrome,
and necrotizing enterocolitis (101–103).
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