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It is well known that human beings do not always change opinions or attitudes, since the duration of interaction
with others usually has a significant impact on one’s decision-making. Based on this observation, we introduce
a freezing period into the voter model, in which the frozen individuals have a weakened opinion switching
ability. We unfold the presence of an optimal freezing period, which leads to the fastest consensus, using
computation simulations as well as theoretical analysis. We demonstrate that the essence of an accelerated
consensus is attributed to the biased random walk of the interface between adjacent opinion clusters. The
emergence of an optimal freezing period is robust against the size of the system and the number of distinct
opinions. This study is instructive for understanding human collective behavior in other relevant fields.

U
nderstanding the reason how a macroscopically ordered state (e.g., consensus) can emerge among self-
organized interactive individuals is one of the open questions in natural and social sciences, which attracts
much attention by the scientific communities from diverse disciplines. Various experimental and theor-

etical frameworks have been proposed from the viewpoints of statistical physics, economics and sociology1–15. In
particular, one simple yet paradigmatic dynamical process is opinion formation dynamics.

Through the development of several decades, dozens of spin-like models have been put forward to study the
evolution of opinion dynamics. Typical examples include the voter model16,17, Sznajd model18, majority rule
model19–21, and bounded confidence model9,22,23, to mention a few. Among them, the voter model has attracted the
most notable attention24–30. In its basic version, each individual (voter) possesses one of two opinion states,
denoted by 11 or 21. At each time interval, a randomly selected voter adopts the opinion of one of his neighbors,
who is also chosen randomly. In this sense, the transition rate of one’s opinion is proportional to the fraction of the
opposite attitude in his neighborhood. The dynamical process is iterated until it reaches a stable state. Although
being composed of such a simple mechanism, the voter model produces rich dynamical behaviors31–38.

A series of extended models were proposed to promote the study of collective opinion behavior, such as the
vacillating voter model39, nonlinear voter model40, heterogeneous voter model41,42, and constrained voter model43.
More specifically, introducing the ‘zealot-voters’ who never changed opinion, Refs. 8, 44 found that the phe-
nomenon of consensus was not an asymptotic outcome of repeated elections in democratic societies. Refs. 45, 46
unveiled the significant effect of social influence and heterogeneous beliefs on the evolution of public opinions. It
is worth emphasizing that present voter models generally assume that the individuals’ behavior is a Markovian
memoryless pattern, which means that per unit time, the decision-making of voters depends only on the status of
their neighbors at the current time step. While in the realistic life, the non-Markovian process is ubiquitous as
well47. For example, in recent studies48,49, it was found that non-Markovian patterns of epidemic spreading
dramatically impact the threshold of disease outbreak. Along a similar way, if the non-Markovian factor is
introduced into the voter model, how does the evolution outcome fare? To sketch a comprehensive picture on
this issue, Refs. 25, 26 studied the effect of memory-dependent transition rates, where the opinion changing was
designated a certain inertia, determined by the persistence time of one’s current opinion. The longer a voter
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maintained his opinion, the less probable that he would change it in
the long run. They found that the process towards reaching a mac-
roscopic consensus was accelerated by slowing down the microscopic
dynamics.

In realistic systems, there also exists the opposite scenario, where
the opinion switching rate of individuals increases with the persist-
ence time. In this case, the longer an agent sustains his current state,
the higher transition possibility he has. For example, Ref. 50 intro-
duced a time-dependent learning capability into the dynamics of
evolutionary game, which showed that this simple yet meaningful
mechanism was able to maintain the diversity of strategies.
Moreover, similar assumptions of a predefined latent or infectious
period has often been adopted in the epidemiological models51–56.
Inspired by these aspects, an interesting question poses itself, which
we aim to address in what follows. Namely, if the transition rate
increases with the persistence time, will it be beneficial to the con-
sensus formation?

Here, we introduce the freezing period into the voter model, in
which frozen individuals have a small transition rate for switching
opinions. Through extensive computational simulations, we study
the impact on the emergence of a global consensus. We unveil that
the freezing period has an optimal value, which leads to the fastest
consensus. To verify this finding, theoretical analysis is provided as
well.

Results
The effect of freezing period: Basic simulation results. The freezing
period H can be regarded as a latent period, which determines the
switching capacity of a voter’s opinion (see Methods for further
details). To begin with, we study its effect on the consensus time
Tc. Figure 1 illustrates the dependence of consensus time Tc on H
for different lattice sizes of N. It is evident that the variance of Tc

displays a non-monotonous pattern as the freezing period H
changes, regardless of the specific value of N. With a small H, the
impact on Tc is marginal, since the system still requires significantly
more time to reach the final consensus. As the freezing period
gradually increases, there emerges an optimal value of H, which
produces the fastest consensus formation. This characteristic value
is denoted as Hopt. When we further increase the freezing period H,
the efficiency of reaching a consensus is exacerbated. The presence of
Hopt significantly reduces the time for reaching the final global
consensus. The impact of lattice size N on Hopt is also investigated.
In the inset of Figure 1, one can find that Hopt gradually increases
with the growth of N, which implies that Hopt should be enlarged to
guarantee the shortest consensus time as the lattice size increases.
This is similar to what has been mentioned in Refs. 22, 33, 57–59.

To verify the effect of Hopt on accelerating the emergence of a
global consensus, we examine the time courses of opinion formation
with several typical values for H. It is pertinent that some parameters
are defined first to simplify the discussion. Ps(t) is denoted as the
overall number of voters possessing the opinion s at time t, and thus

the average opinion (or ‘magnetization’38) is M tð Þ~ 1
N

Pz tð Þ{j
P{ tð Þj. Figure 2 shows the evolution of M(t) with several typical
values for H. H 5 0 returns to the traditional scenario, where the
transition of opinion is fluctuation-driven. In this case, the slow
increment of M(t) leads to a sufficiently long transient time to reach
the final ordered state. Given a very large freezing period H (e.g., H 5
4,000), the initial state of the system will be locked into a frozen
phase, in which voters hardly change their original opinions.
When the persistence time exceeds this freezing period, M(t) rapidly
increases, which implies that the system quickly proceeds towards
the final consensus. The consensus time Tc in the scenario of H 5 4,
000 is almost equivalent to that of the standard scenario (Tc . 3 *
104). Strikingly, when H 5 15, the evolution towards a consensus will
be dramatically accelerated. In the early stage, the probability of
opinion switching is still very small, due to the introduction of a
freezing period. However, when t . Hopt, the increment of M(t)
suddenly accelerates. The system only uses about 1,700 time steps
to reach the final consensus, which is much faster than what one can
expect for the other cases. The presence of Hopt warrants the most
efficient condition for the consensus emergence.

The reason for the accelerated consensus: Biased random walk.
Figure 3 shows the snapshots of the evolution process with three
typical values for H. As shown in Figure 4, under the scenario of H
5 0, the number of opinion clusters, Noc, decreases as time proceeds.
In particular, in the first 102 time steps, the reduction of Noc is the
fastest. In this standard voter model, the interface between adjacent
opinion clusters performs a random walk, and vanishes once it en-
counters another one. The disadvantage of this mechanism is espe-
cially evident when only two giant opinion clusters remain in the
system, since their unremitting competition remarkably postpones
the formation of a global consensus. As shown in Figure 3(a) and
Figure 4, the two final giant clusters emerge at about 104th time step,
whereas the system spends almost 3 * 104 time steps for reaching the
final consensus.

When the freezing period increases to Hopt, the dynamic feature
changes dramatically. As shown in Figure 3(b) and Figure 4, after
voters escape from the initial freezing period, the number of opinion
clusters Noc is quickly decreased. In this case, the interface separating
adjacent opinion clusters does not merely perform a random walk,
but rather takes a biased random walk. For further explanation, we
use an example to illustrate the movement of a typical interface in

H
Figure 1 | Consensus time Tc vs. H for different values of lattice size N.
Note that there presents an optimal value of H, named Hopt , producing the

shortest consensus time, regardless of the values of N. The inset shows the

variance of Hopt as dependent on the lattice size N. We fix q 5 0.01.

Figure 2 | Time courses characterizing the evolution of magnetization
M(t) with different values of H. Although the initial value of M(t) is small

under the scenario of H 5 15, it requires the shortest time to reach a global

consensus. We fix N 5 500, q 5 0.01.
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Figure 5. For simplicity, the capital letter A (B) represents the voters
having opinion 11 (21), while the lowercase letters a, b, c, d, e, f
denote the positions of voters on the lattice. Given that the persist-
ence time of each voter on the left of the interface (located at the
positions a, b, c in Figure 5(a)) is larger than the freezing period (i.e.,
ta(b,c) . H), and the right-hand voter closest to the interface (located
at the position d in Figure 5(a)) has a persistence time smaller than
the freezing period (i.e, td , H), the interface has a high probability
to gradually move leftward (see Figure 5(a) R Figure 5(b)).
Occasionally, some special situations may occur: (i) the left-hand
voter closest to the interface (located at the position c in
Figure 5(a)) does not change his opinion, yet the voter at the position
d accepts the left-hand neighbor’s opinion (see Figure 5(a) R
Figure 5(c)); (ii) two voters closest to the interface (located at the
positions c, d in Figure 5(a)) do not change their opinions until their
persistence time both reaches H, while the right-hand voter closest to
the interface finally adopts the left-hand neighbor’s opinion. In these
cases, the movement of the interface will shift its direction with a very
small probability, since: (i) the parameter q is assigned a tiny value,
(ii) the probability is quite small for that a pair of neighbors with
distinct opinions maintain their respective choices for about H steps.

With an optimal freezing period, Hopt 5 15, the effect of a biased
random walk not only accelerates the merging of clusters at the early
stage, but also dramatically reduces the time wasted by the competi-
tion between the two final clusters (see Figure 3(b)). However, a
further increment of H weakens this advantage. As an illustration,
we show the evolution snapshot of the scenario H 5 4,000 in
Figure 3(c). In this case, most interfaces are located between the
opinion clusters with persistence times smaller than H. For any
interface, only when either side of the cluster escapes from the initial
freezing period, a biased random walk occurs. Therefore, the global
consensus is largely deferred. To further verify the presence of
optimal freezing period Hopt, a simple theoretical analysis based on
the diffusive process is supplied in Supporting Information.

The influence of the overall number of opinions G and the
switching ability q. At last, it remains of interest to examine the
impact of the overall number of opinions G and the switching
ability q on the consensus time Tc. Figure 6 shows the dependence
of Tc on G. It is obvious that Tc gradually increases with the increment
of G. Moreover, as shown in the inset of Figure 6, the optimal freezing

Figure 3 | Snapshots for the evolution of opinion dynamics with three typical freezing periods. From left to right, the values of H are 0, 15 and 4000. In

each panel, the vertical axis corresponds to the elapsed time, while the yellow and blue areas on the horizontal lines represent the opinion clusters. It is

evident that the total time spent to reach a global consensus under the scenario of H 5 15 is far less than what we can expect for the other two cases.

We fix N 5 500, q 5 0.01.

Figure 4 | Time courses of opinion clusters Noc for different values of H.
It is obvious that Noc quickly decreases to 1 when H 5 15 (after voters pass

the initial freezing period), which is much faster than the results of other

cases. We fix N 5 500, q 5 0.01.

Figure 5 | A schematic illustration of the biased random walk for a typical
interface between neighboring opinion clusters. For simplicity, the capital

letters A,B represent the voters with opinion 11 or 21, respectively, while

the lowercase letters a, b, c, d, e, f denote the positions of voters on the

lattice. In each panel, the red line highlights the interface, which separates

the clusters of different opinions.
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period Hopt remains unchanged with the increment of G. Therefore,
the value of Hopt is robust, regardless of the changes in G. Figure 7
presents the relevance between Tc and H for different values of q. In
the limit q R 0, the scenario of Hopt produces the shortest consensus
time. However, increasing the value of q, this non-monotonous
phenomenon becomes more inconspicuous.

To give a holistic profile, the (q, H) phase diagram of the consensus
time Tc is shown in Figure 8. With respect to the Markovian scenarios
(i.e., q 5 1 or H 5 0), there always exists an optimal freezing period
Hopt, which leads to the fastest consensus, when q is small. The
smaller the value of q, the faster the formation of a global consensus
with Hopt.

Discussion
In summary, we have introduced the freezing period into the voter
model. Through extensive computational simulations, we unfold
that there presents an optimal freezing period, denoted by Hopt,
guaranteeing the fastest consensus, which is robust against the chan-
ging of lattice size and the overall number of opinions. In order to
explain the boosting effect of Hopt, we have examined the time
courses of opinion clusters, and unveiled that this achievement is
attributed to the mechanism of biased random walks of the interfaces
that separate neighboring opinion clusters. Moreover, we have the-
oretically analyzed the diffusion rate of interfaces, which verifies that
the presence of Hopt does guarantee the most effective transmission
of opinions.

Examples of the freezing period are prevalent in various natural
contexts, such as the creation of new technologies in the field of
telecommunications. In this sense, we wish that this work will inspire

further studies to improve the understanding on opinion formation
dynamics in other relevant models, and to extend the study to com-
plex networked topologies.

Methods
Model definition and algorithm details. We consider the voter model with N voters
allocated on the nodes of a regular one-dimensional lattice, with the periodic
boundary condition. Initially, each voter i is designated one of two opinions, si 5 11
or 21, with equal probability. Since we will also study cases with more than two
opinions, the parameter G is introduced to describe the overall number of distinct
opinions. Voters update their opinions as follows: a voter i is selected at random, and
will be affected by one of his neighbors, j, who is also chosen randomly. If they have
the same opinion, i preserves his viewpoint; if their opinions are distinct, i adopts the
opinion of j with the probability vV

i sijsj,t
� �

. When such a updating event takes place
for N times, the time step is increased by one. In the standard voter model, the value of
vV

i sijsj,t
� �

equals to 126,28,29. In our model, the transition of opinions is not only
affected by neighbors’ opinions, but is also determined by the persistence time of
opinions.

To account for the effect of opinion persistence time, we introduce the freezing
period H, in which voters are frozen with lowered opinion switching ability. The
modeling procedure is iterated with the elementary steps: (i) randomly pick a voter i;
(ii) the voter i accepts the opinion of a randomly chosen neighbor j with the prob-
ability

vV
i sjjsi,t
� �

~
q if tivH
1 if ti§H

n
ð1Þ

where the parameter q 0ƒq=1ð Þ represents the weakened switching ability during
the freezing period, and the persistence time ti registers the elapsed time since the last
change of i’s opinion. When H 5 0, the traditional model is recovered, where all
players have uniform, time-independent switch capacity; while for H . 0, the non-
Markovian effect is introduced. As in Refs. 25, 26, 50, we assume that (i) at the
beginning (t 5 0), and at each time step immediately after the opinion change of voter
i, ti is reset to zero (i.e., ti 5 0); (ii) if voter i does not change his opinion, his
persistence time is increased by one (i.e., ti 5 ti 1 1). Therefore, once the persistence
time ti is smaller than the freezing period H, the switching rate of i is decreased to q;
when ti $ H, voter i recovers to the standard case. Moreover, we have also certified
that the initial distribution of the elapsed time (e.g., exponential or power-law dis-
tributions) does not change the main results.

The elementary steps are iterated until the system reaches a state of consensus. In a
full time step, on average, each voter has a chance to update his opinion once. The
consensus time Tc is defined to capture the time spent in reaching the global con-
sensus. In addition, since Refs. 57, 58 showed that Tc is related to the size of the system,
the simulation results are averaged up to 104 independent realizations for each set of
parameters.
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