Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 3;69(Pt 9):o1365–o1366. doi: 10.1107/S1600536813020849

2-(3-Cyano-4-methyl-5,5-diphenyl-5H-furan-2-yl­idene)malono­nitrile

M Delower H Bhuiyan a, Graeme J Gainsford a,*, Andrew Kay a, Jack Anderson b
PMCID: PMC3884449  PMID: 24427012

Abstract

The title compound, C21H13N3O, crystallizes with two independent molecules with similar conformations per asymmetric unit. The dihydrofuran rings are essentially planar with maximum deviations of 0.017 (1) and 0.006 (1) Å for the O atoms. The dihedral angles between the di­hydro­furan ring and the attached phenyl rings are 79.90 (6) and 82.07 (6)° in one mol­ecule and 79.36 (6) and 72.26 (6)° in the other. In the crystal, the molecules are linked by weak C—H⋯π and C—H⋯N inter­actions similar to those in other closely related crystals. The replacement of appended methyl by phenyl groups has not significantly affected the dihydrofuran ring structure or the crystal packing interactions.

Related literature  

For general background to NLO chromophores, see: Smith et al. (2006, 2010); Carey et al. (2002); Kay et al. (2004). For details of the synthesis, see: Anderson (2009). For related structures, see: Anderson (2009); Gainsford et al. (2011); Li et al. (2005); Liao et al. (2005). For geometric analysis of structures, see: Spek (2009). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-69-o1365-scheme1.jpg

Experimental  

Crystal data  

  • C21H13N3O

  • M r = 323.34

  • Triclinic, Inline graphic

  • a = 9.2308 (3) Å

  • b = 12.5991 (4) Å

  • c = 14.3043 (4) Å

  • α = 89.954 (2)°

  • β = 89.052 (2)°

  • γ = 79.233 (2)°

  • V = 1634.07 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 123 K

  • 0.36 × 0.32 × 0.29 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.651, T max = 0.746

  • 45305 measured reflections

  • 9930 independent reflections

  • 7329 reflections with I > 2σ(I)

  • R int = 0.042

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.119

  • S = 1.04

  • 9930 reflections

  • 453 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813020849/rz5081sup1.cif

e-69-o1365-sup1.cif (28.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813020849/rz5081Isup2.hkl

e-69-o1365-Isup2.hkl (475.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813020849/rz5081Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C10–C15 phenyl ring

D—H⋯A D—H H⋯A DA D—H⋯A
C20′—H20′⋯Cg1i 0.95 2.69 3.4041 (14) 133
C9—H9B⋯N3′ 0.98 2.70 3.4560 (14) 134

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by a New Zealand Foundation for Research Science and Technology grant (contract No. C08X0704). We thank Dr C. Fitchett of the University of Canterbury, New Zealand, for his assistance.

supplementary crystallographic information

1. Comment

Organic non-linear optical (NLO) chromophores consist of donor and acceptor units connecting through π-conjugation. To realise a strong NLO response, chromophores need to be in uniform alignment. Unfortunately organic chromophores have a tendency to aggregate rather than align due to their highly polar nature (Smith et al., 2006). These push-pull chromophores can also exist as two rotomeric (cis and trans) forms (Kay et al., 2004). As a result, these chromophores are difficult to crystallize, therefore they may not be able to be used in devices that require crystals such as terahertz wave emitters (Carey et al., 2002). Consequently it is of interest to design and synthesize molecules which will be much less prone to aggregation and isomerization. It has been found that through changing the shape of the chromophore molecules, aggregation can be minimized. The most successful strategy has been to add bulky pendant groups onto the donor end (Smith et al., 2010). We have reported our previous attempts with two benzyloxyphenyl groups (Gainsford et al., 2011; Anderson, 2009) and report here the structure of a related acceptor unit with two phenyl groups.

The asymmetric unit of the title compound (I) contains two independent, nearly identical, 2-(3-cyano-4-methyl-5,5-diphenyl-5H-furan-2-ylidene)malononitrile molecules (Fig. 1). The second molecule (1') has identical labels with an appended prime (e.g. C10 and C10'); the r.m.s. bond and angle fits are 0.003 Å and 0.48° (Spek, 2009). The five-membered dihydrofuran rings (atoms C4-C7/O1, hereafter plane 1) are planar (maximum deviation 0.017 (1) Å for O1) with the appended cyano groups almost coplanar (maximum deviation 0.093 (1) Å for N1). The 5,5-dimethyl adduct (Li et al., 2005; CSD refcode PANLUM), in which plane 1 was constrained to a crystallographic mirror plane, has identical ring dimensions with the exception of the C4–C5 bond which is just significantly longer here (by 0.013 (4) Å). This marginally longer distance seems the exception and is not observed in related molecules [Allen (2002); CSD version 5.34 with May 2013 updates: e.g. KAJCII and KATCEE, 1.518 and 1.536, 1.537 Å respectively (Liao et al., 2005); YAHKUP 1.512 Å (Gainsford et al., 2011)].

The only significant conformational differences between the two molecules concern the interplanar angles between the phenyl rings and plane 1, corresponding to the different torsion angles (C4–C5–C10–C15 = -21.21 (15)°; O1–C5–C16–C17 = -30.62 (13)°; C4'–C5'–C10'–C15' = -30.22 (14)°; O1'–C5'–C16'–C17' = -21.91 (15)°). The plane 1 angle to phenyl plane (C10–C15) is 79.90 (6) and 82.07 (6)° for molecules 1 and 1' while the other phenyl plane (C16–C21) makes interplane angle of 79.36 (6) and 72.26 (6)° for molecules 1 and 1'.

Lattice binding is provided mainly by one non-classical C–H···π interaction (Table 1, Figure 2 where Cg1 is the centroid of the C10–C15 ring), the dominant binding interaction type in related compound YAHKUP (Gainsford et al., 2011). As in PANLUM, a weak methylCH···N(cyano) interaction is observed. Other CH···N(cyano), C–H···π and cyano···cyano very weak interactions even closer to van der Waal's contact distances are also present. Overall, the effect of the phenyl for methyl replacement on C5 has given insignificant molecular structural and cystal packing alignment affects.

2. Experimental

The title compound was prepared by the condensation of 1-hydroxy-1,1-diphenylpropan-2-one with 4 equivalents of malononitrile over 10 days as described in Anderson (2009). A small portion was recrystallized in dichloromethane and acetone (1:1) mixture to give colourless crystals. M.p. 223 °C. Found: C, 77.70; H, 3.91; N, 13.06, C21H13N3O requires C, 78.00; H, 4.05; N, 13.00%. Found: M+ m/z 323.1059 C21H13N3O requires: M+ m/z 323.1056 (Δ 0.9 p.p.m.). 1H NMR– (300 MHz, CDCl3) δ (p.p.m.): 2.41 (s, 3H), 7.18 (d, J 9.6 Hz, 4H), 7.51–7.47 (m, 6H). 13C NMR– (75 MHz, CDCl3) δ (p.p.m.): 16.2 (CH3), 59.5 (CQ), 105.6 (CQ), 106.4 (CQ), 109.0 (CQ), 110.2 (CQ), 110.7 (CQ), 127.3 (CH), 129.5 (CH), 130.6 (CH), 134.9 (CQ), 175.1 (CQ), 180.2 (CQ).

3. Refinement

All carbon-bound H atoms were constrained to their expected geometries [C—H 0.95, 0.98 Å] and refined with Uiso 1.2 times the Ueq of their parent atom. All other non-hydrogen atoms were refined with anisotropic thermal parameters.

Figures

Fig. 1.

Fig. 1.

Content of the asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. The partially obscured atom C15 is not labelled.

Fig. 2.

Fig. 2.

Packing diagram of the title compound with one C–H···π and C(methyl)–H···N(cyano) interaction shown as dashed blue lines. H atoms not involved in intermolecular contacts are excluded except on methyl C9. Cg1 is the centroid of the phenyl ring (C10–C15) at symmetry 1-x, 1-y, -z. Symmetry code: (i) -1+x, y, z.

Crystal data

C21H13N3O Z = 4
Mr = 323.34 F(000) = 672
Triclinic, P1 Dx = 1.314 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.2308 (3) Å Cell parameters from 9027 reflections
b = 12.5991 (4) Å θ = 2.2–30.5°
c = 14.3043 (4) Å µ = 0.08 mm1
α = 89.954 (2)° T = 123 K
β = 89.052 (2)° Block, colourless
γ = 79.233 (2)° 0.36 × 0.32 × 0.29 mm
V = 1634.07 (9) Å3

Data collection

Bruker APEXII CCD diffractometer 9930 independent reflections
Radiation source: fine-focus sealed tube 7329 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.042
Detector resolution: 8.333 pixels mm-1 θmax = 30.7°, θmin = 1.4°
φ and ω scans h = −13→13
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −18→18
Tmin = 0.651, Tmax = 0.746 l = −20→20
45305 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.3811P] where P = (Fo2 + 2Fc2)/3
9930 reflections (Δ/σ)max < 0.001
453 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.34806 (9) 0.80434 (6) 0.09747 (5) 0.01913 (17)
N1 0.71127 (14) 0.64480 (10) −0.12562 (9) 0.0387 (3)
N2 0.41086 (13) 0.95957 (10) −0.09834 (8) 0.0315 (3)
N3 0.68541 (13) 0.46791 (10) 0.06030 (8) 0.0320 (3)
C1 0.62087 (14) 0.70061 (10) −0.08395 (9) 0.0255 (3)
C2 0.50822 (13) 0.77028 (10) −0.03197 (8) 0.0204 (2)
C3 0.45366 (13) 0.87575 (10) −0.06807 (8) 0.0228 (2)
C4 0.40415 (12) 0.64052 (9) 0.17749 (8) 0.0194 (2)
C5 0.30203 (12) 0.74917 (9) 0.18178 (8) 0.0176 (2)
C6 0.45279 (12) 0.73785 (9) 0.04999 (8) 0.0183 (2)
C7 0.49044 (12) 0.63614 (9) 0.10052 (8) 0.0193 (2)
C8 0.60060 (13) 0.54476 (10) 0.07557 (8) 0.0225 (2)
C9 0.40783 (15) 0.55820 (10) 0.25144 (9) 0.0269 (3)
H9A 0.4637 0.4889 0.2288 0.032*
H9B 0.3069 0.5502 0.2677 0.032*
H9C 0.4553 0.5808 0.3069 0.032*
C10 0.14038 (12) 0.74436 (9) 0.16821 (8) 0.0188 (2)
C11 0.03222 (13) 0.83316 (10) 0.19229 (8) 0.0225 (2)
H11 0.0589 0.8940 0.2219 0.027*
C12 −0.11448 (14) 0.83266 (11) 0.17303 (9) 0.0278 (3)
H12 −0.1884 0.8930 0.1899 0.033*
C13 −0.15301 (14) 0.74430 (12) 0.12926 (9) 0.0301 (3)
H13 −0.2535 0.7441 0.1162 0.036*
C14 −0.04624 (15) 0.65645 (11) 0.10437 (9) 0.0288 (3)
H14 −0.0733 0.5963 0.0738 0.035*
C15 0.10062 (14) 0.65600 (10) 0.12400 (9) 0.0238 (2)
H15 0.1740 0.5953 0.1072 0.029*
C16 0.33659 (12) 0.80840 (9) 0.26874 (8) 0.0186 (2)
C17 0.45540 (13) 0.86160 (10) 0.26897 (9) 0.0226 (2)
H17 0.5119 0.8654 0.2134 0.027*
C18 0.49144 (15) 0.90922 (11) 0.35082 (9) 0.0287 (3)
H18 0.5728 0.9456 0.3512 0.034*
C19 0.40914 (17) 0.90379 (12) 0.43177 (9) 0.0337 (3)
H19 0.4334 0.9371 0.4875 0.040*
C20 0.29189 (17) 0.85014 (12) 0.43188 (9) 0.0329 (3)
H20 0.2352 0.8468 0.4875 0.040*
C21 0.25681 (15) 0.80120 (10) 0.35100 (8) 0.0255 (3)
H21 0.1778 0.7625 0.3517 0.031*
O1' 0.98981 (9) 0.20107 (6) 0.40488 (5) 0.01929 (17)
N1' 1.26942 (15) 0.36533 (11) 0.61930 (9) 0.0397 (3)
N2' 1.13037 (14) 0.05064 (10) 0.60095 (8) 0.0346 (3)
N3' 1.16038 (13) 0.53580 (9) 0.43102 (8) 0.0302 (2)
C1' 1.20774 (14) 0.30913 (11) 0.57926 (9) 0.0265 (3)
C2' 1.13161 (13) 0.23860 (10) 0.53017 (8) 0.0214 (2)
C3' 1.12990 (14) 0.13375 (10) 0.56895 (8) 0.0236 (2)
C4' 0.97057 (12) 0.35981 (9) 0.31831 (8) 0.0192 (2)
C5' 0.92300 (12) 0.25132 (9) 0.31831 (8) 0.0181 (2)
C6' 1.06105 (12) 0.26850 (9) 0.44854 (8) 0.0183 (2)
C7' 1.05045 (12) 0.36764 (9) 0.39479 (8) 0.0194 (2)
C8' 1.11373 (13) 0.45944 (10) 0.41679 (8) 0.0220 (2)
C9' 0.93503 (15) 0.43960 (10) 0.24239 (9) 0.0262 (3)
H9'A 0.9634 0.5077 0.2607 0.031*
H9'B 0.8289 0.4520 0.2309 0.031*
H9'C 0.9893 0.4120 0.1853 0.031*
C10' 0.75678 (12) 0.26066 (9) 0.33075 (8) 0.0187 (2)
C11' 0.68589 (13) 0.18118 (10) 0.29681 (9) 0.0231 (2)
H11' 0.7401 0.1214 0.2630 0.028*
C12' 0.53511 (14) 0.18933 (11) 0.31243 (9) 0.0276 (3)
H12' 0.4859 0.1359 0.2879 0.033*
C13' 0.45660 (14) 0.27472 (11) 0.36351 (10) 0.0290 (3)
H13' 0.3537 0.2798 0.3741 0.035*
C14' 0.52747 (14) 0.35269 (11) 0.39920 (10) 0.0291 (3)
H14' 0.4737 0.4106 0.4353 0.035*
C15' 0.67724 (14) 0.34638 (10) 0.38225 (9) 0.0241 (2)
H15' 0.7256 0.4007 0.4059 0.029*
C16' 0.99343 (13) 0.18644 (9) 0.23453 (8) 0.0189 (2)
C17' 1.13164 (13) 0.12020 (9) 0.24063 (9) 0.0217 (2)
H17' 1.1791 0.1096 0.2992 0.026*
C18' 1.19993 (14) 0.06974 (10) 0.16117 (9) 0.0262 (3)
H18' 1.2949 0.0254 0.1654 0.031*
C19' 1.13090 (16) 0.08335 (10) 0.07570 (9) 0.0288 (3)
H19' 1.1776 0.0478 0.0216 0.035*
C20' 0.99357 (15) 0.14899 (11) 0.06954 (9) 0.0287 (3)
H20' 0.9458 0.1584 0.0110 0.034*
C21' 0.92545 (14) 0.20087 (10) 0.14786 (8) 0.0252 (3)
H21' 0.8317 0.2467 0.1428 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0182 (4) 0.0211 (4) 0.0176 (4) −0.0025 (3) 0.0024 (3) 0.0021 (3)
N1 0.0364 (7) 0.0400 (7) 0.0369 (7) −0.0012 (6) 0.0125 (5) −0.0044 (6)
N2 0.0309 (6) 0.0339 (6) 0.0282 (6) −0.0025 (5) 0.0041 (5) 0.0049 (5)
N3 0.0288 (6) 0.0323 (6) 0.0317 (6) 0.0029 (5) −0.0057 (5) −0.0042 (5)
C1 0.0244 (6) 0.0287 (6) 0.0235 (6) −0.0057 (5) 0.0027 (5) 0.0005 (5)
C2 0.0182 (5) 0.0246 (6) 0.0184 (5) −0.0042 (4) 0.0005 (4) −0.0005 (4)
C3 0.0206 (6) 0.0305 (6) 0.0177 (5) −0.0060 (5) 0.0025 (4) −0.0003 (5)
C4 0.0180 (5) 0.0202 (5) 0.0208 (5) −0.0057 (4) −0.0035 (4) 0.0002 (4)
C5 0.0172 (5) 0.0196 (5) 0.0160 (5) −0.0039 (4) 0.0017 (4) 0.0020 (4)
C6 0.0153 (5) 0.0216 (5) 0.0184 (5) −0.0045 (4) −0.0021 (4) −0.0018 (4)
C7 0.0171 (5) 0.0206 (5) 0.0204 (5) −0.0039 (4) −0.0027 (4) −0.0016 (4)
C8 0.0193 (5) 0.0258 (6) 0.0225 (6) −0.0045 (5) −0.0035 (4) −0.0022 (5)
C9 0.0306 (7) 0.0238 (6) 0.0258 (6) −0.0040 (5) −0.0005 (5) 0.0060 (5)
C10 0.0170 (5) 0.0241 (5) 0.0161 (5) −0.0055 (4) −0.0003 (4) 0.0021 (4)
C11 0.0203 (5) 0.0264 (6) 0.0211 (5) −0.0049 (5) 0.0002 (4) −0.0015 (5)
C12 0.0188 (6) 0.0365 (7) 0.0265 (6) −0.0013 (5) 0.0000 (5) 0.0007 (5)
C13 0.0187 (6) 0.0440 (8) 0.0297 (6) −0.0110 (5) −0.0043 (5) 0.0040 (6)
C14 0.0281 (6) 0.0318 (7) 0.0301 (6) −0.0146 (5) −0.0055 (5) 0.0011 (5)
C15 0.0234 (6) 0.0238 (6) 0.0254 (6) −0.0070 (5) −0.0015 (5) 0.0000 (5)
C16 0.0180 (5) 0.0197 (5) 0.0180 (5) −0.0032 (4) −0.0026 (4) 0.0010 (4)
C17 0.0188 (5) 0.0234 (6) 0.0259 (6) −0.0047 (4) −0.0024 (5) 0.0033 (5)
C18 0.0287 (6) 0.0274 (6) 0.0330 (7) −0.0121 (5) −0.0109 (5) 0.0032 (5)
C19 0.0466 (8) 0.0355 (7) 0.0231 (6) −0.0175 (6) −0.0107 (6) −0.0007 (5)
C20 0.0451 (8) 0.0385 (7) 0.0185 (6) −0.0164 (6) 0.0006 (6) 0.0005 (5)
C21 0.0287 (6) 0.0306 (6) 0.0204 (5) −0.0135 (5) −0.0011 (5) 0.0015 (5)
O1' 0.0198 (4) 0.0208 (4) 0.0176 (4) −0.0045 (3) −0.0035 (3) 0.0023 (3)
N1' 0.0412 (7) 0.0389 (7) 0.0397 (7) −0.0079 (6) −0.0131 (6) −0.0056 (6)
N2' 0.0397 (7) 0.0325 (6) 0.0303 (6) −0.0033 (5) −0.0062 (5) 0.0042 (5)
N3' 0.0302 (6) 0.0310 (6) 0.0312 (6) −0.0109 (5) 0.0057 (5) −0.0038 (5)
C1' 0.0250 (6) 0.0289 (6) 0.0243 (6) −0.0013 (5) −0.0044 (5) −0.0013 (5)
C2' 0.0192 (5) 0.0246 (6) 0.0195 (5) −0.0020 (4) −0.0017 (4) −0.0006 (4)
C3' 0.0229 (6) 0.0276 (6) 0.0184 (5) −0.0002 (5) −0.0034 (5) −0.0010 (5)
C4' 0.0154 (5) 0.0209 (5) 0.0203 (5) −0.0016 (4) 0.0033 (4) 0.0007 (4)
C5' 0.0175 (5) 0.0201 (5) 0.0158 (5) −0.0011 (4) −0.0022 (4) 0.0023 (4)
C6' 0.0141 (5) 0.0214 (5) 0.0188 (5) −0.0019 (4) 0.0020 (4) −0.0018 (4)
C7' 0.0161 (5) 0.0213 (5) 0.0208 (5) −0.0036 (4) 0.0030 (4) −0.0005 (4)
C8' 0.0188 (5) 0.0251 (6) 0.0219 (6) −0.0042 (5) 0.0032 (4) −0.0009 (5)
C9' 0.0293 (6) 0.0250 (6) 0.0241 (6) −0.0046 (5) −0.0004 (5) 0.0061 (5)
C10' 0.0167 (5) 0.0215 (5) 0.0172 (5) −0.0015 (4) −0.0001 (4) 0.0031 (4)
C11' 0.0214 (6) 0.0240 (6) 0.0234 (6) −0.0030 (5) 0.0003 (5) −0.0010 (5)
C12' 0.0221 (6) 0.0299 (6) 0.0325 (7) −0.0087 (5) −0.0021 (5) 0.0027 (5)
C13' 0.0177 (6) 0.0339 (7) 0.0344 (7) −0.0025 (5) 0.0028 (5) 0.0059 (6)
C14' 0.0225 (6) 0.0284 (6) 0.0335 (7) 0.0019 (5) 0.0060 (5) 0.0001 (5)
C15' 0.0215 (6) 0.0234 (6) 0.0268 (6) −0.0029 (5) 0.0013 (5) −0.0013 (5)
C16' 0.0185 (5) 0.0196 (5) 0.0187 (5) −0.0037 (4) 0.0012 (4) 0.0004 (4)
C17' 0.0196 (5) 0.0208 (5) 0.0244 (6) −0.0029 (4) 0.0004 (4) 0.0020 (5)
C18' 0.0235 (6) 0.0215 (6) 0.0313 (6) 0.0008 (5) 0.0060 (5) 0.0021 (5)
C19' 0.0347 (7) 0.0257 (6) 0.0245 (6) −0.0023 (5) 0.0103 (5) −0.0019 (5)
C20' 0.0331 (7) 0.0337 (7) 0.0183 (5) −0.0035 (6) 0.0014 (5) 0.0000 (5)
C21' 0.0220 (6) 0.0308 (6) 0.0208 (6) 0.0002 (5) −0.0012 (5) 0.0022 (5)

Geometric parameters (Å, º)

O1—C6 1.3320 (14) O1'—C6' 1.3295 (14)
O1—C5 1.4866 (13) O1'—C5' 1.4808 (12)
N1—C1 1.1450 (17) N1'—C1' 1.1469 (18)
N2—C3 1.1437 (16) N2'—C3' 1.1417 (17)
N3—C8 1.1443 (16) N3'—C8' 1.1448 (16)
C1—C2 1.4280 (18) C1'—C2' 1.4239 (18)
C2—C6 1.3642 (16) C2'—C6' 1.3647 (15)
C2—C3 1.4295 (16) C2'—C3' 1.4351 (17)
C4—C7 1.3432 (17) C4'—C7' 1.3432 (16)
C4—C9 1.4772 (16) C4'—C9' 1.4779 (15)
C4—C5 1.5107 (16) C4'—C5' 1.5118 (16)
C5—C16 1.5197 (16) C5'—C16' 1.5180 (16)
C5—C10 1.5202 (16) C5'—C10' 1.5243 (15)
C6—C7 1.4580 (15) C6'—C7' 1.4547 (15)
C7—C8 1.4277 (17) C7'—C8' 1.4273 (17)
C9—H9A 0.9800 C9'—H9'A 0.9800
C9—H9B 0.9800 C9'—H9'B 0.9800
C9—H9C 0.9800 C9'—H9'C 0.9800
C10—C15 1.3912 (17) C10'—C11' 1.3866 (17)
C10—C11 1.3926 (17) C10'—C15' 1.3911 (17)
C11—C12 1.3875 (17) C11'—C12' 1.3907 (17)
C11—H11 0.9500 C11'—H11' 0.9500
C12—C13 1.384 (2) C12'—C13' 1.3816 (19)
C12—H12 0.9500 C12'—H12' 0.9500
C13—C14 1.380 (2) C13'—C14' 1.380 (2)
C13—H13 0.9500 C13'—H13' 0.9500
C14—C15 1.3879 (17) C14'—C15' 1.3872 (18)
C14—H14 0.9500 C14'—H14' 0.9500
C15—H15 0.9500 C15'—H15' 0.9500
C16—C17 1.3881 (16) C16'—C17' 1.3919 (16)
C16—C21 1.3898 (17) C16'—C21' 1.3952 (16)
C17—C18 1.3894 (18) C17'—C18' 1.3861 (18)
C17—H17 0.9500 C17'—H17' 0.9500
C18—C19 1.383 (2) C18'—C19' 1.3837 (19)
C18—H18 0.9500 C18'—H18' 0.9500
C19—C20 1.379 (2) C19'—C20' 1.3822 (19)
C19—H19 0.9500 C19'—H19' 0.9500
C20—C21 1.3826 (18) C20'—C21' 1.3792 (18)
C20—H20 0.9500 C20'—H20' 0.9500
C21—H21 0.9500 C21'—H21' 0.9500
C6—O1—C5 110.17 (8) C6'—O1'—C5' 110.25 (8)
N1—C1—C2 179.94 (19) N1'—C1'—C2' 179.47 (14)
C6—C2—C1 121.39 (11) C6'—C2'—C1' 121.78 (11)
C6—C2—C3 120.28 (11) C6'—C2'—C3' 120.02 (11)
C1—C2—C3 118.33 (11) C1'—C2'—C3' 118.20 (10)
N2—C3—C2 178.90 (14) N2'—C3'—C2' 178.76 (14)
C7—C4—C9 127.97 (11) C7'—C4'—C9' 127.80 (11)
C7—C4—C5 109.10 (10) C7'—C4'—C5' 109.09 (10)
C9—C4—C5 122.86 (11) C9'—C4'—C5' 123.09 (10)
O1—C5—C4 102.37 (9) O1'—C5'—C4' 102.35 (9)
O1—C5—C16 109.19 (9) O1'—C5'—C16' 109.11 (8)
C4—C5—C16 108.53 (9) C4'—C5'—C16' 108.89 (9)
O1—C5—C10 105.72 (8) O1'—C5'—C10' 106.34 (8)
C4—C5—C10 114.22 (10) C4'—C5'—C10' 112.82 (9)
C16—C5—C10 115.82 (10) C16'—C5'—C10' 116.33 (10)
O1—C6—C2 120.36 (10) O1'—C6'—C2' 120.27 (10)
O1—C6—C7 109.26 (10) O1'—C6'—C7' 109.49 (9)
C2—C6—C7 130.38 (11) C2'—C6'—C7' 130.22 (11)
C4—C7—C8 123.65 (11) C4'—C7'—C8' 124.09 (11)
C4—C7—C6 109.02 (10) C4'—C7'—C6' 108.81 (10)
C8—C7—C6 127.34 (11) C8'—C7'—C6' 127.10 (10)
N3—C8—C7 175.48 (14) N3'—C8'—C7' 176.62 (13)
C4—C9—H9A 109.5 C4'—C9'—H9'A 109.5
C4—C9—H9B 109.5 C4'—C9'—H9'B 109.5
H9A—C9—H9B 109.5 H9'A—C9'—H9'B 109.5
C4—C9—H9C 109.5 C4'—C9'—H9'C 109.5
H9A—C9—H9C 109.5 H9'A—C9'—H9'C 109.5
H9B—C9—H9C 109.5 H9'B—C9'—H9'C 109.5
C15—C10—C11 119.65 (11) C11'—C10'—C15' 119.72 (11)
C15—C10—C5 120.37 (11) C11'—C10'—C5' 120.81 (10)
C11—C10—C5 119.70 (11) C15'—C10'—C5' 119.32 (11)
C12—C11—C10 119.95 (12) C10'—C11'—C12' 119.71 (12)
C12—C11—H11 120.0 C10'—C11'—H11' 120.1
C10—C11—H11 120.0 C12'—C11'—H11' 120.1
C13—C12—C11 119.97 (12) C13'—C12'—C11' 120.31 (12)
C13—C12—H12 120.0 C13'—C12'—H12' 119.8
C11—C12—H12 120.0 C11'—C12'—H12' 119.8
C14—C13—C12 120.39 (12) C14'—C13'—C12' 120.11 (12)
C14—C13—H13 119.8 C14'—C13'—H13' 119.9
C12—C13—H13 119.8 C12'—C13'—H13' 119.9
C13—C14—C15 119.99 (12) C13'—C14'—C15' 119.93 (12)
C13—C14—H14 120.0 C13'—C14'—H14' 120.0
C15—C14—H14 120.0 C15'—C14'—H14' 120.0
C14—C15—C10 120.03 (12) C14'—C15'—C10' 120.18 (12)
C14—C15—H15 120.0 C14'—C15'—H15' 119.9
C10—C15—H15 120.0 C10'—C15'—H15' 119.9
C17—C16—C21 119.62 (11) C17'—C16'—C21' 119.14 (11)
C17—C16—C5 120.49 (11) C17'—C16'—C5' 120.97 (10)
C21—C16—C5 119.64 (10) C21'—C16'—C5' 119.62 (10)
C16—C17—C18 119.77 (12) C18'—C17'—C16' 119.95 (11)
C16—C17—H17 120.1 C18'—C17'—H17' 120.0
C18—C17—H17 120.1 C16'—C17'—H17' 120.0
C19—C18—C17 120.14 (12) C19'—C18'—C17' 120.54 (11)
C19—C18—H18 119.9 C19'—C18'—H18' 119.7
C17—C18—H18 119.9 C17'—C18'—H18' 119.7
C20—C19—C18 120.17 (13) C20'—C19'—C18' 119.58 (12)
C20—C19—H19 119.9 C20'—C19'—H19' 120.2
C18—C19—H19 119.9 C18'—C19'—H19' 120.2
C19—C20—C21 119.97 (13) C21'—C20'—C19' 120.41 (12)
C19—C20—H20 120.0 C21'—C20'—H20' 119.8
C21—C20—H20 120.0 C19'—C20'—H20' 119.8
C20—C21—C16 120.30 (12) C20'—C21'—C16' 120.36 (11)
C20—C21—H21 119.9 C20'—C21'—H21' 119.8
C16—C21—H21 119.9 C16'—C21'—H21' 119.8
C6—O1—C5—C4 2.74 (11) C6'—O1'—C5'—C4' 1.01 (11)
C6—O1—C5—C16 117.63 (10) C6'—O1'—C5'—C16' 116.26 (10)
C6—O1—C5—C10 −117.13 (10) C6'—O1'—C5'—C10' −117.54 (10)
C7—C4—C5—O1 −1.50 (12) C7'—C4'—C5'—O1' −0.64 (12)
C9—C4—C5—O1 175.57 (10) C9'—C4'—C5'—O1' 177.60 (10)
C7—C4—C5—C16 −116.87 (11) C7'—C4'—C5'—C16' −116.05 (10)
C9—C4—C5—C16 60.21 (14) C9'—C4'—C5'—C16' 62.19 (13)
C7—C4—C5—C10 112.25 (11) C7'—C4'—C5'—C10' 113.21 (11)
C9—C4—C5—C10 −70.67 (14) C9'—C4'—C5'—C10' −68.54 (14)
C5—O1—C6—C2 177.73 (10) C5'—O1'—C6'—C2' −179.83 (10)
C5—O1—C6—C7 −2.95 (12) C5'—O1'—C6'—C7' −1.00 (12)
C1—C2—C6—O1 179.78 (11) C1'—C2'—C6'—O1' −179.38 (11)
C3—C2—C6—O1 −0.45 (17) C3'—C2'—C6'—O1' 0.38 (17)
C1—C2—C6—C7 0.6 (2) C1'—C2'—C6'—C7' 2.1 (2)
C3—C2—C6—C7 −179.61 (11) C3'—C2'—C6'—C7' −178.17 (12)
C9—C4—C7—C8 2.6 (2) C9'—C4'—C7'—C8' 1.5 (2)
C5—C4—C7—C8 179.51 (11) C5'—C4'—C7'—C8' 179.64 (11)
C9—C4—C7—C6 −177.01 (11) C9'—C4'—C7'—C6' −178.04 (11)
C5—C4—C7—C6 −0.12 (13) C5'—C4'—C7'—C6' 0.10 (13)
O1—C6—C7—C4 1.95 (13) O1'—C6'—C7'—C4' 0.57 (13)
C2—C6—C7—C4 −178.82 (12) C2'—C6'—C7'—C4' 179.24 (12)
O1—C6—C7—C8 −177.67 (11) O1'—C6'—C7'—C8' −178.96 (11)
C2—C6—C7—C8 1.6 (2) C2'—C6'—C7'—C8' −0.3 (2)
O1—C5—C10—C15 90.54 (12) O1'—C5'—C10'—C11' −94.48 (12)
C4—C5—C10—C15 −21.21 (15) C4'—C5'—C10'—C11' 154.11 (10)
C16—C5—C10—C15 −148.43 (10) C16'—C5'—C10'—C11' 27.23 (14)
O1—C5—C10—C11 −83.48 (12) O1'—C5'—C10'—C15' 81.20 (12)
C4—C5—C10—C11 164.77 (10) C4'—C5'—C10'—C15' −30.22 (14)
C16—C5—C10—C11 37.56 (14) C16'—C5'—C10'—C15' −157.09 (10)
C15—C10—C11—C12 0.68 (17) C15'—C10'—C11'—C12' 1.69 (17)
C5—C10—C11—C12 174.74 (11) C5'—C10'—C11'—C12' 177.34 (10)
C10—C11—C12—C13 −0.52 (18) C10'—C11'—C12'—C13' −1.61 (18)
C11—C12—C13—C14 −0.1 (2) C11'—C12'—C13'—C14' 0.16 (19)
C12—C13—C14—C15 0.6 (2) C12'—C13'—C14'—C15' 1.22 (19)
C13—C14—C15—C10 −0.41 (19) C13'—C14'—C15'—C10' −1.13 (19)
C11—C10—C15—C14 −0.22 (17) C11'—C10'—C15'—C14' −0.33 (17)
C5—C10—C15—C14 −174.24 (11) C5'—C10'—C15'—C14' −176.05 (11)
O1—C5—C16—C17 −30.62 (13) O1'—C5'—C16'—C17' −21.91 (15)
C4—C5—C16—C17 80.23 (12) C4'—C5'—C16'—C17' 89.06 (12)
C10—C5—C16—C17 −149.77 (10) C10'—C5'—C16'—C17' −142.14 (11)
O1—C5—C16—C21 155.10 (10) O1'—C5'—C16'—C21' 164.16 (10)
C4—C5—C16—C21 −94.05 (12) C4'—C5'—C16'—C21' −84.88 (13)
C10—C5—C16—C21 35.95 (15) C10'—C5'—C16'—C21' 43.92 (15)
C21—C16—C17—C18 −1.44 (17) C21'—C16'—C17'—C18' 0.08 (18)
C5—C16—C17—C18 −175.72 (10) C5'—C16'—C17'—C18' −173.88 (11)
C16—C17—C18—C19 −0.09 (19) C16'—C17'—C18'—C19' −0.94 (19)
C17—C18—C19—C20 0.7 (2) C17'—C18'—C19'—C20' 0.8 (2)
C18—C19—C20—C21 0.3 (2) C18'—C19'—C20'—C21' 0.1 (2)
C19—C20—C21—C16 −1.8 (2) C19'—C20'—C21'—C16' −1.0 (2)
C17—C16—C21—C20 2.41 (18) C17'—C16'—C21'—C20' 0.86 (19)
C5—C16—C21—C20 176.74 (11) C5'—C16'—C21'—C20' 174.90 (12)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C10–C15 phenyl ring

D—H···A D—H H···A D···A D—H···A
C20′—H20′···Cg1i 0.95 2.69 3.4041 (14) 133
C9—H9B···N3′ 0.98 2.70 3.4560 (14) 134

Symmetry code: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5081).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Anderson, J. (2009). BSc (Hons.) project report. Victoria University of Wellington, New Zealand.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Carey, J. J., Bailey, R. T., Pugh, D., Sherwood, J. N., Cruikshank, F. R. & Wynne, K. (2002). Appl. Phys. Lett. 81, 4335–4337.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Gainsford, G. J., Anderson, J., Bhuiyan, M. D. H. & Kay, A. J. (2011). Acta Cryst. E67, o3046–o3047. [DOI] [PMC free article] [PubMed]
  7. Kay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem. 14, 1321–1330.
  8. Li, S.-Y., Song, Y.-Y., You, Z.-L., Wen, Y.-W. & Qin, J.-G. (2005). Acta Cryst. E61, o2093–o2095.
  9. Liao, Y., Eichinger, B. E., Firestone, K. A., Haller, M., Luo, J., Kaminsky, W., Benedict, J. B., Reid, P. J., Jen, A. K.-Y., Dalton, L. R. & Robinson, B. H. (2005). J. Am. Chem. Soc. 127, 2758–2766. [DOI] [PubMed]
  10. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Smith, G. J., Dunford, C. L., Kay, A. J. & Woolhouse, A. D. (2006). J. Photochem. Photobiol. A, 179, 237–242.
  13. Smith, G. J., Middleton, A. P., Clarke, D. J., Teshome, A., Kay, A. J., Bhuiyan, M. D. H., Asselberghs, I. & Clay, K. (2010). Opt. Mater. 32, 1237–1243.
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813020849/rz5081sup1.cif

e-69-o1365-sup1.cif (28.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813020849/rz5081Isup2.hkl

e-69-o1365-Isup2.hkl (475.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813020849/rz5081Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES