# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 1-{2-[(*E*)-2-(2-Nitrophenyl)ethenyl]-1phenylsulfonyl-1*H*-indol-3-yl}ethanone

#### S. Karthikeyan,<sup>a</sup> K. Sethusankar,<sup>a</sup>\* Velu Saravanan<sup>b</sup> and Arasambattu K. Mohanakrishnan<sup>b</sup>

<sup>a</sup>Department of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and <sup>b</sup>Department of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India Correspondence e-mail: ksethusankar@yahoo.co.in

Received 1 August 2013; accepted 8 August 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.118; data-to-parameter ratio = 17.1.

In the title compound,  $C_{24}H_{18}N_2O_5S$ , the S atom has a distorted tetrahedral configuration, with bond angles varying from 105.11 (7) to 119.98 (8)°. As a result of the electronwithdrawing character of the phenylsulfonyl group, the N- $Csp^2$  bond lengths [1.414 (2) and 1.413 (2) Å] are slightly longer than the reported value of 1.355 (14) Å for N atoms with a planar configuration. The indole moiety is essentially planar, with a maximum deviation of 0.0177 (14) Å for the N atom. The phenyl ring of the sulfonyl substituent makes a dihedral angle of 85.70  $(7)^{\circ}$  with the mean plane of the indole moiety. The molecular structure features intramolecular C-H···O hydrogen bonds, which generate S(6) and S(12) ring motifs. In the crystal, adjacent molecules are linked via C-H···O hydrogen bonds, forming infinite C(7) chains running along the *a*-axis direction. The crystal packing also features  $C-H \cdot \cdot \pi$  interactions, which form a three-dimensional structure.

#### **Related literature**

For the biological activity of Indole derivatives, see: Rodriguez *et al.* (1985); Chai *et al.* (2006); Olgen & Coban (2003). For related crystal structures, see: Karthikeyan *et al.* (2011, 2012). For related bond distances and bond-angle geometries and distortions, see: Allen (1981); Allen *et al.* (1987). For graph-set notation, see: Bernstein *et al.* (1995). For the Thorpe–Ingold effect, see: Bassindale (1984).



V = 2037.8 (3) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.28 \times 0.25 \times 0.23 \text{ mm}$ 

4960 independent reflections

3893 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

 $\mu = 0.20 \text{ mm}^{-3}$ 

T = 296 K

 $R_{\rm int} = 0.021$ 

290 parameters

 $\Delta \rho_{\text{max}} = 0.42 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\text{min}} = -0.38 \text{ e } \text{\AA}^{-3}$ 

Z = 4

#### Experimental

Crystal data  $C_{24}H_{18}N_2O_5S$   $M_r = 446.46$ Monoclinic,  $P2_1/n$  a = 8.2409 (8) Å b = 16.1702 (15) Å c = 15.3700 (15) Å  $\beta = 95.775$  (5)°

#### Data collection

Bruker SMART APEXII CCD diffractometer 18837 measured reflections

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$  $wR(F^2) = 0.118$ S = 1.024960 reflections

**Table 1** Hydrogen-bond geometry (Å, °).

| Cg1,  | Cg2 and     | Cg3 a | are the | centroids | of the | C17–C22, | C11-C16 | and | C1-C6 |
|-------|-------------|-------|---------|-----------|--------|----------|---------|-----|-------|
| rings | , respectiv | vely. |         |           |        |          |         |     |       |

| $D - H \cdot \cdot \cdot A$  | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------|------|-------------------------|--------------|--------------------------------------|
| C2-H2···O1                   | 0.93 | 2.35                    | 2.935 (2)    | 121                                  |
| C18−H18···O3                 | 0.93 | 2.46                    | 3.108 (2)    | 127                                  |
| $C20-H20\cdots O2^{i}$       | 0.93 | 2.68                    | 3.319 (2)    | 126                                  |
| $C5-H5\cdots Cg1^{ii}$       | 0.93 | 2.89                    | 3.720 (2)    | 149                                  |
| $C22 - H22 \cdots Cg2^{iii}$ | 0.93 | 2.73                    | 3.4618 (18)  | 137                                  |
| $C24 - H24B \cdots Cg3^{iv}$ | 0.96 | 2.90                    | 3.601 (3)    | 131                                  |
| -                            |      |                         |              | 1 2                                  |

Symmetry codes: (i) x - 1, y, z; (ii) -x, -y, -z + 1; (iii)  $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$ ; (iv) -x + 1, -y, -z + 1.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors thank Mr T. Srinivasan and Dr D. Velmurugan, The Head, CAS in Crystallography and Biophysics, University of Madras, Chennai, India, for the data collection. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2631).

#### References

- Allen, F. H. (1981). Acta Cryst. B37, 900-906.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bassindale, A. (1984). *The Third Dimension in Organic Chemistry*, ch. 1, p. 11. New York: John Wiley and Sons.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911-917.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Karthikeyan, S., Sethusankar, K., Rajeswaran, G. G. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2245–o2246.
- Karthikeyan, S., Sethusankar, K., Rajeswaran, G. G. & Mohanakrishnan, A. K. (2012). Acta Cryst. E68, 09.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Olgen, S. & Coban, T. (2003). Biol. Pharm. Bull. 26, 736-738.
- Rodriguez, J. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). *Tetrahedron*, 41, 3813-3823.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

# supplementary materials

Acta Cryst. (2013). E69, o1422-o1423 [doi:10.1107/S1600536813022241]

# 1-{2-[(E)-2-(2-Nitrophenyl)ethenyl]-1-phenylsulfonyl-1H-indol-3-yl}ethanone

### S. Karthikeyan, K. Sethusankar, Velu Saravanan and Arasambattu K. Mohanakrishnan

#### 1. Comment

The indole ring system is present in a number of natural products, many of which are found to possess pharmacological properties like anti-microbial, anti-inflammatory and anti-implantation activities (Rodriguez *et al.*, 1985). Indole derivatives are also known to exhibit anti-oxidant activities (Olgen & Coban, 2003) and antihepatitis B virus activities (Chai *et al.*, 2006).

In the title compound, Fig. 1, the indole ring is essentially planar with a maximum deviation of 0.0177 (14) Å for atom N1. The indole moiety is perpendicular to the phenylsulfonyl ring with a dihedral angle 85.70 (7)°. The nitro-group is inclined at an angle of 7.59 (9)° to the benzene ring to which it is attached. The nitro-phenyl ring makes a dihedral angle of 76.41 (7)° with the indole moiety mean plane. Short intramolecular C2—H2…O1 and C18—H18…O3 hyrogen bonds result in *S*(6) and *S*(12) ring motifs (Table 1 and Fig. 1). The molecular dimensions in the title compound are in excellent agreement with those reported for a closely related compound (Karthikeyan *et al.*, 2012).

The expansion of the ispo angles at C1, C3 and C4 [122.34 (16), 121.59 (18) and 121.13 (18)°, respectively] and contraction of the apical angles at C2, C5 and C6 [117.12 (19), 118.54 (18) and 119.28 (16)°, respectively] are caused by the fusion of the smaller pyrrole ring to the six-membered benzene ring and the strain is taken up by the angular distortion rather than by bond-length distortions (Allen, 1981). As a result of the electron withdrawing character of the phenyl-sulfonyl group, the N—Csp<sup>2</sup> bond lengths, *viz*, N1—C1 [1.414 (2) Å] and N1—C8 [1.413 (2) Å], are longer than the mean value of 1.355 (14) Å reported for N atoms with planar configurations (Allen *et al.*, 1987).

Atom S1 has a distorted tetrahedral configuration. The widening of the angle O2=S1=O1 [119.98 (8)°] and the narrowing of the angle N1—S1—C17 [105.11 (7)°] from the ideal tetrahedral value are attributed to the Thorpe-Ingold effect (Bassindale, 1984). The widening of the angles may be due to the repulsive interactions between the two short S=O bonds, similar to what is observed in a related structure (Karthikeyan *et al.*, 2011).

The crystal packing is stabilized by C—H···O hydrogen bonds (Fig. 2 and Table 1) resulting in C(7) infinite chains of molecules running along the *a* axis direction (Bernstein *et al.*, 1995). The crystal packing is further stabilized by C—H··· $\pi$  interactions forming a three-dimensional structure (Table 1 and Fig. 3).

#### 2. Experimental

A solution of the ylide, 1-[1-(phenylsulfonyl)-2-[(triphenyl-\$1<sup>5</sup>-phosphanylidene)methyl]-1H-indol-3-yl]ethan-1-one (1 g, 1.745 mmol), and 2-nitrobenzaldehyde (0.29 g, 1.919 mmol) in dry DCM (20 ml) was refluxed for 8 h under N<sub>2</sub>. Removal of solvent *in vacuo* followed by trituration of the crude product with cold methanol (5 ml) afforded the title compound as a yellow solid [Yield: 0.71 g (92%); M.p. 427-429 K]. Block-like yellow crystals were obtained by slow evaporation of a solution in CHCl<sub>3</sub>.

#### 3. Refinement

The hydrogen atoms were localized from the difference electron density maps and were refined as riding atoms: C—H = 0.93 and 0.96 Å for CH(aromatic) and methyl H atoms, respectively, with  $U_{iso}(H) = 1.5 U_{eq}(C-methyl)$  and  $= 1.2U_{eq}(C)$  for other H atoms. The rotation angles for the methyl groups were optimized by least squares.

#### **Computing details**

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009).



#### Figure 1

The molecular structure of the title molecule, with the atom labelling. Displacement ellipsoids are drawn at 30% probability level. The intramolecular C-H···O hydrogen bonds are shown as dashed lines (see Table 1 for details).



## Figure 2

The crystal packing of the title compound viewed along the *a* axis, showing the formation of infinite C(7) chains. The dashed lines indicate C—H···O hydrogen bonds (see Table 1 for details).



#### Figure 3

The crystal packing of the title compound, showing the intermolecular C—H $\cdots \pi$  interactions as dashed lines (centroid = red sphere; see Table 1 for details).

### 1-{2-[(*E*)-2-(2-Nitrophenyl)ethenyl]-1-phenylsulfonyl-1*H*-indol-3-yl}ethanone

| Crystal data                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{24}H_{18}N_{2}O_{5}S$ $M_{r} = 446.46$ Monoclinic, $P2_{1}/n$ Hall symbol: -p 2yn<br>a = 8.2409 (8) Å<br>b = 16.1702 (15) Å<br>c = 15.3700 (15) Å<br>$\beta = 95.775$ (5)°<br>V = 2037.8 (3) Å <sup>3</sup><br>Z = 4 | F(000) = 928<br>$D_x = 1.455 \text{ Mg m}^{-3}$<br>Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 4960 reflections<br>$\theta = 1.8-28.4^{\circ}$<br>$\mu = 0.20 \text{ mm}^{-1}$<br>T = 296  K<br>Block, yellow<br>$0.28 \times 0.25 \times 0.23 \text{ mm}$ |
| Data collection                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                       |
| Bruker SMART APEXII CCD<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\omega$ and $\varphi$ scans<br>18837 measured reflections<br>4960 independent reflections            | 3893 reflections with $I > 2\sigma(I)$<br>$R_{\text{int}} = 0.021$<br>$\theta_{\text{max}} = 28.4^\circ, \ \theta_{\text{min}} = 1.8^\circ$<br>$h = -10 \rightarrow 7$<br>$k = -17 \rightarrow 21$<br>$l = -19 \rightarrow 20$                                                        |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier          |
|-------------------------------------------------|-----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.041$                 | Hydrogen site location: inferred from                     |
| $wR(F^2) = 0.118$                               | neighbouring sites                                        |
| S = 1.02                                        | H-atom parameters constrained                             |
| 4960 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.059P)^2 + 0.5665P]$          |
| 290 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                            |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.001$                       |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$ |
| direct methods                                  | $\Delta \rho_{\min} = -0.38 \text{ e} \text{ Å}^{-3}$     |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | У             | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|---------------|--------------|-----------------------------|
| C1  | 0.21108 (19) | 0.10784 (11)  | 0.52063 (10) | 0.0405 (4)                  |
| C2  | 0.1313 (3)   | 0.17176 (13)  | 0.47358 (13) | 0.0570 (5)                  |
| H2  | 0.1284       | 0.2250        | 0.4963       | 0.068*                      |
| C3  | 0.0567 (2)   | 0.15297 (15)  | 0.39184 (13) | 0.0627 (5)                  |
| H3  | 0.0019       | 0.1944        | 0.3587       | 0.075*                      |
| C4  | 0.0611 (2)   | 0.07382 (14)  | 0.35767 (12) | 0.0579 (5)                  |
| H4  | 0.0089       | 0.0631        | 0.3023       | 0.070*                      |
| C5  | 0.1414 (2)   | 0.01077 (13)  | 0.40421 (11) | 0.0499 (4)                  |
| Н5  | 0.1450       | -0.0421       | 0.3806       | 0.060*                      |
| C6  | 0.21746 (19) | 0.02793 (11)  | 0.48764 (10) | 0.0395 (4)                  |
| C7  | 0.31131 (18) | -0.02214 (10) | 0.55255 (10) | 0.0379 (3)                  |
| C8  | 0.35638 (18) | 0.02700 (9)   | 0.62314 (10) | 0.0356 (3)                  |
| C9  | 0.45622 (19) | 0.00804 (10)  | 0.70516 (10) | 0.0375 (3)                  |
| H9  | 0.5562       | 0.0346        | 0.7165       | 0.045*                      |
| C10 | 0.41139 (19) | -0.04492 (10) | 0.76375 (10) | 0.0381 (3)                  |
| H10 | 0.3066       | -0.0668       | 0.7559       | 0.046*                      |
| C11 | 0.5202 (2)   | -0.07076 (9)  | 0.84085 (10) | 0.0386 (3)                  |
| C12 | 0.6855 (2)   | -0.08209 (11) | 0.83104 (13) | 0.0500 (4)                  |
| H12 | 0.7229       | -0.0696       | 0.7775       | 0.060*                      |
| C13 | 0.7946 (2)   | -0.11089 (13) | 0.89725 (15) | 0.0618 (5)                  |
| H13 | 0.9040       | -0.1172       | 0.8885       | 0.074*                      |
| C14 | 0.7415 (3)   | -0.13056 (13) | 0.97719 (14) | 0.0652 (6)                  |
| H14 | 0.8147       | -0.1514       | 1.0218       | 0.078*                      |
| C15 | 0.5818 (3)   | -0.11937 (12) | 0.99067 (12) | 0.0566 (5)                  |
| H15 | 0.5464       | -0.1316       | 1.0448       | 0.068*                      |
| C16 | 0.4726 (2)   | -0.08979 (10) | 0.92347 (10) | 0.0422 (4)                  |

| <u>S1</u> | 0.28946 (5)   | 0.18452 (2)   | 0.67705 (3)  | 0.03893 (12) |
|-----------|---------------|---------------|--------------|--------------|
| 05        | 0.3144 (3)    | -0.13858 (12) | 0.46632 (13) | 0.1255 (10)  |
| O4        | 0.2671 (2)    | -0.10333 (12) | 1.01319 (10) | 0.0862 (5)   |
| 03        | 0.20813 (17)  | -0.04423 (10) | 0.89080 (9)  | 0.0653 (4)   |
| O2        | 0.41828 (14)  | 0.17130 (8)   | 0.74404 (8)  | 0.0498 (3)   |
| 01        | 0.28218 (16)  | 0.25924 (7)   | 0.62838 (9)  | 0.0549 (3)   |
| N2        | 0.3042 (2)    | -0.07812 (9)  | 0.94350 (10) | 0.0501 (4)   |
| N1        | 0.30044 (16)  | 0.10825 (8)   | 0.60412 (8)  | 0.0394 (3)   |
| H24C      | 0.5018        | -0.2065       | 0.5702       | 0.093*       |
| H24B      | 0.5515        | -0.1268       | 0.6245       | 0.093*       |
| H24A      | 0.3984        | -0.1781       | 0.6450       | 0.093*       |
| C24       | 0.4614 (3)    | -0.15953 (12) | 0.59949 (13) | 0.0617 (5)   |
| C23       | 0.3572 (2)    | -0.10893 (11) | 0.53594 (12) | 0.0513 (4)   |
| H22       | -0.0328       | 0.2434        | 0.6363       | 0.050*       |
| C22       | -0.03571 (19) | 0.20929 (10)  | 0.68482 (11) | 0.0415 (4)   |
| H21       | -0.2743       | 0.2241        | 0.6994       | 0.056*       |
| C21       | -0.1796 (2)   | 0.19756 (12)  | 0.72260 (12) | 0.0466 (4)   |
| H20       | -0.2800       | 0.1404        | 0.8195       | 0.055*       |
| C20       | -0.1833 (2)   | 0.14712 (12)  | 0.79391 (11) | 0.0460 (4)   |
| H19       | -0.0483       | 0.0711        | 0.8757       | 0.057*       |
| C19       | -0.0445 (2)   | 0.10613 (12)  | 0.82802 (11) | 0.0478 (4)   |
| H18       | 0.1937        | 0.0897        | 0.8143       | 0.051*       |
| C18       | 0.0997 (2)    | 0.11710 (11)  | 0.79151 (10) | 0.0426 (4)   |
| C17       | 0.10318 (18)  | 0.16933 (9)   | 0.72059 (10) | 0.0339 (3)   |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$    | $U^{13}$     | $U^{23}$     |
|-----|-------------|-----------------|-----------------|-------------|--------------|--------------|
| C1  | 0.0387 (8)  | 0.0493 (9)      | 0.0345 (8)      | 0.0064 (7)  | 0.0078 (6)   | 0.0042 (7)   |
| C2  | 0.0639 (12) | 0.0574 (11)     | 0.0499 (10)     | 0.0185 (9)  | 0.0072 (9)   | 0.0088 (9)   |
| C3  | 0.0602 (12) | 0.0790 (14)     | 0.0479 (11)     | 0.0200 (11) | 0.0012 (9)   | 0.0180 (10)  |
| C4  | 0.0465 (10) | 0.0853 (15)     | 0.0409 (10)     | 0.0039 (10) | -0.0008 (8)  | 0.0064 (9)   |
| C5  | 0.0443 (9)  | 0.0639 (11)     | 0.0414 (9)      | -0.0026 (8) | 0.0030 (7)   | -0.0025 (8)  |
| C6  | 0.0354 (8)  | 0.0484 (9)      | 0.0356 (8)      | -0.0002 (7) | 0.0080 (6)   | 0.0027 (7)   |
| C7  | 0.0364 (8)  | 0.0411 (8)      | 0.0367 (8)      | -0.0010 (6) | 0.0060 (6)   | 0.0015 (6)   |
| C8  | 0.0336 (7)  | 0.0380 (8)      | 0.0363 (8)      | 0.0016 (6)  | 0.0089 (6)   | 0.0037 (6)   |
| C9  | 0.0354 (8)  | 0.0392 (8)      | 0.0378 (8)      | 0.0019 (6)  | 0.0028 (6)   | -0.0007 (6)  |
| C10 | 0.0350 (8)  | 0.0430 (9)      | 0.0363 (8)      | 0.0012 (6)  | 0.0033 (6)   | -0.0008 (7)  |
| C11 | 0.0429 (9)  | 0.0342 (8)      | 0.0376 (8)      | -0.0022 (6) | -0.0006 (6)  | -0.0016 (6)  |
| C12 | 0.0441 (9)  | 0.0502 (10)     | 0.0547 (10)     | -0.0022 (8) | 0.0004 (8)   | 0.0038 (8)   |
| C13 | 0.0457 (10) | 0.0613 (12)     | 0.0743 (14)     | -0.0011 (9) | -0.0142 (9)  | -0.0001 (10) |
| C14 | 0.0725 (14) | 0.0595 (12)     | 0.0569 (12)     | 0.0018 (10) | -0.0271 (10) | 0.0017 (10)  |
| C15 | 0.0834 (15) | 0.0468 (10)     | 0.0369 (9)      | -0.0011 (9) | -0.0081 (9)  | -0.0002 (8)  |
| C16 | 0.0551 (10) | 0.0337 (8)      | 0.0370 (8)      | -0.0014 (7) | 0.0014 (7)   | -0.0035 (6)  |
| C17 | 0.0335 (7)  | 0.0331 (7)      | 0.0347 (7)      | -0.0002 (6) | 0.0020 (6)   | -0.0054 (6)  |
| C18 | 0.0422 (9)  | 0.0481 (9)      | 0.0366 (8)      | 0.0067 (7)  | -0.0005 (7)  | 0.0026 (7)   |
| C19 | 0.0499 (10) | 0.0556 (10)     | 0.0382 (9)      | 0.0001 (8)  | 0.0066 (7)   | 0.0065 (8)   |
| C20 | 0.0377 (9)  | 0.0561 (10)     | 0.0446 (9)      | -0.0045 (7) | 0.0062 (7)   | -0.0037 (8)  |
| C21 | 0.0349 (8)  | 0.0533 (10)     | 0.0506 (10)     | 0.0052 (7)  | -0.0008 (7)  | 0.0015 (8)   |
| C22 | 0.0417 (9)  | 0.0401 (8)      | 0.0419 (9)      | 0.0022 (7)  | -0.0007 (7)  | 0.0050 (7)   |

# supplementary materials

| $C^{22}$ | 0.0596 (11) | 0.0445(10)  | 0.0405(10)  | 0.0001 (8)    | 0.0006 (8)   | 0.0066 (9)    |
|----------|-------------|-------------|-------------|---------------|--------------|---------------|
| C23      | 0.0580 (11) | 0.0445 (10) | 0.0495 (10) | -0.0001(8)    | -0.0006 (8)  | -0.0066(8)    |
| C24      | 0.0823 (15) | 0.0428 (10) | 0.0596 (12) | 0.0124 (10)   | 0.0054 (10)  | -0.0016 (9)   |
| N1       | 0.0437 (7)  | 0.0401 (7)  | 0.0349 (7)  | 0.0076 (6)    | 0.0060 (5)   | 0.0013 (5)    |
| N2       | 0.0696 (10) | 0.0408 (8)  | 0.0419 (8)  | 0.0020 (7)    | 0.0159 (7)   | 0.0004 (6)    |
| 01       | 0.0575 (8)  | 0.0386 (6)  | 0.0708 (8)  | -0.0015 (5)   | 0.0165 (6)   | 0.0090 (6)    |
| O2       | 0.0369 (6)  | 0.0521 (7)  | 0.0589 (8)  | -0.0016 (5)   | -0.0030 (5)  | -0.0118 (6)   |
| O3       | 0.0606 (9)  | 0.0722 (10) | 0.0661 (9)  | 0.0154 (7)    | 0.0206 (7)   | 0.0209 (7)    |
| O4       | 0.1070 (13) | 0.1054 (13) | 0.0524 (9)  | 0.0156 (11)   | 0.0377 (9)   | 0.0191 (9)    |
| 05       | 0.191 (2)   | 0.0768 (12) | 0.0917 (13) | 0.0510 (14)   | -0.0689 (14) | -0.0432 (11)  |
| S1       | 0.0365 (2)  | 0.0349 (2)  | 0.0456 (2)  | -0.00095 (15) | 0.00548 (16) | -0.00227 (16) |

Geometric parameters (Å, °)

| C1—C2    | 1.389 (2)   | C14—H14     | 0.9300      |
|----------|-------------|-------------|-------------|
| C1—C6    | 1.391 (2)   | C15—C16     | 1.385 (2)   |
| C1—N1    | 1.414 (2)   | C15—H15     | 0.9300      |
| C2—C3    | 1.376 (3)   | C16—N2      | 1.464 (2)   |
| С2—Н2    | 0.9300      | C17—C22     | 1.380 (2)   |
| C3—C4    | 1.385 (3)   | C17—C18     | 1.382 (2)   |
| С3—Н3    | 0.9300      | C17—S1      | 1.7526 (15) |
| C4—C5    | 1.376 (3)   | C18—C19     | 1.375 (2)   |
| C4—H4    | 0.9300      | C18—H18     | 0.9300      |
| C5—C6    | 1.397 (2)   | C19—C20     | 1.379 (2)   |
| С5—Н5    | 0.9300      | C19—H19     | 0.9300      |
| C6—C7    | 1.447 (2)   | C20—C21     | 1.369 (3)   |
| С7—С8    | 1.366 (2)   | C20—H20     | 0.9300      |
| C7—C23   | 1.482 (2)   | C21—C22     | 1.385 (2)   |
| C8—N1    | 1.413 (2)   | C21—H21     | 0.9300      |
| С8—С9    | 1.467 (2)   | C22—H22     | 0.9300      |
| C9—C10   | 1.322 (2)   | C23—O5      | 1.193 (2)   |
| С9—Н9    | 0.9300      | C23—C24     | 1.480 (3)   |
| C10-C11  | 1.473 (2)   | C24—H24A    | 0.9600      |
| C10—H10  | 0.9300      | C24—H24B    | 0.9600      |
| C11—C12  | 1.397 (2)   | C24—H24C    | 0.9600      |
| C11—C16  | 1.401 (2)   | N1—S1       | 1.6752 (14) |
| C12—C13  | 1.370 (3)   | N2—O3       | 1.2058 (19) |
| C12—H12  | 0.9300      | N2—O4       | 1.2135 (19) |
| C13—C14  | 1.382 (3)   | O1—S1       | 1.4192 (13) |
| C13—H13  | 0.9300      | O2—S1       | 1.4187 (12) |
| C14—C15  | 1.365 (3)   |             |             |
| C2—C1—C6 | 122.34 (16) | C16—C15—H15 | 120.1       |
| C2C1N1   | 130.19 (17) | C15-C16-C11 | 122.11 (17) |
| C6-C1-N1 | 107.45 (13) | C15-C16-N2  | 116.51 (16) |
| C3—C2—C1 | 117.12 (19) | C11—C16—N2  | 121.38 (15) |
| C3—C2—H2 | 121.4       | C22—C17—C18 | 121.22 (15) |
| C1—C2—H2 | 121.4       | C22—C17—S1  | 120.38 (12) |
| C2—C3—C4 | 121.59 (18) | C18—C17—S1  | 118.40 (12) |
| С2—С3—Н3 | 119.2       | C19—C18—C17 | 119.23 (15) |
| С4—С3—Н3 | 119.2       | C19—C18—H18 | 120.4       |
|          |             |             |             |

| C5—C4—C3                                                    | 121.13 (18)            | C17—C18—H18                         | 120.4                    |
|-------------------------------------------------------------|------------------------|-------------------------------------|--------------------------|
| C5—C4—H4                                                    | 119.4                  | C18—C19—C20                         | 120.04 (16)              |
| C3—C4—H4                                                    | 119.4                  | C18—C19—H19                         | 120.0                    |
| C4—C5—C6                                                    | 118.54 (18)            | С20—С19—Н19                         | 120.0                    |
| С4—С5—Н5                                                    | 120.7                  | C21—C20—C19                         | 120.40 (16)              |
| С6—С5—Н5                                                    | 120.7                  | C21—C20—H20                         | 119.8                    |
| C1—C6—C5                                                    | 119.28 (16)            | С19—С20—Н20                         | 119.8                    |
| C1—C6—C7                                                    | 107.80 (14)            | C20—C21—C22                         | 120.41 (16)              |
| C5—C6—C7                                                    | 132.91 (16)            | C20—C21—H21                         | 119.8                    |
| C8—C7—C6                                                    | 107.81 (14)            | C22—C21—H21                         | 119.8                    |
| C8—C7—C23                                                   | 129.34 (15)            | C17—C22—C21                         | 118.68 (15)              |
| C6-C7-C23                                                   | 122.62 (15)            | C17—C22—H22                         | 120.7                    |
| C7—C8—N1                                                    | 108.64 (13)            | C21—C22—H22                         | 120.7                    |
| C7—C8—C9                                                    | 130.18 (14)            | 05-C23-C24                          | 117.99 (18)              |
| N1-C8-C9                                                    | 121.02(14)             | $05-C^{2}-C^{7}$                    | 118 50 (18)              |
| C10-C9-C8                                                   | 123.36(15)             | $C_{24}$ $C_{23}$ $C_{7}$           | 123 42 (16)              |
| C10-C9-H9                                                   | 118 3                  | $C_{23}$ $C_{24}$ $H_{24A}$         | 109 5                    |
| C8-C9-H9                                                    | 118.3                  | $C_{23}$ $C_{24}$ $H_{24B}$         | 109.5                    |
| C9-C10-C11                                                  | 122.86 (15)            | $H_{24} = C_{24} = H_{24B}$         | 109.5                    |
| C9-C10-H10                                                  | 118.6                  | $C_{23}$ $C_{24}$ $H_{24C}$         | 109.5                    |
| $C_{11} - C_{10} - H_{10}$                                  | 118.6                  | $H_{24} = C_{24} = H_{24}C$         | 109.5                    |
| $C_{12}$ $C_{11}$ $C_{16}$                                  | 115.74 (15)            | $H_{24B} = C_{24} = H_{24C}$        | 109.5                    |
| $C_{12}$ $C_{11}$ $C_{10}$                                  | 118 13 (15)            | C8 N1 C1                            | 109.5                    |
| $C_{12} = C_{11} = C_{10}$                                  | 126.03(15)             | C8 N1 $S1$                          | 100.22(13)<br>125.77(11) |
| $C_{13}$ $C_{12}$ $C_{11}$                                  | 122.03 (13)            | $C1_N1_S1$                          | 123.77(11)<br>123.54(11) |
| C13 - C12 - H12                                             | 118 7                  | 03 - N2 - 04                        | 123.54(11)<br>122.63(17) |
| C11_C12_H12                                                 | 118.7                  | 03 - N2 - C16                       | 122.03(17)<br>119.31(14) |
| $C_{12}$ $C_{12}$ $C_{13}$ $C_{14}$                         | 110.7<br>110.7(2)      | $O_4 N_2 C_{16}$                    | 119.31(14)<br>118.06(17) |
| C12 - C13 - C14                                             | 120.1                  | $0^{2}-1^{2}-0^{1}$                 | 110.00 (17)              |
| $C_{12} = C_{13} = H_{13}$                                  | 120.1                  | $O_2 S_1 N_1$                       | 106 73 (7)               |
| $C_{14} = C_{13} = 113$                                     | 120.05 (18)            | 01 $S1 $ $N1$                       | 106.73(7)                |
| $C_{15} = C_{14} = C_{15}$                                  | 120.05 (18)            | 02 S1 C17                           | 100.04(3)<br>108.79(7)   |
| $C_{13} = C_{14} = H_{14}$                                  | 120.0                  | 02 - 51 - C17                       | 100.79(7)                |
| $C_{13} - C_{14} - 1114$                                    | 120.0<br>110.70(10)    | $N_1 = S_1 = C_1 7$                 | 105.17(8)                |
| $C_{14} = C_{15} = C_{10}$                                  | 119.79 (19)            | NI-3I-CI/                           | 105.11 (7)               |
| С14—С13—Н13                                                 | 120.1                  |                                     |                          |
| $C_{1}$ $C_{1}$ $C_{2}$ $C_{3}$                             | (1, 2, (2))            | S1 C17 C18 C10                      | 179 29 (12)              |
| $C_0 - C_1 - C_2 - C_3$                                     | 0.3(3)<br>178 40 (17)  | $C_{17} C_{18} C_{19} C_{20}$       | -0.1(3)                  |
| N1 - C1 - C2 - C3                                           | 1/0.49(1/)<br>-0.2(2)  | C17 - C18 - C19 - C20               | -0.1(3)                  |
| $C_1 = C_2 = C_3 = C_4$                                     | -0.2(3)                | $C_{10} = C_{20} = C_{21} = C_{21}$ | 1.5(3)<br>-1.2(3)        |
| $C_2 = C_3 = C_4 = C_5$                                     | 0.3(3)                 | C19 - C20 - C21 - C22               | 1.2(3)                   |
| $C_{3} - C_{4} - C_{5} - C_{6}$                             | 0.7(3)                 | $C_{10} - C_{17} - C_{22} - C_{21}$ | 1.4(2)<br>178 17(12)     |
| $C_2 = C_1 = C_0 = C_3$                                     | 0.1(3)<br>-178 46 (14) | S1 - C1 / - C22 - C21               | -1/6.1/(13)<br>-0.1(2)   |
| $C_{2} = C_{1} = C_{6} = C_{7}$                             | 170.40 (14)            | $C_{20} - C_{21} - C_{22} - C_{17}$ | -174.0(2)                |
| $C_2 - C_1 - C_0 - C_7$                                     | 1/9.14(10)<br>0.50(17) | $C_{0} - C_{1} - C_{23} - C_{3}$    | -0.2(2)                  |
| $\frac{1}{10} - \frac{1}{10} - \frac{1}{10} - \frac{1}{10}$ | 0.39(17)               | $C_{0} = C_{1} = C_{2} = C_{3}$     | -0.5(3)                  |
|                                                             | -0.0(2)<br>-170.27(19) | $C_{0} - C_{1} - C_{23} - C_{24}$   | 2.3(3)                   |
| $C_{1} = C_{0} = C_{0}$                                     | 1/7.37(10)<br>1/22(17) | $C_{1} = C_{2} = C_{2}$             | 1/0.22(17)               |
| $C_{1} = C_{0} = C_{1} = C_{0}$                             | 1.22(17)<br>170.00(17) | $C_1 = C_0 = N_1 = C_1$             | 2.93 (17)<br>179 91 (12) |
| UJ-UU-U/-U8                                                 | -1/9.90(1/)            | U7-U0-INI-UI                        | 1/0.01(13)               |

| C1—C6—C7—C23    | -173.71 (15) | C7—C8—N1—S1   | 165.52 (11)  |
|-----------------|--------------|---------------|--------------|
| C5—C6—C7—C23    | 5.2 (3)      | C9—C8—N1—S1   | -18.6 (2)    |
| C6—C7—C8—N1     | -2.55 (17)   | C2-C1-N1-C8   | 179.46 (18)  |
| C23—C7—C8—N1    | 171.93 (16)  | C6-C1-N1-C8   | -2.14 (17)   |
| C6—C7—C8—C9     | -177.91 (15) | C2-C1-N1-S1   | 16.4 (3)     |
| C23—C7—C8—C9    | -3.4 (3)     | C6-C1-N1-S1   | -165.19 (11) |
| C7—C8—C9—C10    | -65.7 (2)    | C15—C16—N2—O3 | 172.02 (17)  |
| N1-C8-C9-C10    | 119.47 (18)  | C11—C16—N2—O3 | -7.1 (2)     |
| C8—C9—C10—C11   | 172.71 (14)  | C15—C16—N2—O4 | -8.0 (2)     |
| C9—C10—C11—C12  | -37.6 (2)    | C11—C16—N2—O4 | 172.85 (17)  |
| C9—C10—C11—C16  | 146.09 (17)  | C8—N1—S1—O2   | 31.41 (15)   |
| C16—C11—C12—C13 | 0.8 (3)      | C1—N1—S1—O2   | -168.55 (12) |
| C10-C11-C12-C13 | -175.90 (17) | C8—N1—S1—O1   | 160.41 (13)  |
| C11—C12—C13—C14 | 0.6 (3)      | C1-N1-S1-01   | -39.55 (15)  |
| C12—C13—C14—C15 | -1.6 (3)     | C8—N1—S1—C17  | -84.02 (14)  |
| C13—C14—C15—C16 | 1.3 (3)      | C1—N1—S1—C17  | 76.02 (14)   |
| C14—C15—C16—C11 | 0.1 (3)      | C22—C17—S1—O2 | 152.91 (13)  |
| C14—C15—C16—N2  | -178.97 (17) | C18—C17—S1—O2 | -26.65 (14)  |
| C12—C11—C16—C15 | -1.1 (2)     | C22—C17—S1—O1 | 20.30 (15)   |
| C10-C11-C16-C15 | 175.24 (16)  | C18—C17—S1—O1 | -159.27 (12) |
| C12-C11-C16-N2  | 177.94 (15)  | C22—C17—S1—N1 | -93.09 (13)  |
| C10-C11-C16-N2  | -5.7 (2)     | C18—C17—S1—N1 | 87.35 (13)   |
| C22-C17-C18-C19 | -1.3 (2)     |               |              |

## Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C17–C22, C11–C16 and C1–C6 rings, respectively.

| D—H···A                               | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|---------------------------------------|-------------|-------|--------------|---------|
| С2—Н2…О1                              | 0.93        | 2.35  | 2.935 (2)    | 121     |
| С18—Н18…ОЗ                            | 0.93        | 2.46  | 3.108 (2)    | 127     |
| C20—H20…O2 <sup>i</sup>               | 0.93        | 2.68  | 3.319 (2)    | 126     |
| С5—Н5…Сд1іі                           | 0.93        | 2.89  | 3.720 (2)    | 149     |
| C22—H22··· <i>Cg</i> 2 <sup>iii</sup> | 0.93        | 2.73  | 3.4618 (18)  | 137     |
| C24—H24 $B$ ···C $g$ 3 <sup>iv</sup>  | 0.96        | 2.90  | 3.601 (3)    | 131     |

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*, -*y*, -*z*+1; (iii) -*x*+1/2, *y*+1/2, -*z*+3/2; (iv) -*x*+1, -*y*, -*z*+1.