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Abstract
Objectives—This study sought to derive and validate outcome-driven thresholds of central blood
pressure (CBP) for diagnosing hypertension.

Background—Current guidelines for managing patients with hypertension mainly rely on blood
pressure (BP) measured at brachial arteries (cuff BP). However, BP measured at the central aorta
(central BP [CBP]) may be a better prognostic factor for predicting future cardiovascular events
than cuff BP.

Methods—In a derivation cohort (1,272 individuals and a median follow-up of 15 years), we
determined diagnostic thresholds for CBP by using current guideline-endorsed cutoffs for cuff BP
with a bootstrapping (resampling by drawing randomly with replacement) and an approximation
method. To evaluate the discriminatory power in predicting cardiovascular outcomes, the derived
thresholds were tested in a validation cohort (2,501 individuals with median follow-up of 10
years).

Results—The 2 analyses yielded similar diagnostic thresholds for CBP. After rounding, systolic/
diastolic threshold was 110/80 mm Hg for optimal BP and 130/90 mm Hg for hypertension.
Compared with optimal BP, the risk of cardiovascular mortality increased significantly in subjects
with hypertension (hazard ratio: 3.08, 95% confidence interval: 1.05 to 9.05). Of the multivariate
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Cox proportional hazards model, incorporation of a dichotomous variable by defining
hypertension as CBP ≥130/90 mm Hg was associated with the largest contribution to the
predictive power.

Conclusions—CBP of 130/90 mm Hg was determined to be the cutoff limit for normality and
was characterized by a greater discriminatory power for long-term events in our validation cohort.
This report represents an important step toward the application of the CBP concept in clinical
practice.
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High blood pressure (BP) is one of the leading causes of global cardiovascular disease
burden (1). Although BP is continuously distributed, and its relation to cardiovascular risk
has been suggested to be continuous (2), clinicians rely on a diagnostic reference range to
classify patients as normotensive or hypertensive. Conventional BP is measured by
auscultation of the Korotkoff sounds or by automatic BP monitors (cuff BP), and a cutoff of
140/90 mm Hg has been used to diagnose high BP (3–5). With the recent evolution of
evidence-based practice, ambulatory BP, which provides a better prognostic value, has been
suggested as the reference standard for the management of hypertension (6).

Nevertheless, both ambulatory BP and conventional cuff BP are measured at brachial
arteries, and BP amplification from the central aorta to peripheral arteries is well known to
vary substantially among individuals and to cause conceivable discrepancies between central
blood pressure (CBP) and cuff BP readings (7–12). Currently, noninvasive CBP can be
obtained with either tonometry-based (9,13–15) or cuff-based techniques (16–18). Growing
evidence (19) suggests that there are major discrepancies in CBP among people with similar
peripheral BP levels (20,21), central BP may be more relevant than peripheral BP in
predicting target organ damage and cardiovascular outcomes (22–24), central and peripheral
BP may respond differently to antihypertensive medication in randomized controlled trials
(25,26), and end-organ changes after antihypertensive medication are more strongly related
to CBP than peripheral BP (27–29). We have previously suggested that CBP and ambulatory
BP may have similar abilities to predict future outcomes (30). Because CBP as a reference
standard may further improve current hypertension management, it is important for
clinicians to utilize CBP values to classify patients with respect to their hypertension.
However, threshold values of CBP have never been investigated in longitudinal event-based
studies.

We derived an operational threshold for CBP based on an outcome-driven approach (31,32)
and validated this threshold in another, independent cohort to examine its discriminatory
ability for long-term cardiovascular outcomes.

Methods
Study population

We performed the present analysis using individuals from 2 independently and prospectively
recruited cohorts in Taiwan that were followed longitudinally. We have previously reported
the relationship between CBP and cardiovascular mortality (23), and the participants of that
study served as a derivation cohort from which the diagnostic thresholds were generated.
Subsequently, the discriminatory ability of these thresholds for cardiovascular mortality was
tested in a validation cohort. Details of the recruitment process and study protocols for the
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derivation and validation cohorts have been reported elsewhere (23,33–35) and are
summarized in Table 1. All participants gave informed consent before enrollment.

Derivation cohort
The derivation cohort for generating diagnostic thresholds included 1,272 normotensive and
untreated hypertensive (systolic blood pressure [SBP] ≥140 mm Hg or diastolic blood
pressure [DBP] ≥90 mm Hg without any previous antihypertensive medication) Taiwanese
participants (674 men, age 30 to 79 years) from a previous community-based survey
conducted in 1992 to 1993 (36).

Validation cohort
Performance of the derived thresholds was determined in the validation cohort from
CVDFACTS (the Cardiovascular Disease Risk Factors Two-Township Study), a
community-based follow-up study focusing on risk-factor evaluation and cardiovascular
disease development in Taiwan (34,35). Of the participants in CVDFACTS, a total of 3,386
individuals had undergone CBP measurements during their cycle 4 examination (1997 to
1999). From that group, we excluded 617 participants who were treated with
antihypertensive drugs, 268 subjects with cardiovascular diseases or stroke history. Thus,
data on the 2,501 individuals of the validation cohort were utilized in the present analyses.

Follow-up
By linking our database with the National Death Registry, we retrieved the dates and causes
of death of all participants in the derivation and validation cohorts. Individuals that did not
appear in the National Death Registry on December 31, 2007, were considered to be
survivors. The median follow-up durations of the derivation and validation cohorts were 15
and 10 years, respectively.

BP measurement
Three or more sets of peripheral BP measurements (cuff BP) were obtained from the right
arm, with ≥5 min between readings; measurements were made only after each person was
seated for ≥5 min. Cuff BP, which was measured manually by experienced clinicians using a
mercury sphygmomanometer and standard-sized cuffs, is reported as the average of the last
2 consecutive measurements.

In the derivation cohort, right common carotid artery pressure waveforms were calibrated
with brachial mean blood pressure and DBP to obtain the carotid BP (13). The carotid artery
pressure waveforms, registered non-invasively with a tonometer (22,36), have been
demonstrated to closely resemble central aortic pressure waveforms (13,37,38). In the
validation cohort, CBP was obtained with a SphygmoCor device (AtCor Medical, Sydney,
Australia) using radial arterial pressure waveforms and a validated generalized transfer
function, according to the manufacturer’s instructions (39). Radial arterial pressure
waveforms, obtained by applanation tonometry using a solid-state high-fidelity external
Millar transducer, were calibrated with cuff SBP and DBP values, and then mathematically
transformed by the validated transfer function (39) into corresponding central aortic pressure
waveforms. Cuff and central pulse pressures (PPs) were calculated as: (SBP – DBP).

Other measurements
Early in the morning after an overnight fast, serum and plasma samples were drawn for
glucose, lipids, and other biochemical measurements from patients in a sitting position.
Dyslipidemia was defined according to “The Third Report of the National Cholesterol
Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood
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Cholesterol in Adults (Adult Treatment Panel III)” (40). A classification of diabetes mellitus
was indicated for participants with a fasting glucose ≥126 mg/dl, or who were taking
antidiabetic medication (41). In both cohorts, individuals undergoing BP measurements also
completed a questionnaire-based interview containing items on demography, lifestyle, self-
reported health conditions, medication history, and family history of disease.

Statistical analysis
Data are presented as percent or mean ± SD. Student t test and chi-square test were used for
between-group comparisons when appropriate

We obtained diagnostic thresholds and their 95% confidence intervals (CIs) for CBP similar
to a previous study deriving cutoffs for ambulatory BP and conventionally measured home
BP (31,42). First, we identified the participants in the derivation cohort with a cuff BP that
coincided with thresholds proposed by international guidelines (3–5) and calculated the
corresponding cardiovascular mortalities (Table 2). Second, we used the bootstrap method
for each cutoff by randomly selecting CBP levels 1,000 times from those of the
corresponding identified participants. Third, we obtained the mean and 2.5th and 97.5th
percentiles from the re-sampling distribution to serve as the diagnostic thresholds of CBP
with 95% CIs. Alternatively, we estimated the sensitivity and specificity of cuff SBP cutoff
limits for predicting cardiovascular mortality (Fig. 1).

In addition, to conform with current guideline-endorsed management of arterial
hypertension (3–5) based on cuff BP, we calculated the sensitivity and specificity of each
cutoff point of central and cuff SBP in 10-mm Hg increments from 80 to 180 mm Hg for
cardiovascular mortality. Considering that the sensitivity of cuff BP was higher than its
specificity in predicting cardiovascular mortalities (Table 3), we then linked the points of
central/cuff SBP and sensitivity/specificity to find the optimal cutoff point for central SBP
that had equal sensitivity and approximate specificity (Fig. 1, Table 3). Furthermore, we
used the Wald chi-square analysis from the Cox proportional hazard model to compare the
discrimination among varied cutoff points for central SBP for cardiovascular mortality (Fig.
2).

A Cox proportional hazard model was constructed to evaluate the performance of the
proposed diagnostic thresholds of CBP for predicting cardiovascular outcomes. Survival
time was calculated from the date of the CBP measurement to the date of death or the end of
follow-up (December 31, 2011). The estimated hazard ratio of the validation cohort was
derived after accounting for sex, age, body mass index, smoking, alcohol consumption, and
serum total cholesterol level. As with other large cohort studies (2), BP was included first as
a continuous function in the Cox regression model. Subsequently, on the basis of different
CBP thresholds for defining hypertension, BP was incorporated into the model as a
dichotomous variable to evaluate the discriminative ability of the respective cutoff limits.
The discriminatory power of the differential models with and without blood pressure was
evaluated with prognostic receiver-operating characteristic curves. The comparisons
between the areas under the curve of the prognostic receiver-operating characteristic curves
were made with a nonparametric method developed by DeLong et al. (43). We further used
the integrated discrimination index, net reclassification index, and clinical net
reclassification index to evaluate the reclassification effects of central/cuff BP for predicting
future cardiovascular events (44). All statistics were calculated using SAS version 9.1
software (SAS Institute, Cary, North Carolina).
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Results
Baseline characteristics of participants

In the derivation and validation cohorts, data from a total of 1,272 (mean age, 52.3 years, 30
to 79 years) and 2,501 (mean age, 53.6 years, 32 to 90 years) participants, respectively, were
used to evaluate diagnostic thresholds of CBP (Table 1). The mean differences between cuff
and central SBP in the derivation and validation cohorts were 11.6 ± 17.5 mm Hg and 10.7 ±
4.8 mm Hg, and 9.9 ± 14.2 mm Hg and 12.7 ± 5.0 mm Hg between cuff and central PP,
respectively (all p < 0.001). Compared with the derivation cohort, participants in the
validation cohort were older, had lower cuff BP and CBP values, and had a higher
prevalence of dyslipidemia.

Derivation of diagnostic thresholds for CBP
Table 2 shows the risks of cardiovascular mortality in individuals with cuff SBP/DBP values
according to the cutoff limits proposed by international guidelines. The risk was markedly
increased with increasing cuff SBP and DBP values. Using a bootstrap procedure, we
calculated the central SBP and DBP values that correspond to these cuff BP limits (Table 2).

Alternatively, as shown in Figure 1, the sensitivity and specificity for predicting
cardiovascular mortality with cuff and central SBP were calculated. With the rise in SBP
cutoffs, the specificity improved but sensitivity dropped. We then identified the respective
sensitivity and specificity of the cuff BP limits proposed by the guidelines. By
approximating the identified estimated sensitivity, we then derived the central SBP levels
corresponding to these limits (Table 3).

On the basis of the analyses in Tables 2 and 3, we proposed the outcome-driven diagnostic
thresholds for CBP after rounding the point estimates to an integer value ending in 0 or 5
(Table 4). Based on these easy-to-remember thresholds, categorization of BP distribution by
CBP could be achieved.

Hazard ratios for cardiovascular mortality stratified by the proposed CBP thresholds in the
validation cohort

Cox proportional hazards modeling showed that central SBP and central PP (per 0mmHg)
were significantly associated with cardiovascular mortality (1.149, 95% CI: 1.032 to 1.279
and 1.102, 95% CI: 1.027 to 1.182), total mortality (1.09, 95% CI: 1.031 to 1.152 and 1.065,
95% CI: 1.027 to 1.104), and stroke mortality (1.257, 95% CI: 1.07 to 1.476 and 1.117, 95%
CI: 1.003 to 1.243) in the validation cohort, respectively (all p < 0.01). By contrast, cuff
SBP had significant association only with total mortality (1.061, 95% CI: 1.004 to 1.122)
and stroke mortality (1.204, 95% CI: 1.025 to 1.415), whereas cuff PP was only significantly
associated with total mortality (1.042, 95% CI :1.003 to 1.082).

In addition, compared with cuff BP, CBP had an additional contribution to the prediction of
future cardiovascular outcomes across traditional cardiovascular risk factors demonstrated
by improved incremental C-index and integrated discrimination index, and net
reclassification index for cardiovascular and stroke mortality, respectively (Online Table 1).

Table 5 shows the hazard ratio for cardiovascular outcomes in different BP categories on the
basis of the CBP criteria proposed in Table 4. In the entire validation cohort, the risk of
developing cardiovascular outcomes was significantly higher in individuals with
hypertension defined as a CBP value of ≥130/90 mm Hg than in those with optimal BP. The
performance of conventional international standards (3–5) and the CBP criteria in subgroup
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analysis in the validation cohort is presented in the online supplementary tables (all p for
interaction with age and sex >0.05) (Online Tables 2 to 4).

Performance of the CBP diagnostic thresholds in the validation cohort
As shown in Figure 2, in a Cox proportional hazards model, a CBP value of 130/90 mm Hg
was associated with a better discriminatory ability and was characterized by higher Wald
chi-square and model R2 values than other diagnostic thresholds for defining hypertension.

Discussion
The present study is the first, to our knowledge, to derive and validate the outcome-driven
diagnostic thresholds of CBP for the diagnosis of hypertension. Building on a large
consensus, current guidelines rely on cuff BP measurements made at a clinic or at home or
on 24-h ambulatory BP measurements to categorize individuals with different levels of SBP
and DBP; these categories are then used to predict the future cardiovascular risks of these
individuals (3,5,45). However, all these criteria are based on noninvasive BP measurements
of brachial arterial pulses, which are generated from cardiac contractions and then
transmitted from the central aortic pulses, the origin of all arterial pulses. Physiologically,
with its close proximity to vital organs and the better prognostic value (22–24,26,46), CBP
should be the most relevant BP relating to vascular events. Cuff BP is not so much a
surrogate, but a compromised measure that is recorded because of technical limitations.
With accumulating evidence supporting the use of CBP for the management of hypertension
(3,26) and the available techniques (9,13–18), deriving diagnostic thresholds of CBP that
conform to previous guidelines and that are aligned with cuff BP is an important step. The
other strength of our study is that in addition to threshold derivation through rigorous
statistical methods, we also validated the discriminatory powers of the derived cutoff values
in another event-based cohort with long-term follow-up. In the validation cohort, the CBP
was measured with a technique (radial tonometry and the generalized transfer function of
SphygmoCor) that is different from that used in the derivation cohort (carotid tonometry).
The consistent results in the derivation and validation cohorts and the comparable prognostic
performances across different age and sex subgroups (all p for interaction >0.05) (Online
Tables 3 and 4) suggest that our proposed thresholds (Table 4) are both reliable and valid.

Although we rigorously derived and validated the diagnostic thresholds for CBP
measurements for the diagnosis of hypertension in agreement with current practice, caution
should still be exercised for the following reasons. The relationship between BP and
vascular mortality is continuous throughout middle and older age, but individuals with BP
values that are lower than the threshold of current guidelines for hypertension management
are not guaranteed to be free from cardiovascular risk (2). A recent systematic review
suggested that antihypertensive drugs that are used to treat stage I hypertension have not
been shown to reduce mortality or morbidity in randomized controlled trials, and this may
again challenge the legitimacy of these guideline-endorsed thresholds (47). These
observations may not be valid for ambulatory BP or for CBP, and more studies should be
conducted to clarify these issues. However, in our validation cohort, we did observe the best
discriminatory power for these particular CBP thresholds (i.e., 130/90 mm Hg) for
predicting cardiovascular mortality (Fig. 2).

Sharman et al. (48) demonstrated that wide variations in the difference between cuff BP and
CBP values can occur among patients with a similar cuff BP. The magnitude of variation is
similar between healthy and diseased individuals, which suggests that CBP measurements
may further improve risk stratification. In this regard, although CBP and cuff BP values are
correlated closely with each other, it may be inappropriate to directly assume from such a
correlation that cuff BP is a surrogate for CBP. Instead, by incorporating the CBP criteria
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into clinical practice, the possibility of an incremental clinical benefit in the management of
hypertension could be ascertained.

Age- and sex-specific reference values for CBP have been provided in the Anglo-Cardiff
Collaborative Trial (20). Both cuff BP and CBP values increase with age, and a possible, but
not user-friendly, clinical application could be the use of the reference values stratified by
age and sex. However, in current international guidelines, the classification of cuff BP
values disregards age, sex, and other cardiovascular risk factors. In our multivariate model,
the results were consistent after accounting for these factors. In line with current clinical
practice and considering the higher clinical events in the aged population, we now propose
diagnostic thresholds of CBP without age and sex specification.

Diagnostic reference values of CBP had been used to define a special disease entity,
spurious systolic hypertension, which is characterized by high cuff BP and low CBP (49). It
has been proposed to be a rather common phenomenon in young age (50). Investigating a
population of 750 individuals (352 men and 398 women) age 26 to 31 years, Hulsen et al.
(49) suggested that participants with this condition have cardiovascular risk profiles
comparable to normotensive individuals. They used the 90th percentile of central SBP
distribution to obtain the cutoffs of CBP (124/90 mm Hg for men and 120/90 mm Hg for
women). The reference values were, however, not representative of the general population
and were obtained solely for their research purposes.

The distribution of central SBP was studied in a health check-up program in Japan in 10,756
participants (51). Using the late systolic upstroke of the radial pressure wave to represent
central SBP with a HEM-9000AI monitor (Omron Healthcare, Kyoto, Japan), they reported
the reference values of optimal and normal central SBP categories as 112.6 ± 19.2 mm Hg
and 129.2 ±14.9 mm Hg, respectively, similar to our results. That study probably represents
the first effort to report the diagnostic threshold of CBP, but it was limited based on its study
design, which consisted of a cross-sectional population rather than an event-based cohort.
Therefore, the prognostic value of their proposed diagnostic thresholds could not be further
evaluated.

Study limitations
Because our study population consisted of 2 Taiwanese populations, the generalizability of
our study conclusions in terms of ethnicity is unclear. Nonetheless, our thresholds are
consistent with the similar reference values proposed in the aforementioned Japanese
population (51).

The techniques used to measure CBP in the derivation and validation cohorts were carotid
tonometry and generalized transfer function with a SphygmoCor monitor, respectively,
which are currently the 2 most popular CBP measurement methods (52). Whether the same
reference values should be used for different methodologies is not clear. Problems have been
encountered during the derivation process of diagnostic thresholds based on ambulatory BP
and traditional home BP measurements (31,53). However, with similar results obtained with
various techniques, adoption of universal criteria for CBP for the diagnosis and management
of hypertension may become reasonable.

Neither cuff BP nor noninvasive CBP estimates are error free when compared with
invasively measured counterparts (54). The relationship between BP and cardiovascular
outcomes could be affected by measurement errors, which have been termed regression
dilution bias or attenuation bias (55,56). Although the effect of the measurement error on the
dilution of the prognostic value has been clearly delineated, correction may be neither
necessary nor appropriate in most applications (57). In addition, the influence of
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measurement errors on the discriminatory power of diagnostic cutoff values remains an
unresolved issue for both conventional cuff BP and CBP. These issues require further
research for clarification.

Conclusions
We derived and validated the diagnostic thresholds of CBP based on 2 independent event-
based cohorts with long-term follow-up. Consistent with the staging criteria of current
international guidelines for the diagnosis of hypertension, we propose a CBP of 130/90 mm
Hg to be used as cutoff limits for normality because these values were characterized by
greater discriminatory power for cardiovascular mortality in our validation cohort. The
present report represents an important step toward the application of the CBP concept to
clinical risk factor profiles for CVD.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The Sensitivity and Specificity of Cuff SBP and Central SBP for Predicting
Cardiovascular Mortality in the Derivation Cohort
With increasing systolic blood pressure (SBP) cutoff values, specificity (SPE) improved at
the expense of decreasing sensitivity (SEN). Reasonable cutoff limits for central SBP can
then be determined by approximating based on the sensitivity or specificity of the guideline-
endorsed cuff SBP cutoff points as demonstrated in Table 3. cuff BP = peripheral blood
pressure.
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Figure 2. Performance of the CBP Diagnostic Thresholds in the Validation Cohort
Incorporating the dichotomous variable of defined hypertension based on different central
blood pressure (CBP) Levels (x-axis) and the resulting contribution (Wald Chi-square and
model R2) to the predictive power of the Cox proportional hazards model are shown. A CBP
cutoff limit of 130/90 mm Hg was associated with a higher Wald chi-square and model R2

than other thresholds.
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Table 1

Baseline Characteristics of Individuals in the Derivation and Validation Cohorts

Derivation Cohort
(n = 1,272)

Validation Cohort
(n = 2,501) p Value

Age, yrs 52.3 ± 12.8 53.6 ± 12.0 0.0027

Body mass index, kg/m2 24.7 ± 3.6 24.2 ± 3.2 <0.0001

Total cholesterol, mg/dl 198.1 ± 37.5 192.3 ± 39.1 <0.0001

LDL, mg/dl 123.1 ± 34.3 122.0 ± 37.3 0.3927

HDL, mg/dl 50.9 ± 13.1 47.7 ± 16.8 <0.0001

Heart rate, beats/min 73.6 ± 9.9 73.1 ± 10.2 0.1620

Cuff SBP, mm Hg 139.2 ± 23.6 122.4 ± 17.0 <0.0001

Cuff DBP, mm Hg 88 ± 14.6 68.2 ± 10.2 <0.0001

Cuff PP, mm Hg 51.2 ± 16.6 54.2 ± 12.2 <0.0001

Central SBP, mm Hg 127.6 ± 23.7 111.8 ± 16.1 <0.0001

Central DBP, mm Hg 86.3 ± 14.2 70.2 ± 10.3 <0.0001

Central PP, mm Hg 41.3 ± 15.7 41.5 ± 11.0 0.6560

Male 53 45 <0.0001

Dyslipidemia 57 69 <0.0001

Smoking 24 24 0.517

Optimal BP 18 46 <0.0001

Prehypertension 30 38 <0.0001

Hypertension 52 16 <0.0001

Values are mean ± SD or %.

BP = blood pressure; DBP = diastolic blood pressure; HDL = high-density lipoprotein; LDL = low-density lipoprotein; MBP = mean blood
pressure; PP = pulse pressure; SBP = systolic blood pressure.
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Table 2

CBP Levels and Cardiovascular Mortalities With Different Cuff SBP and DBP Cutoffs Based on
Conventional Criteria in the Derivation Cohort

Hypertension Staging Category

Diagnostic
Thresholds for

Cuff BP, mm Hg Cardiovascular Mortalities, %

Corresponding CBP Levels, mm
Hg

(95% CI)

Optimal–pre-hypertension SBP 120 2.7 112.80 (111.15–113.61)

DBP 80 4 80.92 (79.60–82.22)

Prehypertension–hypertension SBP 140 4.3 132.43 (130.89–133.88)

DBP 90 5 90.98 (89.93–91.96)

The cutoff criteria are based on international standards (3–5). Point estimates and 95% confidence intervals (CIs) were obtained from the bootstrap
distribution of 1,000 random samples with replacement of CBP levels for participants in the derivation cohort.

CBP = central blood pressure;

other abbreviations as in Table 1.
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Table 3

Determining Central SBP Cutoff Values Based on the Sensitivity and Specificity Associated With Cuff SBP
Cutoff Values for Predicting Cardiovascular Mortality

Cutoff, mm Hg Sensitivity Specificity

Cuff SBP 120 0.906 0.237

Central SBP 110.49 0.906 0.292

Central SBP* 110 0.922 0.281

Cuff SBP 140 0.688 0.603

Central SBP 132.6 0.688 0.648

Central SBP* 130 0.741 0.600

See Figure 1 for the approximation process.

*
Cutoff values from the above central SBP values after rounding.

Cuff SBP = peripheral systolic blood pressure; SBP = systolic blood pressure.
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Table 4

Proposal for Outcome-Driven Diagnostic Thresholds for CBP Measurement

Central SBP,
mm Hg

Central DBP,
mm Hg

Optimal BP <110 and <80

Pre-hypertension 110–129 and/or 80–89

Hypertension ≥130 and/or ≥90

Threshold values were obtained by rounding the point estimates reported in Tables 2 and 3 to an integer value ending in 0 or 5.

Abbreviations as in Tables 1 and 2.
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Table 5

Hazard Ratios for Total, Cardiovascular, and Stroke Mortality in Relation to CBP at Entry in the Validation
Cohort (n = 2,501)

Total
Death

Cardiovascular
Death

Stroke
Death

Endpoints 185 (7.4) 34 (1.36) 18 (0.72)

Pre-hypertension vs. optimal BP 1.31 (0.87–3.35) 1.59 (0.57–4.43) 1.93 (0.45–8.31)

Hypertension vs.
optimal BP

2.14 (1.36–3.35) 3.08 (1.05–9.05) 6.12 (1.43–26.21)

Values are n (%) or hazard ratio (95% confidence interval). Hazard ratios were adjusted for sex, age, body mass index, smoking, and serum total
cholesterol level. Staging was according to the criteria for central blood pressure in Table 4.

Abbreviations as in Tables 1
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