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ABSTRACT

RNA is often altered post-transcriptionally by the covalent modification of particular nucleotides; these modifications are
known to modulate the structure and activity of their host RNAs. The recent discovery that an RNA methyl-6 adenosine
demethylase (FTO) is a risk gene in obesity has brought to light the significance of RNA modifications to human biology.
These noncanonical nucleotides, when converted to cDNA in the course of RNA sequencing, can produce sequence patterns
that are distinguishable from simple base-calling errors. To determine whether these modifications can be detected in RNA
sequencing data, we developed a method that can not only locate these modifications transcriptome-wide with single
nucleotide resolution, but can also differentiate between different classes of modifications. Using small RNA-seq data we were
able to detect 92% of all known human tRNA modification sites that are predicted to affect RT activity. We also found that
different modifications produce distinct patterns of cDNA sequence, allowing us to differentiate between two classes of
adenosine and two classes of guanine modifications with 98% and 79% accuracy, respectively. To show the robustness of
this method to sample preparation and sequencing methods, as well as to organismal diversity, we applied it to a publicly
available yeast data set and achieved similar levels of accuracy. We also experimentally validated two novel and one known
3-methylcytosine (3mC) sites predicted by HAMR in human tRNAs. Researchers can now use our method to identify and
characterize RNA modifications using only RNA-seq data, both retrospectively and when asking questions specifically about
modified RNA.
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INTRODUCTION

Covalent post-transcriptional modifications of specific nu-
cleotide bases in RNAmolecules are known to be highly prev-
alent and physiologically important. However, their overall
abundance and biological function are not well understood.
This gap is even more surprising given that RNA modifica-
tions play a role in maintaining structure, catalytic activity,
and cellular abundance of RNAs, and that all known classes
of RNA molecules harbor various levels of diverse modifi-
cations. Additionally, the recent discovery that an RNA
methyl-6 adenosine demethylase (FTO) is a risk gene in obe-
sity highlights the significance of RNA modifications to hu-
man biology (Frayling et al. 2007; Gerken et al. 2007; Jia
et al. 2011).

Methods for detecting such modifications are well estab-
lished (Burtis 1970; Gupta and Randerath 1977; Crain 1990;
Yu et al. 1997; Helm et al. 1999; Hiley et al. 2005; Grosjean
et al. 2007; Meyer et al. 2012; Saletore et al. 2012). One such
method is primer extension, which relies on the differential
ability of reverse transcriptase to produce cDNAs with base-
pair substitutions at positions occupied by modified nucleo-
tides (Woodson et al. 1993). Interestingly, all high-through-
put RNA-sequencing library preparation protocols require
RNA to cDNA conversion by reverse transcription (RT);
thus, we reasoned that it is possible to identify sites of modi-
fied nucleotides in all RNAs transcriptome-wide by uncover-
ing nucleotides with significant sequence error rates. Using
this idea, we developed HAMR, and demonstrate that this
software allows fast and reliable identification of modified
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nucleotides at single-nucleotide resolution in all RNA classes
transcriptome-wide through the analysis of nucleotide substi-
tutions found in various RNA-seq data sets. This software will
provide an important tool for future work on RNA modifi-
cations, which are emerging as important regulators of hu-
man biology and physiology (Jia et al. 2011; Dominissini
et al. 2012).

RESULTS

Our method, HAMR, is able to detect the presence of multi-
ple types of modifications present in RNA sequenced only
once, without chemical treatment. In addition, the signals
produced by these modifications via modulation of RT activ-
ity are present in all types of RNA sequencing data sets, which
means that HAMR could be invaluable in gleaning more data
from previous studies or publicly available data. We demon-
strate that the method is able to detect modifications in two
newly generated human RNA data sets as well as a publicly
available yeast data set, and there is significant overlap in
the signal detected.

Small RNA-sequencing of tRNA families

tRNAs are themost highlymodified cellular RNAs. Since they
are highly represented in small RNA sequencing libraries as
tRNA fragments (Burroughs et al. 2011), we developed our
approach on this type of data, although in principle ourmeth-
od can be applied to any type of RNA-seq data set. We ana-
lyzed small RNA-seq data obtained using the dorsolateral
prefrontal cortex of four deceased human patients who
showedno signs of neuropathology.We found that themajor-
ity of reads (57%) mapped to known microRNAs, 23% to
tRNAs, and the rest to other types of known RNAs and inter-
genic regions.
Since tRNA loci exist in multiple copies across the human

genome, their associated short RNA-seq reads will often map
tomultiple loci. Simply eliminating the ambiguously mapped
reads would greatly reduce our data.We reasoned that the ex-
act identity of the tRNA locus was not as important as the
family producing each read with regard to RNAmodification
specificity. Given that isoacceptor tRNAs (those accepting the
same amino acid) tend to have similar sequences and isode-
coders (those with the same anticodon) even more, we were
able to combine similar tRNA loci into families and refer to
them by their predicted amino acid and anticodon. The 386
high-scoring tRNA loci annotated by tRNAscan-SE (Lowe
and Eddy 1997) fell into 84 tRNA families that were distinct
enough to greatly reduce read mapping ambiguity. The post-
clustering cross-mapping rate (proportion of reads that map
to one or more tRNA families) ranged from 9% for shorter
reads (18–20 nt) down to 2% for longer reads (>31 nt).
Furthermore, only two families included so-called rogue
tRNAs, or tRNAs that share sequence identity with their sib-
lings, but code for a different amino acid.

Detecting modified sites by mismatch rates

In order to detect true post-transcriptional RNA sequence dif-
ferences, we needed to exclude other sources of mismatches
such as base-calling error and DNA polymorphisms. It is
noteworthy that we observed an elevated mismatch rate for
tRNA-derived smRNA reads, as would be expected when a
large number of modified bases are present. In fact, when
comparing the mismatch rates of reads mapping to tRNAs,
microRNAs, and other types of RNAs, we found that tRNAs
showed an overall elevated level of mismatches, microRNAs
showed a spike corresponding to the ends of mature
miRNAs, and other RNAs showed a gradual increase in mis-
matches toward the 3′ ends of reads (Fig. 1). These data were
consistent with high numbers of modified bases spread across
tRNA reads, with edits/additions at the ends of mature
microRNAs (Burroughs et al. 2010; Wyman et al. 2011),
and with simple base-calling error, which is expected to in-
crease at the 3′ ends of longer reads, respectively. The elevat-
ed-mismatch sites throughout the length of tRNA-derived
small RNA reads, not just their 3′ ends, suggested that data
from smRNA-seq allowed us to identify true base-pair mod-
ifications and not merely sequencing errors. Additionally, the
distribution of PHRED quality scores at mismatch-contain-
ing sites 38.33 (SD = 2.28) was nearly identical to that at non-
mismatching sites 38.37 (SD = 2.28).
Taking advantage of this observation to identify base mod-

ifications transcriptome-wide, we developed a model for
allowing statistically significant identification of RNAmodifi-
cation sites based on nucleotide misincorporation by RT,
while ignoring sequencing errors and single nucleotide poly-
morphisms (SNPs) due to genotype. The model assumes a
fixed base-calling error rate, and makes a set of assumptions
about the underlying genotype to model the mismatch rate
due to chromosomal polymorphism. The simplest null hy-
pothesis, H0

1, assumes that the site is homozygous with the
reference allele. Taking this as the null hypothesis results in
any nonreference nucleotide above the base-calling error
rate being called as a candidate modification. A more conser-
vative null hypothesis, H0

2, assumes only that the genotype is
biallelic. Under this assumption, we call candidate modifica-
tions where three or more nucleotides are sequenced at a rate

FIGURE 1. Mismatch rates along small RNA reads (<44 nt) mapping
to three types of RNAs.
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higher than base-call errors. Such patterns will arise at sites of
RTmisincorporation due tomodifications and not at biallelic
polymorphic sites. We estimated library-wide base-calling er-
ror to be ∼1% based on the observed library-wide mismatch
rate and on previous reports of error rates in Illumina se-
quencing (Luo et al. 2012). We also required coverage of at
least 10 reads per nucleotide, including reads with the same
start and end positions. Under H0

2, HAMR called 228 candi-
date modifications out of 5487 sequenced tRNA sites. Of
these, 201 (88%) did not overlap with any known SNP in
dbSNP release 135 (Sherry et al. 2001). Among these 201 sites,
123 (61%) coincided perfectly with a known modification as
listed in tRNAdb 2009 (Sprinzl and Vassilenko 2005) or
MODOMICS (Czerwoniec et al. 2009), and 187 (93%) coin-
cided with sites known to be modified on any tRNA (Fig. 2).

In order to test for possible violations of the biallelicity as-
sumption under H0

2, we ascertained the overlap between our
called sites and known CNVs. Of the 233 genomic sites where
we called a modification under H0

2, 36 (15%) of the candi-
date sites fall within gain-of-copy CNVs listed in the Toronto
CNV database (Zhang et al. 2006). Of the 36 sites in CNVs, 20
fall within rare CNVs (only one observation) and 16 fall with-
in recurrent CNVs (observed more than once). This suggests
that if the results are false positives due to undiscovered SNPs
compounded by copy number variation, such instances are
only a small fraction of the sites called by HAMR.

Since no chemical treatment that allows the identification
of a specific post-transcriptional modification is used, our
approach is limited to detecting modifications that modulate
RT incorporation during normal sequencing library prepara-
tion. We predicted the RT effect of the remaining modifi-
cations based on their presence along the Watson–Crick
edge (on the Watson–Crick bonds) of the nucleoside (Sup-
plemental Table 1). We found that HAMR exhibits higher
sensitivity where these types of modifications are predicted
to occur (Fig. 3). While inosine (I) is known to produce an
A > G substitution in cDNA (Bass 2002) this nucleotide pat-
tern is indistinguishable from an A/G SNP, and so is discard-
ed under the conservative null hypothesis H0

2. When we used

the less-conservative null hypothesis, H0
1, 60% of known

inosine edit sites were called (Supplemental Fig. 1).

Calling modification types by incorporation
patterns in RT

We hypothesized that different types of modifications affect-
ing RT incorporation would have distinct incorporation pat-
terns due to the differential base-pairing properties of the
modified ribonucleotides. In order to visualize the incorpo-
ration patterns, we mapped each potentially modified site
(excluding known SNPs and using the conservative null hy-
pothesis H0

2) onto a ternary plot with the three dimensions
corresponding to observed fractions of the three nonrefer-
ence nucleotides. This can be done for each precursor nucle-
otide separately (A, C, G, and U). The ternary plots clearly
show clustering by modification type for modified adeno-
sines and guanosines (Fig. 4A,B). Using this approach, we
observed 13 sites for cytidine (m3C), while predicting two
RT-effecting sites for uridine. Interestingly, despite U > D
(dihydrouridine) and U > Y (pseudouridine) not being pre-
dicted to affect RT incorporation, wewere able to detect these
sites and they tended to cluster together. We also found that
the m3C sites were sequenced with a very similar nucleotide
pattern in all four human brain samples, and so those obser-
vations cluster together (Supplemental Fig. 2).
Among modified adenosines, m1A shows a bias toward se-

quencing of T with varying amounts of G, and m1I shows
a very similar pattern. In contrast, t6A shows a strong bias
toward sequencing of C in the cDNA. Under the less-conser-
vative H0

1, 60% of the known inosine sites were detected and
found to be very strongly associated with a G in the cDNA, as
is expected (Supplemental Fig. 3). At guanosines, both m22G
andm1G heavily favor sequencing of T with varying amounts
of C and A, while peroxywybutosine (o2yW) shows more

FIGURE 2. (Left) Locations of known tRNAmodifications predicted to
affect RT incorporation and (right) modification sites predicted by
HAMR mapped onto a tRNA (RFAM) consensus structure. Values in-
dicate the percentage of tRNA families where the site is present.

FIGURE 3. Proportion of sites with known modifications that we pre-
dicted to harbor modifications in human tRNA using HAMR. (Black)
Modifications are known to affect RT incorporation; (dark gray) mod-
ifications predicted to affect RT incorporation based on their structure
at the Watson–Crick edge of the nucleoside; (light gray) modifications
known to have no effect on RT, or there is no evidence showing that
they do under the conditions in this experiment.
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variation. Observations for peroxywybutosine were insuffi-
cient for us to draw strong conclusions about its RT incorpo-
ration patterns.
We set out to design a classifier that could take these pat-

terns as input and predict the most likely modification at a
site using these ternary plots. Given that m1A, m1I, and
ms2i6A and i6A and t6A cocluster, we decided to merge these
two sets of modifications into the combined classes m1A|
m1I|ms2i6A and i6A|t6A. Similarly, we merged m2G and
m22G into a single class, m2G|m22G. These two may be es-
pecially difficult to resolve, because m2G is a chemical pre-
cursor of m22G. Using a 3-nearest-neighbor classifier and
leave-one-out cross-validation (LOOCV) we were able to dif-
ferentiate between the two groups of adenosine modifications
with 98% accuracy. For the guanosine modification types
m1G and m2G|m22G, we were able to achieve 78% accuracy.
For the 18 observations of significant uridine sites, we were
able to distinguish between D and Y modifications with

86% accuracy. As there was only one type of cytidine modi-
fication that was detected, m3C, a classifier was not necessary.
It is informative, however, that without chemical treatment
the only cytidine modification we detected was m3C.

Expanding the tRNA modification annotation

Given the incomplete nature of the annotation we used, we
set out to see whether our classifier could expand the anno-
tation by predicting modifications across all human tRNAs.
We expected that the universally conserved modifications,
e.g., m1A, would appear in all sequenced tRNAs, despite
those sites sometimes being absent from known annotations.
Most of the undetected modifications were m2G sites, and
our low sensitivity for m2G is likely due to its mild effect
on RT incorporation (Youvan and Hearst 1979).
In total, we predicted 78 modification sites that were ab-

sent from the annotation (Supplemental Table 2). In many

FIGURE 4. Frequencies of observed nonreference nucleotides at sites with known modifications of (A) adenosines and (B) guanosines in human
tRNAs. Each point represents one observation in one sample. The axes are labeled by template-strand cDNA sequence and are the complement of
the nucleotide that was incorporated by RT into the cDNA. (C,D) Results of this same analysis in S. cerevisiae.
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cases the modifications were absent because the specific
tRNA was not listed. First, we looked at isoacceptor tRNAs
and matched 25 sites to m1A9, m1A58, m1G9, m22G26,
m1G37, m3C32, and Y39. For the other 53 sites not previous-
ly uncovered, we then searched across all tRNAs; this led to
an additional 39 matched sites that were known to be mod-
ified in at least one type of tRNA. The remaining 14 sites
were considered completely novel.

Validation in S. cerevisiae small RNA data set

In order to validate HAMR and demonstrate its utility in oth-
er organisms, we tested the software using a previously pub-
lished yeast small RNA data set (Drinnenberg et al. 2011). We
remapped the reads to the latest Saccharomyces cerevisiae ge-
nome release (sacCer3, UCSC) and applied the same proce-
dure as with the human data to collapse the yeast tRNA loci
into families. Of the 3783 sequenced yeast tRNA sites with
coverage greater than 10, 67 were called as potentially mod-
ified sites. Of these, 56 (84%) corresponded exactly to known
modifications in tRNAdb or MODOMICS. Six more sites
corresponded to positions that were not annotated as being
modified on their particular tRNAs, but were known to be
modified in an isoacceptor tRNA. The final five sites were
known to be modified in other tRNAs. The sensitivity for
RT-affecting modification was higher than those not predict-
ed to affect RT incorporation (Supplemental Fig. 4). Similar
to the human data, when we used the less-conservative null
hypothesis H0

1, we were able to detect 100% of the inosine
sites as well as a t6A, an m3C, and an ac4C site (Supplemental
Fig. 5).

The sequenced nucleotide patterns in yeast were similar to
those in the human brain data. (Fig. 4C,D) The fact that the
two data sets were generated using different library prepara-
tions, sequenced by different versions of Illumina sequencers
attests to the robustness of the statistical model we have de-
veloped. In fact, the classifier trained on human tRNAs was
able to achieve 90% accuracy for modified adenosines and
65% accuracy for modified guanosines in yeast tRNAs.

Validation in human whole-transcriptome data sets

In order to ascertain the reproducibility of the tRNA modifi-
cations that were not directly present in the databases, we gen-
erated additional RNA-seq data from whole-transcriptome
(rRNA-depleted) libraries, which include entire tRNAs as op-
posed to only tRNA fragments.We compared both the “semi-
novel” and “novel” tRNA sites in the small RNA libraries with
the whole-transcriptome libraries (Supplemental Table 3).
Semi-novel here means the site is not annotated as modified
on that particular tRNA, but is annotated on some other
tRNA accepting a different amino acid. Of the 23 semi-novel
sites that were called in, more than half of the smRNA librar-
ies, 10 (43%) are also called in at least one whole-transcrip-
tome library. Two had drastically lower coverage in the

whole-transcriptome libraries. The remaining 13 (mostly
ms2i6A38) sites could not be detected in the whole-transcrip-
tome libraries, possibly due to a real difference in ms2i6A
modification rates between tRNA fragments and whole
tRNAs. Of the six novel sites detected in more than half of
the smRNA libraries, four were detected in the whole-tran-
scriptome libraries. The remaining two had drastically lower
read coverage in the whole-transcriptome libraries.

Experimental validation

To experimentally validate some of the novel RNA modi-
fication sites identified by HAMR in human tRNAs, we per-
formed immunoprecipitation on total RNA from HEK293T
cells with an antibody that specifically recognizes the 3-meth-
ylcytosine (3mC) modification or an IgG control antibody
(Fig. 5). We then measured the enrichment of three tRNAs,
which were predicted to contain a 3mC modification by
HAMR (see Materials and Methods for additional details),
in the two immunoprecipitates. Of these three tRNAs, one
was known to contain this modification (mtThr [UGU]),
while the two others (Met [CAU] and mtMet [CAU])
were identified specifically by our novel methodology. We
found that all three tRNAs (novel and known) were sig-
nificantly (P-value < 0.01) enriched in the m3C-specific im-
munoprecipitates compared with the IgG control (Fig. 5),
indicating that they all contained this specific covalent mod-
ification. In total, these results provide experimental support

FIGURE 5. HAMR identifies known and novel modification sites in
human tRNAs. Random-primed RT-qPCR analysis of three human
tRNAs (as specified) after RNA immunoprecipitation using either an
antibody specific for 3mC or an IgG control (see Materials and
Methods for additional details). qPCR loading was normalized to a non-
modified tRNA (Lys [UUU]). The tRNAmodels demonstrate the specif-
ic site of the HAMR identified 3mC modification sites (cytosine 3 for
Met [CAU], as well as cytosine 32 for mtMet [CAU] and mtThr
[UGU]). Gray and black labels denote tRNAs where the HAMR-identi-
fied 3mC site is novel or known, respectively. (mt) Mitochondrial
tRNAs. Error bars, ±SD. (∗∗) P-value < 0.01.
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for the validity of HAMR-identified RNA modifications in
eukaryotic transcriptomes.

Detecting modifications in other RNAs

Scanning the entire human small RNA transcriptome and
excluding tRNAs revealed 73 sites with mismatch patterns
potentially corresponding to RNA modifications (Table 1).
Nearly half (36) of these sites fell within known pre-micro-
RNAs. Since the microRNA sites nearly always fell within 2
nt of the 3′ ends of mature microRNAs as annotated by
mirBase (Kozomara and Griffiths-Jones 2010), they most
likely correspond to untemplated nucleotide additions, a
phenomenon that has previously been observed in small
RNA-seq data sets (Chiang et al. 2010).

Software

Users may submit a link to a remote indexed BAM (read
alignment) file to the online version of HAMR. HAMR de-
tects candidate modification sites either transcriptome-wide
or at selected loci specified by transcript ID or genomic coor-
dinates. Users may also opt to filter out known dbSNP sites
for human data and select various options affecting the strin-
gency of the analysis, including P-value or FDR thresholds,
minimum coverage, and which null hypothesis to use. The
web version of HAMR is available at http://wanglab.pcbi.
upenn.edu/hamr.

DISCUSSION

Here, we present HAMR, a high-throughput method to map
RNA modifications within all classes of RNAs by identifying
misincorporation of nucleotides by reverse transcriptase dur-
ing production of cDNA products. While traditional meth-
ods use chemical treatment of the RNAs prior to RT, many

modifications are still detectable, even without treatment,
due to their effect on RT incorporation. This is advantageous
because it allows for retrospective assays of potential RNA
modifications in existing RNA-seq data sets, and also because
it allows for the detection of RNA modifications with only
one sequencing run. However, it is worth noting that the
use of different chemical treatments in addition to different
types of RT enzymes should expand the range of modifica-
tions that are detectable by HAMR. Since many modifica-
tions also cause complete halts in RT, a future research
direction is to develop a method that allows the utilization
of fragment endpoint locations for modification mapping.
We have also found that the number of allowedmismatch-

es in read alignment places a limit on the detection of nearby
modifications. Improvement of methods, like the one pre-
sented here, will thus necessitate development of an align-
ment method that allows mismatches at arbitrary sites. This
would be similar to the mapping methods used for bisulfite
sequencing data (Xi and Li 2009), which are designed to
map reads accurately in the face of cytosine deamination.

MATERIALS AND METHODS

Cell culture

HEK293T cells were maintained at 37°C with 5% CO2 in DMEM
(Life Technologies) supplemented with 10% FBS (Atlanta Biologi-
cals) and 1X Pen/Strep (Life Technologies). Cells were grown to
80%–90% confluence and collected by washing and scraping in PBS.

smRNA sequencing

Frozen human brain tissue from four female patients without neu-
rological pathology was obtained from the Center for Neurodegen-
erative Disease Research. Trizol extraction was performed to obtain
total RNA. cDNA libraries for sequencing were generated following
the Illumina small RNA library preparation procedure. The libraries
were sequenced on an Illumina GAIIx machine to 50 bp and were
submitted to the NCBI GEO database (GSE43335). The reads
were 3′ adapter trimmed, requiring at least 6 bp of adapter sequence
with, at most, a 6% mismatch rate. All untrimmed reads and
trimmed reads shorter than 14 bp were discarded. The remaining
reads were mapped to the human genome (hg19) (Fujita et al.
2011) using Bowtie (Langmead et al. 2009) under the “-v 2” mode
with a maximum 6% mismatch rate and allowing up to 100 map-
pings per read. Any unmapped reads were realigned to the set
of tRNA transcripts with -CCA tails appended, and these were
merged into the final alignment. For the whole-transcriptome li-
braries, the same extractions were performed on brain samples
from the same four patients, plus an additional male patient
(GSE46523). Instead of initial size-fractionation, RNAs were deplet-
ed by one round of Ribominus (Invitrogen). Additionally, sequences
mapping to known rRNA sequences were masked out of the data set,
and both adapter-trimmed and untrimmed reads were used.
The alignments were also performed using a different alignment

program, BWA (Li and Durbin 2009). The results obtained using
BWA were nearly identical to those given by Bowtie’s alignments

TABLE 1. Potential sites of modification revealed by scanning the
entire small RNA transcriptome

RNA type No. sites

tRNA 166
miRNA 36
mt-tRNA 13
Intergenic 11
mRNA_intron 5
rRNA 5
Transposon 4
ncRNA_exon 3
Antisense mRNA exon 2
Antisense transposon 2
snRNA 2
Antisense mRNA intron 1
Antisense ncRNA exon 1
scRNA 1

High-throughput annotation of modified ribonucleotides
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(195 modified sites vs. Bowtie’s 202). Reads aligning to repeat re-
gions or annotated RNAs other than tRNAs were discarded.
Nuclear tRNA annotations were taken from the “tRNAs” table in
the UCSC genome browser (hg19). Annotations for mitochondrial
tRNAs were generated by running tRNAscan-SE (v1.23) set to or-
ganelle mode on the mitochondrial genome (“chrM” in hg19).
Multi-mapping reads were partially resolved by taking those align-
ments whose mismatches aligned to SNPs (dbSNP 135) as the
true hits, prioritizing them over alignments whose mismatches
had no apparent explanation. The yeast data, consisting of 20.8 mil-
lion reads sequenced on an Illumina Genome Analyzer I, were ob-
tained from the NCBI Sequencing Read Archive (GSM775340).

tRNA locus clustering

tRNA loci were taken from the tRNAscan annotation at UCSC and
were required to have a tRNAscan score of 60.0. The loci were
merged into families based on an empirical measure of sequence
similarity computed from the number of reads mapping across
them simultaneously, resulting in a clustering of tRNA loci that
minimizes the number of cross-mapping reads. Each ordered pair
of loci (i,j) is assigned a similarity value

s(i, j) = Nij

max
k

Nik

where Nij is the number of reads mapping to both loci, and the
denominator is taken over all loci k. Then, the symmetric similarity is

S(i, j) = S( j, i) = max{s(i, j), s( j, i)}
and the distance is set to be

D(i, j) = 1− S(i, j).
Hierarchical clustering with k = 84 clusters yielded the fewest cross-
mapping reads with the fewest rogue clusters (those whose tRNAs
decode to more than one amino acid). The two rogue clusters were
Gly(SMC)1 containing 1 tRNAVal

CAC and Cys(NVM)1 containing
6 tRNAAla

AGC, 1 tRNAAla
CGC, 3 tRNAAla

UGC, 1 tRNASer
AGA, and 1

tRNAVal
AAC.

Detecting candidate RT misincorporation sites

The read alignment was converted to a pileup format, and bases with
quality score below 30 were discarded. Candidate RT misincorpora-
tion sites were taken to be those covered by at least 10 reads and sig-
nificantly enriched (FDR < 5%) for mismatches by the binomial
test, assuming a base call error rate of 1%. We tested two null
hypotheses. The first, H0

1, consists of the hypothesis that the geno-
type is a homozygous reference. Therefore, the probability of seeing
fewer than k out of ntot reads matching the reference nucleotide at a
given site is

Pr(kref , k|ntot reads, site genotype is homozygous reference nucleotide)

=
∑k

i=1

Binom(i;ntot, pe)

where pe is the base-calling error rate. A more conservative null hy-
pothesis, H0

2, assumes only that the genotype is biallelic. It is a com-
posite hypothesis consisting of subhypotheses for each of the 10
possible genotypes. HAMR tests each possible biallelic genotype
and takes the maximal P-value among all of the tested genotypes.

The advantage of using H0
2 is that it will not falsely call significant

any site that looks like a heterozygous or homozygous SNP. The
main disadvantage is that it will cause HAMR to miss simple RNA
edits as well as modifications that produce 1- or 2-nt patterns in
the cDNA. H0

2 is more appropriate when one wishes to avoid false
positives due to polymorphisms, but H0

1 can be used if corroborat-
ing DNA evidence or other means are available to rule out such false
hits. During the scan of the entire small RNA transcriptome, the sin-
gle nucleotides corresponding to the 5′ and 3′ ends of reads were dis-
carded to reduce false positives resulting from elevated base-calling
error and ligation errors on read-ends.

tRNA modification identification

RNAmodification data was taken from the RNAmodification data-
base (Rozenski et al. 1999). Specific locations of tRNAmodifications
were taken from the eukaryotic entries in tRNAdb 2009 and from
the curated S. cerevisiae data at MODOMICS (Czerwoniec et al.
2009). The tRNAdb data were given precedence over MODOMICS
in all cases. Within the tRNAdb data, if multiple modifications were
annotated for the same site, precedence was given to the organism
closest in evolutionary distance from the target organism (either hu-
man or S. cerevisiae), using divergence time estimates as the means
reported at timetree.org (Hedges et al. 2006). For each candidate
modification site, an evidence level was assigned based on its overlap
with the knownmodification data. The highest confidence overlap is
one where a candidate modification occurs at a particular site in a
particular tRNA for both the prediction and in the annotation.
The next lowest confidence overlap is one where a known modifica-
tion occurs at that site in any isoacceptor tRNA. Finally, the lowest
level of evidence is the presence of a known modification in any eu-
karyotic tRNA at that site. Higher evidence data always takes priority
over lower evidence data. If multiple possible modifications of the
same evidence level are annotated at the same site, the modification
data is marked as ambiguous. Modified sites were plotted on the
RFAM consensus tRNA structures using SAVOR (Li et al. 2012).
The classifier for identifying specific modifications by mismatch
pattern is a 3-nearest-neighbor classifier in three dimensions, with
the features being the sequenced proportions of the three nonrefer-
ence nucleotides, after Laplace smoothing. For training data we only
used the highest level of evidence (same site, same tRNA) and only
modifications supported by at least three instances in the RNA-seq
data were used.

Software

The HAMR program takes as input a sequence-read alignment
in BAM format (consisting of uniquely mapped reads) and produces
a table of genome coordinates and nucleotide frequencies at those
coordinates. Given an assumed sequencing error-rate, it then per-
forms a statistical analysis to select those sites whose mismatch
rates are higher than expected by chance. The result is a set of sites
that consist of both potential SNPs and candidate RNA modifi-
cations. These sites may optionally be classified as particular modi-
fications based on the models built from no-chemical-treatment
tRNA data.

The web interface allows specification of a remote indexed BAM
file and BED file, with targeted intervals for querying. The user may
specify parameters for the preprocessing steps, such as minimum
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base-call quality score, minimum coverage at a site, assumed se-
quencing error rate, and significance level. Additionally, the user
may utilize the software to predict the modification type based on
mismatch patterns in tRNA data.

3-methylcytosine RNA immunoprecipitation

Total RNA extractions fromHEK293T cells were performed accord-
ing to the RNeasy Midi Kit (Qiagen), with the exception that buffer
RWT (miRNeasy Mini Kit) was used in place of buffer RW1 to in-
crease yields of small RNAs. 3mC RNA immunoprecipitation was
performed using a protocol similar to that described for meRIP-
seq (Meyer et al. 2012). Briefly, 10 μg of purified Rabbit-anti-3-
methylcytosine (Active Motif) or 10 μg of Rabbit-control-IgG
(Santa Cruz Biotechnology) was conjugated to Protein A Dynabeads
(Life Technologies) in 1M IP buffer (1MNaCl, 0.05%Triton-X 100
and 10 mM Na3PO4). Antibody-bead conjugates were washed with
140 mM IP buffer (140 mMNaCl, 0.05% Triton-X 100, and 10 mM
Na3PO4). Fifty micrograms of total RNA was denatured and immu-
noprecipitated in 140 mM IP buffer at 4°C for 2 h. The supernatant
was removed and bound RNAs were eluted in elution buffer (5 mM
Tris-HCl at pH 7.5, 1 mM EDTA at pH 8.0, 0.05% SDS, and 4.2 μL
of Proteinase K [20 mg/mL]) for 1.5 h at 50°C. RNA was purified
from the eluates using standard phenol:chloroform extraction, fol-
lowed by ethanol precipitation.

Real-time quantitative PCR

cDNAwas generated in a standard reaction with SuperScript II (Life
Technologies) and random hexamers. Real-time qPCR reactions
were performed using SYBR Green PCR Master Mix (Life
Technologies). The data were normalized to Lysine tRNA (UUU)
levels, which does not contain a known or predicted 3mC site,
and should be evenly distributed between samples. Primers used
to amplify each target are as follows: Met (CAU): fwd: 5′-GTAA
GGTCAGCTAAATAAGCTATCG-3′, rev: 5′-CGGGAAGGGTAT
AACCAACA-3′; mtMet (CAU): fwd: 5′-GTAAGGTCAGCTAAA
TAAGCTATCG-3′, rev: 5′-CGGGAAGGGTATAACCAACA-3′;
mtThr (UGU): fwd: 5′-ATACACCAGTCTTGTAAACCGGAGA-3′,
rev: 5′-TCCTTGGAAAAAGGTTTTCGT-3′; and Lys (UUU) (neg-
ative control): fwd: 5′-CCGGATAGCTCAGTCGGTAG-3′, rev:
5′-GACTTGAACCCTGGACCCTC-3′.

DATA DEPOSITION

All smRNA- and RNA-seq data from our analyses were deposited in
GEO under the accessions GSE43335 and GSE46523, respectively.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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