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Abstract
Acute otitis media (AOM) is a common disease in young children. Streptococcus
pneumoniae(Spn) and Haemophilus influenzae (NTHi) are the two most common pathogens that
cause AOM. Over the past 5 years our group has been studying the immunologic profile of
children that experience repeated AOM infections despite tympanocentesis drainage of middle ear
fluid and individualized antibiotic treatment; we call these children stringently-defined otitis-prone
(sOP). Although protection against AOM is primarily mediated by ototpathogen-specific antibody,
our recent studies suggest that suboptimal memory B-& T- cell responses and an immaturity in
antigen presenting cells may play a significant role in the propensity to recurrent AOM infections.
This review focuses on the studies performed to define immunologic dysfunction in sOP children.
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Introduction
Acute otitis media (AOM) is the most common infectious disease among infants and young
children that causes temporary complications in hearing ability within the USA and this
infection can take a heavy toll in developing countries as evident by 50,000 deaths/year in
younger children suffering from the exacerbated form of this infection[1-3].About 60-70%
of children experience at least one episode of AOM during the first three years of their life.
A subpopulation of children representing30% of the total, have been found to suffer from
three or more episodes of AOM within six months or four infections within a year and are
considered traditionally-defined otitis-prone[4].

In 2006 our group commenced on a multi-year prospective, longitudinal study supported by
NIH NIDCD to identify immunologic factors contributing to the otitis-prone condition. We
have reported on microbiologic aspects of the project[5-18].Our results are unique compared
to prior studies because for every episode of suspected AOM a tympanocentesis was
performed to confirm the diagnosis bacteriologically. This absolutely assured that our
studies only involved bona fide cases of bacterial infection in the middle ear. We attribute
our success in identifying numerous new immunologic features of AOM infections to the
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strict definition of AOM cases. Moreover, after draining the middle ear of pus and
inflammatory fluid (itself therapeutic) we identified the organisms involved in every case
and tested the bacterial strains against a panel of antibiotics to assure that the optimum
antibiotic was given to the child in every case. We term this management “individualized
care” [19]. The children who experience 3 episodes of AOM within a 6-month time frame or
4 episodes within a 12-month time frame despite individualized care we term stringently-
defined otitis prone (sOP)[19]. By confining our immunologic studies to this sOP cohort and
making comparisons to non-sOP children we have made several new observations[20-30].

Streptococcus pneumoniae (Spn) and non-typeable Haemophilus influenzae (NTHi) are the
two most common pathogens causing AOM and work from our laboratory as well as others
have demonstrated that developing antibody-mediated immunity to these pathogens is a
cardinal step in preventing recurrent AOM infections in young children[14, 26, 27, 31, 32].
However, neither antibody-mediated nor cellular immunity in young children is at par with
adults, which predisposes these young children to enhanced susceptibility to recurrent
infections.

In this review, the divergence of cellular immune response to AOM otopathogens in infants
and young children, which we have found contributes to the susceptibility of the pediatric
population to recurrent AOM, is discussed. In addition due to the longitudinal aspect of our
study design we have gained new knowledge regarding the progress of “developing”
immunity in the age range of 6-36 months. We will also discuss evidence regarding a
relatively delayed maturation of immunity in sOP children that contributes to generalized
suboptimal immune responses[33, 34].

T cells mediate immunity to common pathogens of acute otitis media
During the onset of an infection, memory CD4+T cells can be generated from naïve/effector
CD4+T cells, with memory lymphocytes populating lymphoid and non-lymphoid
sites[35-37]. CD4+ T-cells comprise functionally distinct populations characterized by
specific cytokine profiles produced in response to antigens[38]. Primarily, CD4+ T cell
subsets, based on their ability to produce IFN-γ and IL-4 are defined as T-helper1 (Th1) and
Th2[39]. More Th-subsets have been identified in recent years such as Th17, Th9 and Tfh
based on their unique function and distinct transcription regulation [40-42].

Various reports, including ours, demonstrate a significant role ofCD4+Th cell subsets in
providing immunity to Spn andNTHi, the two most common otopathogens of AOM[43]. In
older children (median age 5 years) and adults, antigen-specific CD4+ T-cells have been
shown to reduce Spn nasopharyngeal colonization[44, 45]. An effective pathogen-specific
T-cell response in adults has been associated with protection from invasive Spn disease
(invasive pneumococcal disease, IPD) and chronic obstructive pulmonary disease (COPD)
caused by Spn and NTHi, respectively[46, 47]. Morerecently,Th17 cells secreting IL-17,
IL-21, and IL-22have been described to impart antibody-independent protection in a mouse
model of pneumococcal infection[48]. Also, CD4+T-cell proliferation in cells collected from
the adenoids and tonsils of traditionally-defined otitis-prone children showed no
proliferation in response to NTHi protein P6, which led the authors to conclude that OP
children lack pathogen specific T cells[49].

B and T cell responses to common pathogens of acute otitis media in otitis-prone children
Recently, we found a lower percentage of Spn antigen-specific memory B cells among sOP
children compared to non otitis-prone children[22]. The lower percentage of memory B cells
in sOP children was associated with reduced levels of pneumococcal-specific IgG in their
respective serum. Furthermore, using six pneumococcal and three NTHi protein antigens,
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we enumerated Spn and NTHi-specific functional CD4+ T-helper memory cell subsets
(Th-1, Th-2 and Th-17) in the peripheral blood of a cohort of non-otitis prone and sOP
children. We found a reduction in the functional memory CD4+ T-cell frequencies
producing various cytokines among sOP children experiencing AOM infections[21]and
postulated that the reduction in antibody responses to pathogens in sOP children may be due
to poor T-cell help [26, 27].Therefore, it may be that in the absence of adequate pathogen-
specific memory CD4+T-cellfrequencies, and after briefly-elicited antibody levels wane, the
sOP child quickly becomes susceptible to additional AOM infections. In concurrence with
us, earlier work in a cohort of children suffering from recurrent otitis media showed reduced
frequencies of T cells producing IFN-γ in the peripheral blood as well as adenoids [50]. The
authors concluded that the reduced capacity of the adenoidal T cells to produce IFN-γ might
induce susceptibility to recurrent AOM infections. In another study, recurrent otitis media
children were shown to have lower numbers of “active T cells” that were enhanced to
comparable levels as a control group after transfer factor therapy [51].

Immunopathology of otitis media suggests role of memory T cells in controlling middle ear
infection

The cellular phenotyping of MEF as well as adenoids during AOM has indicated a large
migration of CD45RO+/CD45RA- memory CD4+ T-cells as determined by loss of homing
receptors L-selectin[52, 53]. Being a lymphoid organ, adenoids are the main site for naïve T-
cell priming during upper respiratory tract bacterial infections and nasopharyngeal
colonization[45, 49, 50,52]. Once an antigen loaded APC migrates to local lymphoid organs
(adenoids), the differentiation of lymphocytes (c.f. CD4+ T-cells) takes place. After entering
the blood circulation the CD4+ T-cells may eventually migrate to the middle ear mucosa (in
the case of AOM) and/or the upper respiratory tract (during NP colonization)[54].

Several studies in rodent animal models in the past described a surge in the
immunocompetent cells (c.f. T-, B- cells, macrophages, dendritic cells and natural killer
(NK) cells) and antibodies into the MEF and middle ear mucosa after the onset of AOM [28,
53, 55, 56]. T-cells were described as dominant among the lymphocytes in the MEF during
AOM, with CD4+CD45RO+ memory T-cells predominating[53]. In one rodent experimental
model of AOM, it was shown that the inflamed middle ear and especially the Eustachian
tube mucosa are the destination of several immune cells including T cells and the inflamed
microenvironment is supportive of local proliferation of these immune cells [55]. A study in
humans demonstrated that the adenoid participates in the development of memory CD4+ T
cell pool during allergy and otitis media [57]. Bernstein et al. reported that adenoidal
cytokine profiles skew more towards Th-2 type during recurrent otitis media and they
postulated that immune modulation contributed to the inflammation of the middle ear [58].
Conversely, our hypothesis is that otopathogen-specific T-cell memory, if generated,
primarily is effective in immune protection by activity in the nasopharynx and the
Eustachian tube, with most cells originating from regional lymph nodes, i.e., the tonsils and
adenoids. In support of that notion we have shown that the antibody present in middle ear
fluid predominantly, if not exclusively, derives from the serum by transudation and reflux of
antibody produced in the nasopharynx that reaches the middle ear by way of the Eustachian
tube[28] and that MEF of children with AOM is largely devoid of lymphocytes
(unpublished).

Relative Immaturity in the dendritic cells of otitis-prone children
Dendritic cells (DC), the most potent antigen presenting cells, are the primary activators of
naïve T cells. The crosstalk between DCs and naïve T cells provides the opportunity for
antigen recognition through T-cell receptor (TCR) interactions with peptide-MHC
complexes that are present at the DC surface [59]. TCRs of naïve CD4+ T cells recognize
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peptides in context to MHC II [60]. Upon antigen-uptake, DCs mature and up-regulate
several accessory molecules, for example- MHC, CD80, and CD86 etc., required to
efficiently prime naïve T cells [61, 62]. This fate of naïve T cell priming into effector/
memory responses is also dependent on the cytokine milieu provided by matured DCs and
results from toll like receptor (TLR) triggering [63]. In the same context, recent reports have
shown that traditionally-defined OP children have distinct expression of pro-inflammatory
cytokine (TNFa, IL-6, IL-10) expressing genes that may be consistent with a relatively
immature immune system [64, 65]. We too observed differences in the genetic pattern of
NTHi-caused AOM in sOP children [24]. Also a different regulation of IL-10 cytokine
exists during AOM [25]. We recently discovered that a diminished innate inflammatory
response exists in sOP children [30]. Since DCs link the innate immune system and the
adaptive immunity by such features as PAMPs and T-cell activation (TLRs, cytokines),
adequate priming of naive T-cells and generation of effective memory T-cells may be
compromised in the sOP child by inefficient APC function. Therefore, we sought to
determine if sOP children have an immature pool of DCs that impairs the generation of
effector/memory CD4+ T-cells. Our, preliminary data suggest that DCs of sOP children have
significantly reduced levels of MHCII molecules on their surface (Figure 1).

Delayed age-dependent immunologic maturation in OP infants and young children
The susceptibility of infants to AOM infections wanes with age due to immunologic
maturation. We followed an age-dependent comparison in the pathogen-specific IgG levels
of infants and young children over time. In our studies, comparing acute to convalescent
titers after AOM, sOP children had no significant change in total IgG responses to three
NTHi proteins (protein D, P6 and OMP26), while non-sOP children had significant
increases to Protein D. Anti-protein D, P6 and OMP26 antibody levels measured
longitudinally during NP colonization between the age of 6 to 24 months in sOP and non-
sOP children demonstrated subtle anti-protein D IgG increases over time in sOP children
compared to more than four-fold increases in the non-sOP children[26]. Furthermore in a
separate study, IgG antibody titers to five proteins of Spn (PcpA, PhtE, PhtD, Ply and
LytB)were significantly different among children over time. Characterization of IgG and
IgM acute and convalescent serum antibody levels of Spn AOM infection showed the
kinetics of the response differed among children, with the same rank order of antibody levels
over time[66]. Individual data showed that some children responded to AOM with an
antibody increase to one or more of these Spn proteins but some children failed to respond at
all. We conclude that antibody levels to Spn proteins PcpAPhtD, PhtE, Ply and LytB, all rise
over time in children age 6 to 30 month following natural exposure to Spn after NP
colonization and AOM; however, there were significant differences in quantity of antibody
elicited among these potential vaccine antigens. At their AOM visit, anti-PhtD, -LytB, -
PhtE, and -Ply IgG antibody titers in sOP children were significantly lower compared with
non-sOP children. Although non-sOP children had significant increases between 6 and 24
months of age in anti-PhtD, PcpA, PhtE, and Ply IgG antibody titers as a consequence of
nasopharyngeal colonization and AOM, sOP children either failed to show rises or the rises
were significantly less than the non-sOP children[27].

Immune responses to vaccine antigens in otitis-prone children
In previous studies, a poor immunological response among traditionally-defined OP children
was proposed on the basis of reduced IgG responses. Prior studies of OP children have
demonstrated mixed results when IgG responses to vaccines have been assessed. An
antibody response to vaccine antigens in traditionally-defined OP children was compared to
non-OP group of children and a difference in rubella specific antibody was reported [67].
Antibody levels have been measured to be low to rubella but not to DT or TT [67] or DT
and TT but not PRP and measles [68]. The response to serotypes 6B, 14, 19F and 23 after
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polysaccharide-conjugate vaccine were normal in a prior study of OP children[69].However
no precise mechanisms were explored to confirm the observations.

We hypothesized that sOP children might have a broader immune dysfunction in eliciting
optimal immune-responses to antigens. To evaluate this, we also measured IgG levels to
several routine pediatric vaccine antigens: diphtheria toxoid (DT), tetanus toxoid (TT),
pertussis toxoid (PT), pertussis filamentous hemagglutinin (FHA), pertussis pertactin (PRN),
polio, hepatitis B (HepB),Haemophilus influenzae type b capsule (PRP) and pneumococcal
polysaccharides. Interestingly, sOP children had undetectable or poor responses to more
than half of the vaccine antigens studied after the primary series of vaccinations. We found
that after vaccination, antibodies were detectable among a proportion of sOP children
suggesting they may develop short-lived B-cell antibody responses post vaccination, similar
to what we observed following Spn and NTHi nasal colonization and AOM. About one-
quarter of sOP children persisted with sub-protective antibody levels after first boosters at
around 18 months of age [70].

Additionally, we assessed memory CD4+ T-cell responses to DT, TT and PT (DTaP)
vaccine antigens in age-matched cohorts of sOP and non-sOP children and found
deficiencies in T-cell function and memory generation[71].However, after SEB stimulation,
similar percentages of functional memory CD4+ T-cells were observed in both sOP and non-
sOP children. Whether these reduced IgG and T cell responses to vaccine antigens makes
them susceptible to vaccine-preventable infections is difficult to establish in the U.S.
because our country has high herd immunity. However, we recently found that sOP children
develop neutralizing antibody to influenzae vaccines less often than non-sOP children and
this failed immunologic response is followed by a very significant increase in influenzae
infections (Verhoeven et al, submitted) or reduced IgG levels are otherwise enough to offer
protection in this populations remains to be established. As sOP children age and receive
more booster doses of vaccines a robust T-cell memory response typically develops around
age 3 to 5 years[72]. Whether the sOP child “outgrows” their neonatal-like immune profile
as they do in their propensity to recurrent ear infections during this age time frame is the
subject of active study by our group.

Conclusions
A detailed comparison of immunologic features among young sOP and non-sOP children
suggests that immune dysfunction in the sOP children resembles a more immature
“neonatal-like” profile (Figure 2). This could be the underlying mechanism of reduced B-
cell and T cell memory responses and diminished APC function in sOP children.
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Figure 1.
MHC II expression levels in the peripheral blood of otitis-prone and non otitis-prone group
of children were measured using flow cytometry. mDC (myeloid dendritic cells, pDC
(plasmacytoid dendritic cells) and mono (monocytes)
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Figure 2.
Factors governing immune competence and poor antibody generation in otitis-prone (OP)
group of children. DC (dendritic cells), pMHC (peptide-Major histocompatibility complex).
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