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Abstract
Quantitative microscopy has proven a versatile and powerful phenotypic screening technique.
Recently, image-based profiling has shown promise as a means for broadly characterizing
molecules’ effects on cells in several drug-discovery applications, including target-agnostic
screening and predicting a compound’s mechanism of action (MOA). Several profiling methods
have been proposed, but little is known about their comparative performance, impeding the wider
adoption and further development of image-based profiling. We compared these methods by
applying them to a widely applicable assay of cultured cells and measuring the ability of each
method to predict the MOA of a compendium of drugs. A very simple method that is based on
population means performed as well as methods designed to take advantage of the measurements
of individual cells. This is surprising because many treatments induced a heterogeneous
phenotypic response across the cell population in each sample. Another simple method, which
performs factor analysis on the cellular measurements before averaging them, provided substantial
improvement and was able to predict MOA correctly for 94% of the treatments in our ground-truth
set. To facilitate the ready application and future development of image-based phenotypic
profiling methods, we provide our complete ground-truth and test datasets, as well as open-source
implementations of the various methods in a common software framework.

Keywords
phenotypic screening; high-content screening; image-based screening; drug profiling

Corresponding author: A.E. Carpenter (anne@broadinstitute.org).
*Present address: Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XR, U.K.
†Present address: inviCRO, 2 Oliver St. Suite 609, Boston, MA 02109, U.S.A.
‡Present address: School of Engineering & Applied Sciences, Harvard University, 52 Oxford St. Rm. NW 235.10, Cambridge, MA
02138, U.S.A.
§Present address: Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh EH4 2XR, U.K.
¶Present address: École Normale Supérieure, 45, rue d’Ulm, 75230 Paris cedex 05, France
#These authors contributed equally.

NIH Public Access
Author Manuscript
J Biomol Screen. Author manuscript; available in PMC 2014 November 01.

Published in final edited form as:
J Biomol Screen. 2013 December ; 18(10): . doi:10.1177/1087057113503553.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Introduction
Image-based screens for particular cellular phenotypes are a proven technology contributing
to the emergence of high-content screening as an effective drug- and target-discovery
strategy1. Phenotypic screening has also been proposed as a strategy to assess the efficacy
and safety of drug candidates in complex biological systems2; when applied at early stages
in the drug-discovery process to relevant biological models, quantitative microscopy may
help reduce the high levels of late-stage project attrition associated with target-directed
drug-discovery strategies. Retrospective analysis of all drugs approved by the FDA between
1999 and 2008 reveal that significantly more were discovered by phenotype-based screening
approaches than by the more broadly adopted target-based screening model3. Screens for
phenotypes that can be identified in a microscopy assay by a single measurement, such as
cell size, DNA content, cytoplasm–nucleus translocation, or the intensity of a reporter stain,
are widely used in pharmaceutical and academic labs, especially in standard cell lines and
engineered reporter systems4. Even complex phenotypes, which require that machine
learning be used to combine the measurements of many cellular properties, are now scored
routinely in some laboratories5–6. Evidently, quantitative microscopy is a versatile and
powerful readout for many cell states.

Profiling cell-based phenotypes is the next challenge for quantitative microscopy7. The
principle of phenotypic profiling is to summarize multiparametric, feature-based analysis of
cellular phenotypes of each sample so that similarities between profiles reflect similarities
between samples8. Profiling is well established for biological readouts such as transcript
expression and proteomics7, 9. Comparatively, image-based profiling comes at a much lower
cost, can be scaled to medium and high throughput with relative ease, and provides single-
cell resolution. While image-based screens aim to score samples with respect to one or a few
known phenotypes, profiling experiments aim to capture phenotypes not known in advance,
using label sets that can detect a variety of subtle cellular responses without focusing on
particular pathways. Such unbiased, phenotypic profiling approaches provide an opportunity
for more opportunistic, evidence-led drug discovery strategies that are agnostic to drug
target or preconceived assumptions of mechanism of action (MOA). The potential
applications of profiling are extensive:

• Predict the MOA of a new, unannotated compound by finding well-characterized
compounds that have similar profiles.

• Identify concentrations of compounds that have off-target effects.

• Start with a large number of hit compounds yielding the same specific phenotype in
a screen and select a subset for follow-up that represent their diversity in terms of
overall cellular effects.

• Identify compounds with a novel MOA, suggesting new targets.

• Group a large collection of unannotated compounds into clusters that have the same
MOA.

• Discover synergistic effects of combinations of compounds.

• Discover pathway targets possessing synergistic, additive, synthetically lethal, or
chemosensitizing properties from combined genetic perturbation and small-
molecule perturbation.

• Provide iterative guidance to rational polypharmacology strategies.

• Predict the protein target of a compound by finding the RNAi reagent that produces
the most similar profile.
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• Identify compounds with cell line–specific effects by comparing the compounds’
profiles across many cell lines, then relate to mutation status to further define MOA
and develop patient-stratification hypotheses.

Most image-based profiling experiments thus far have been performed at the proof-of-
principle scale, with a focus on developing computational methods for generating and
comparing profiles. This article describes and compares five methods that have been
proposed for profiling and shown to be effective in a particular experiment. The methods
range from simple and fast to complicated and computationally intensive, and they differ
greatly in how explicitly they take advantage of the individual-cell measurements to
describe heterogeneous populations. Little is known about how the methods compare
because each method was proposed as part of a more extensive methodology, often with
different goals and with different types of data available (multiple concentrations, cell lines,
or marker sets). We extracted the core profiling methods—namely, the algorithms for
constructing per-sample profiles from per-cell measurements—from the larger
methodologies, applied them to a typical experiment, and compared their ability to classify
compounds into MOA. Our test experiment uses a physiologically relevant p53-wildtype
breast-cancer model system (MCF-7) and a mechanistically distinct set of targeted and
cancer-relevant cytotoxic compounds that induces a broad range of gross and subtle
phenotypes10. We provide our ground-truth and test datasets and open-source
implementations of the methods in order to allow others to readily apply the methods and to
extend the comparative analysis to additional methods and datasets.

Materials and methods
Sample preparation and image analysis

MCF-7 breast-cancer cells were previously plated in 96-well plates, treated for 24 h with
113 compounds at eight concentrations in triplicate, labeled with fluorescent markers for
DNA, actin filaments, and tubulin, and imaged as described10. Version 1.0.9405 of the
image-analysis software CellProfiler11 measured 453 features (Table S1) of each of the 2.2
million cells, using the pipelines provided (Data S1).

Profiling
Before applying any of the profiling methods, the cell measurements were scaled as follows
to remove inter-plate variation. For each feature the 1st percentile of DMSO-treated cells
was set to zero and and the 99th percentile was set to 1 for each plate separately. The same
transformation functions were then applied to all compounds on the same plate, according to
the assumption being that the DMSO distributions should be similar on each plate.

Per-sample profiles were computed from per-cell measurements by one of the profiling
methods (see below). The treatment profile was constructed by taking the element-wise
median of the profiles of the three replicate samples. Using the cosine distance between the
profiles as a measure of distance, each sample was predicted to have the MOA of the closest
profile from a different compound (“nearest-neighbor classification”). The cosine distance is
defined as

(1)

A cosine distance of 0 indicates that two vectors have identical directions and a cosine
distance of 2 indicates that two vectors have opposite directions. Two vectors are orthogonal
if the cosine distance is equal to 1.
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We chose simple, transparent methods for combining replicates, computing distances, and
classifying profiles because our goal was to compere the core profiling methods rather than
devise an optimal end-to-end analysis pipeline. In a real profiling application, other choices
may be advantageous; for instance, the problem of classifying compounds into mechanisms
is likely amenable to supervised classification approaches.

Profiling methods
Means—The average is taken over all scaled features for each sample. Adams et al.12 use
this method, but extend their profiles with means for different cell-cycle phases, some
intensity proportions, and some standard deviations.

KS statistic—The i-th element of the profile for a sample is the Kolmogorov-Smirnov
(KS) statistic between the distribution of the i-th measurement of the cells in the sample with
reference to mock-treated cells on the same microtiter plate. The KS statistic is calculated by
taking the maximum distance between the empirical cumulative distribution functions
(cdfs). Following Perlman et al.14, we used a non-standard “signed” KS statistic that
indicates whether the maximum distance is positive or negative.

Perlman et al.14 describe this method in the context of a more extensive methodology that
compares compounds over a range of concentrations, trying different alignments of the
compounds’ concentration ranges in order to produce a “titration-invariant similarity score.”
This procedure is independent of the underlying core profiling method, and could therefore
be used with any of the five methods tested here. We did not use it because the cosine
distance was a stable measure of profile similarity in our experiment, even across
concentrations (data not shown).

Normal vector to SVM hyperplanes—SVMs were trained to distinguish the cells in
each sample from mock-treated cells on the same microtiter plate.

SVM recursive feature elimination (SVMRFE) starts by training an SVM model to
distinguish a treatment from DMSO. The prediction accuracy is estimated using cross-
validation. The n measurements with the lowest weight are then removed, and a new model
is trained using the remaining measurements. Iteration continues iteratively until one feature
remains. Finally, the SVM model with the best prediction accuracy is selected. The best
feature selection accuracy is theoretically obtained by removing one feature at a time (SVM-
RFE1), however this is computationally expensive. Therefore, following Loo et al.15, we
used SVM-RFE2, which removes the 10% of the measurements with the lowest weight at
each iteration. We selected the resulting model that obtained the best prediction accuracy. In
order to eliminate more measurements, Loo et al.15 eliminated measurements until the
prediction accuracy fell below 0.9 × ((Cmax − Cmin) + Cmin), where Cmax is the maximum
prediction accuracy and Cmin the minimal prediction accuracy over the full range of a
selected number of measurements.

Gaussian mixture (GM) modeling—To build GM profiles, 10% of the data were
subsampled uniformly across all samples. This selection was mean-centered, after which the
data were transformed using principal-component analysis, retaining enough principal
components to explain 80% of the variance (~54 for our dataset). Next, a GM model was fit
to the data using the expectation–maximization (EM) algorithm. The algorithm was
initialized with unit covariance and the centroid positions obtained using the k-means
algorithm. The starting positions of the centroids in the k-means algorithm were initialized
randomly, meaning the algorithm is non-deterministic. The Gaussians resulting from the EM
algorithm were used as a model for the remaining 90% of the data. This rest of the data was
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centered using the mean of the data that was used to build GM models and projected into the
same loading space. For each cell the posterior probability of belonging to each of the
Gaussians was computed. Profiles were constructed by averaging these posterior
probabilities for each compound-concentration. The number of values in a profile is thus
equal to the number of Gaussians used to model the data. The best number of Gaussians was
chosen empirically.

Factor analysis—This method attempts to describe the covariance relationships between
the image measurements x in terms of a few latent random variables y called factors. The
factors are drawn from an isotropic Gaussian distribution. The observed image
measurements x are modeled as an affine transformation Ay + μ of the factors and a
measurement-specific noise term v:

(2)

The observed measurements are assumed to be conditionally independent given the factors;
in other words, v ~ N(0, Σ) where Σ = diag(σ1, …, σd). We estimate A, μ, and Σ by an
expectation-maximization algorithm16 implemented in the MDP toolkit (http://mdp-
toolkit.sourceforge.net/). Then, we can compute the profile of a sample as the maximum-a-
posteriori estimate of y:

(3)

where xn is the vector of per-cell measurements in sample n averaged over the cells in the
sample.

Available data
To facilitate the development and evaluation of additional profiling methods, we provide our
ground-truth annotations (Table S2) and the measurements of each of the ~450,000 cells
whose treatments are annotated. The data are supplied as comma-delimited files together
with scripts for loading them into a MySQL database (Data S2). The data schemas are
described (Text S1).

The images and metadata have been deposited with the Broad Bioimage Benchmark
Collection (http://www.broadinstiute.org/bbbc/)16, accession number BBBC021. [Reviewers
and editors: http://jbs:awesome@www.broadinstitute.org/bbbc/BBBC021/ to access while
under embargo.]

Software implementations
The profiling methods are implemented as part of the open-source image data–analysis
software CellProfiler Analyst (http://cellprofiler.org/). The implementations do not make
assumptions that are particular to our experiment, and can be readily applied to
measurement data from the widely used image-analysis software CellProfiler11–12 or data
from other sources that can be imported into CellProfiler Analyst or otherwise converted to
CellProfiler’s database schema. The implementations contain support for parallel processing
on a cluster of computers. The profiling methods can be executed as scripts from the Unix
command line or used in Python programs as a module (Text S2).
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Reproducibility
We provide complete source code to readily reproduce most figures, tables, and other results
that involve computation (Text S3, Data S3). Table S6 was constructed manually/
interactively and is not reproducible.

Results
We implemented five proposed methods13–15,18–19 for constructing per-sample profiles
from per-cell measurements in a common computational framework. We benchmarked the
five methods on images we had previously collected of MCF-7 breast cancer cells treated
for 24 h with a collection of 113 small molecules at eight concentrations (Table S3). The
cells were fixed, labeled for DNA, F-actin, and β-tubulin, and imaged by fluorescent
microscopy. For this study, we measured 453 standard cytometric measurements (Table S1)
of each cell using CellProfiler11–12 and applied each of the five profiling methods. In order
to be able to evaluate the performance of the profiling methods, we limited our attention to a
subset of the data (our “ground-truth” dataset) for which we were confident that the primary
MOA of compounds was achieved at the concentration tested during the course of the
experiment. (The term “mechanism-of-action” is used rather loosely here and refers to a
sharing of similar phenotypic outcomes among different compound treatments, rather than
referring strictly to modulation of a particular target or target class.) The mechanistic classes
were selected so as to represent a wide cross-section of cellular morphological phenotypes.
The differences between phenotypes were in some cases very subtle: we were only able to
identify 6 of the 12 mechanisms visually; the remainder were defined based on the literature.
This carefully collected ground-truth dataset consisted of 38 compounds at active
concentrations. Some compounds were active at only one concentration and some at up to
seven concentrations, for a total of 103 treatments (active compound concentrations)
spanning 12 mechanistic classes (Table S2, Figure S1). The mock treatment dimethyl
sulfoxide (DMSO) was included as a negative control. Using the cosine distance as measure
of profile dissimilarity, we classified the 103 treatments into mechanisms of action by
assigning to each profile the MOA of the most similar profile (Figure 1; top panel). When
classifying a treatment, all concentrations of the same compound were held out from the
training set in order to prevent overtraining. The samples were prepared and imaged in 10
batches, but classes and replicates were distributed across batches and plates, respectively,
so as to avoid biasing the classification (Text S4)20. Using this experimental dataset, we
tested five profiling methods (Figure 1A–E), as detailed below.

Means
We first constructed profiles in the simplest way we could envision: average each
measurement over the cells in the sample (Figure 1A). A profile thus consists of a single
value for each of the 453 features. This was the main approach used by Tanaka et al.21 to
discover an inhibitor of carbonyl reductase 1, although their profiles also included some
statistics other than the mean13. With this profiling method, 83% of the compound-
concentration profiles could be classified correctly (Table 1). The cosine distance remained
effective in spite of the high dimensionality of the measurements, so there is no significant
compression of distances, a common problem in high-dimensional data analysis in which the
distance to the nearest point approaches the distance to the farthest point (Figure S2). This
indicates that most of the measurements contribute information about mechanism of action
and are not simply redundant measurements that add noise22.

That small-molecule effects could be characterized so well by the shift in means was
unexpected because many treatments induce a heterogeneous phenotypic response across the
cell population in each sample. For instance, treatment with microtubule destabilizers
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produced a mixture of ~44% mitotic cells, ~27% cells with fragmented nuclei, ~16% cells
with diffuse and faint tubulin staining, and ~12% cells with an appearance similar to mock-
treated cells. Even though the “means” method made no attempt to model the
subpopulations of cells, it was mostly able to distinguish microtubule destabilizers from
microtubule stabilizers, which also block in M-phase and therefore also caused a high
proportion of mitotic cells (Table S4). There was room for improvement, however; in
particular, many microtubule stabilizers and actin disruptors were misclassified as other
MOAs. DNA damage agents and DNA replication inhibitors were consistently confused.

Although the image features that are most influential in distinguishing each mechanism of
action from the rest (Table S5) are largely expected—for instance, the texture of actin
staining in the cytoplasm is important for distinguishing actin disruptors—it is notable that
the profiles generally obtain their discriminatory power from a combination of image
features.

Some other population statistics (medians, modes, and means combined with standard
deviations) gave similar results. Medians combined with median absolute deviations
achieved higher accuracy (88%), mainly by being better able to distinguish DNA damage
agents and DNA replication inhibitors (Figure S3).

KS statistic
Perlman et al.14 used the Kolmogorov-Smirnov (KS) statistic as part of their titration-
invariant similarity score profiling method. The KS statistic is calculated separately for each
treatment and measurement. It is the maximal difference between the cumulative
distribution function (cdf) of the measurements of the treated cells and the corresponding cdf
of mock-treated cells (Figure 1B). This method is more computationally expensive than
simply computing the mean, but can be more sensitive: for example, a hypothetical
treatment that causes some of the cells to shrink and the rest to grow could leave the mean
cell size unchanged, but would increase the KS statistic.

The method based on the KS statistic reaches a prediction accuracy of 83% (Table 1). As
with the “means” method, DNA damage agents and DNA replication inhibitors were
confused (Figure S4B). Many DNA damage agents were additionally misclassified as
Aurora kinase inhibitors, and there was some confusion between microtubule destabilizers
and Eg5 kinesin inhibitors.

Normal vectors to SVM hyperplanes
Loo et al.15 describe a multivariate method that trains a linear support-vector machine
(SVM)23 to distinguish compound-treated cells from mock-treated cells. The SVM
constructs the maximal-margin hyperplane that separates the compound-treated and mock-
treated cells in the feature space. The normal vector of this hyperplane is adopted as a profile
of the sample (Figure 1C). The method classified 81% of the treatments correctly (Table 1).

The methodology of Loo et al.15 additionally uses SVM recursive feature elimination
(SVM-RFE) to remove redundant and non-informative measurements from profiles and
replace them with zeros in order to increase the sensitivity of analysis and make profiles
more interpretable. This feature elimination is done independently for each treatment.
Adding this step reduced the classification accuracy to 64% (Table 1). Inspecting the lists of
features chosen gives a clue to why: the SVM is being trained to distinguish a compound
from DMSO, so the features most useful for this purpose are selected. These features are not
generally the same features that are useful for distinguishing compounds with different
MOA. Indeed, features preferentially retained by the feature-elimination step are often
correlated with reduced cell count, as almost every active compound has some cytotoxic
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effects: three of the five most-frequently selected features are clearly influenced by cell
count, having to do with number of neighbors and number of cells touching (Table S6). This
behavior is not a flaw in SVM-RFE: it simply magnifies the tendencies of the tendency of
the normal-vector method to emphasize the features that most clearly separates the treated
cells from mock-treated cells.

Distribution over Gaussian mixture components
In order to better characterize heterogeneous cell populations, Slack et al.18 proposed to
model the data as a mixture of a small number of Gaussian distributions and profile each
sample by the mean probabilities of its cells belonging to each of the Gaussians. This
Gaussian mixture (GM) method assumes that compound treatment causes cells to shift
between a limited number of general states. It is indeed generally true that cellular
phenotypes induced by perturbations can usually be found, albeit at low levels, in wild-type
cell populations5. GM models have been used in other phenotype-detection applications as
well24.

We fitted different mixtures of Gaussians to a subsample of ~45000 cells (10% of the cells),
with the number of components ranging from 2 to 30. A non-deterministic expectation-
maximization (EM) algorithm was used to fit Gaussians to the data; therefore the model
construction and crossvalidation was performed 20 times to assess model variability.
Twenty-five Gaussians resulted in a prediction accuracy of ~83% (Table 1), but with large
variation depending on the initial conditions (Figure S5). Increasing the number of
Gaussians beyond 25 does not improve the accuracy (Figure S5). Some classification
mistakes occurred in only some models, while others were consistent across models (Figure
S4E).

The GM method performs equally well whether created from control cells or treated cells
(Figure S6), so the mixture components may be mainly modeling cellular phenotypes that
are widely represented rather than phenotypes induced by only particular treatments.

Factor analysis
Although we measured 453 morphological features of each cell, it is the underlying
biological effects that are of interest. Young et al.19 used factor analysis to discover such
underlying effects under the assumption that an underlying process (factor) affects several
measurements, and that variations restricted to a single measurement are noise.

We trained a factor model on a random subsample of ~45,000 control cells (15% of the
control cells in the experiment). We computed the maximum-a-posteriori estimate of the
factors given each cell and averaged these values over all cells treated with the same
compound and concentration in order to obtain a profile of the treatment. Varying the
number of factors, we found that the performance was similar to the other methods when
using ~25 factors, but that performance increased gradually with the number of factors,
reaching a plateau at ~50 factors (Figure 2). While the procedure is nondeterministic, the
accuracy generally does not change more than 3 percentage points in either direction with a
given number of factors. With 50 factors, the prediction accuracy was 94%, which is
substantially better than any of the other methods that were tested (Table 1). There was still
some confusion between DNA damage agents and DNA replication inhibitors (Figure 3).

The improvement in accuracy was not simply due to the method’s implicit dimensionality
reduction: reducing the dimensionality to 50 by PCA did not lead to an improvement over
the means method and selecting the feature most heavily loaded on each of the 50 factors
decreased the accuracy to 63% (Table S7).
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The factor-analysis method can be viewed as the means method with a preprocessing step
that transforms the measurements of each cell into the latent factor space. Although factor
analysis greatly improves the means method, it does not improve the KS-statistic method as
much. Using it as a preprocessing step before any of the other profiling methods is not
helpful (Figure S7).

Most of the factors cannot be readily interpreted by their feature loadings (Table S8). This is
an Occam dilemma25: when the number of factors is high enough to yield good predictive
accuracy, the factors are difficult to interpret because they combine numerous features in
order to pick up on subtle phenotypic differences. Although we cannot use direct
interpretation to verify that the factors are biologically relevant, careful crossvalidation and
experimental design can guard against bias by batch effects and other artifacts20 (Text S4).

The factor model performs equally well whether created from control cells or treated cells
(Figure S9). Because the wild-type variation is sufficient to elucidate the relationships
between image features and latent factors, the factors may be capturing stable, fundamental
modes of variation for the cell line (viewed through a particular assay and feature set) and
not the extreme changes induced by particular treatments.

Discussion
We compared five methods13–15,18–19 for generating per-sample profiles from image-based
cell data in the context of classifying small molecules into 12 mechanisms of action based
on cellular morphology. All methods had previously been demonstrated in distinct
experiments, mostly proof-of-principle studies, with some yielding biological discovery.
However, these methods had never before been directly compared on a common dataset.
Each method was previously proposed as part of a larger methodology, sometimes including
strategies for particular contexts, such as making use of information from multiple cell lines
or multiple concentrations. These strategies can be applied independently of the core
profiling method; here, we compared only the computational cores of the profiling methods.
We did not evaluate the underlying statistical methods (KS, SVM, GM, FA), which have
solid theoretical foundations and an excellent record of solving analysis problems of many
kinds.

On our dataset, the simplest method, which profiles compounds by the population means of
the measurements of the treated cells, performed better than expected, achieving 83%
accuracy in predicting MOA. Because many of the measurements are non-Gaussian, we
expected non-parametric KS statistics to be superior, but that was not the case. Describing a
compound by the decision boundary of a linear SVM trained to distinguish compound-
treated cells from mock-treated cells did not offer improvement either (83%), and adding a
feature-reduction step reduced performance (64%). A GM method that tries to model
subpopulations of cells with a mixture model might be expected to have an advantage in
experiments where the perturbations lead to shifts between a small number of discernible
cell states (e.g., cell-cycle states), but we did not observe this: although the treated samples
were heterogeneous with respect to cellular phenotype, and some phenotypes were not
specific to any mechanistic class, the GM model performed no better than other methods
(83%). The profiles that best represented the phenotypes were obtained using factor analysis
(94% accuracy in predicting MOA). This method’s potential limitation of excluding
important non-redundant image-based features as noise has been demonstrated in a
screening context where only 29 measurements were made of each cell26, but with our
higher-dimensional features the method proved effective at extracting the underlying
sources of variation.
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Because all the profiling methods we tested operate on measurements at the resolution of
single cells, there was the potential that some of them might detect effects that are only
present in a small subpopulation of the cells in the sample. However, only the GM method
makes explicit attempts to model cell subpopulations across samples. It was therefore
surprising that even the means method was sufficient to characterize treatments producing
heterogeneous phenotypic response. Because compound treatments typically affect most
cells in a sample (although frequently in different ways), our experimental results are
insufficient to predict the methods’ relative performance in RNAi screens where the
interference is effective in only a small percentage of the cells. It is possible that the KS
statistic may work better than the mean in such experiments, or that the GM method may be
able to detect a globally popular phenotype even though it occurs at low proportion in a
particular sample. It is also possible that new profiling methods will be required in order to
fully realize the potential of using single-cell measurements to profile samples that are
distinguished only by small, subtle subpopulations of cells or to be robust to off-target
effects.

The assay and compound collection chosen for this study are typical of a profiling
experiment: morphology assays are attractive for profiling because they can capture a wide
variety of subtle cellular responses without focusing on particular pathways. However, there
may be particular mechanisms-of-action that are not displayed within the assay parameters
described in this study. One important parameter is time following compound exposure. In
this study we chose 24 h following compound treatment of cells as this produced an optimal
mitotic arrest phenotype in the MCF-7 cell line studied. For other cell lines or other
compound classes there may be added value gained from increasing the biological space of
profiling studies by combining features quantified from multiple assays and applying the
profiling methods across multiple timepoints following compound treatment. The choice of
assay and optimal timepoint for profiling will likely depend on the scientific questions being
asked. The chemical compounds we tested are commonly studied bioactive compounds.
Therefore, the present study is valuable in providing a comparative analysis of methods in
the context of one particular (but representative) profiling experiment. Creating and
annotating a ground-truth set of compounds with known MOA is not trivial; we hope this
work provides a template for future creation of ground-truth datasets.

With the emergence of image-based high-content screening across more complex and
diverse assay formats incorporating co-cultures, stem cells, and model organisms, future
studies may demonstrate that particular profiling methods perform better on specific assays,
cell types, or even focused compound or siRNA libraries. Thus, we foresee additional value
in providing an analysis framework and a ground-truth dataset to facilitate further
comparisons in the field using alternate datasets or methods. We have implemented all five
methods and offer the source code (Text S2), along with our entire set of cellular
measurements for our ground-truth dataset (Data S2) so that they can aid in the future
application, development, and comparison of image-based phenotypic profiling approaches.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Overview of approach. Top panel: experimental design. Cultured cells in microtiter plates
were compound treated, labeled, fixed, and imaged. The image-analysis software
CellProfiler measured 453 properties of each cell. One of the profiling methods under
investigation condensed these measurements into a profile (vector of numbers) that
describes each sample. A sample with unknown mechanism of action (MOA) was predicted
to have the same MOA as the sample whose profile is most similar to that of the unknown
sample, using the cosine of the angle between the profiles as measure of similarity. Bottom
panel: illustrations of the five profiling methods tested. (A) means of raw per-cell features,
(B) Kolmogorov-Smirnov (KS) statistic relative to negative control, (C) normal vector of
decision plane of linear support-vector machine (SVM) vs. negative control, (D) proportion
of cells in each component of a Gaussian mixture (GM), (E) latent feature extraction using
factor analysis.
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Figure 2.
Distributions of classification accuracies for 20 runs of the factor analysis method for each
possible choice of the number of factors from 2 to 100. The performance was similar to the
other methods when using ~25 factors, but the accuracy increased gradually with the number
of factors, reaching a plateau at ~50 factors.
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Figure 3.
Confusion matrix for the factor-analysis method, showing the number of compound-
concentrations that were classified correctly (on the diagonals) and incorrectly (off the
diagonals), the classification accuracies for each MOA (right columns), and overall
classification accuracy (number of correctly classified compound-concentration divided by
the total number of compound-concentrations). Average outcomes over 20 models are
shown; dimly colored squares without numbers indicate classification outcomes that
occurred less than 0.5 times on average.
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Table 1

Accuracies for classifying compound treatments into mechanisms of action

Method Accuracy

Means 83%

KS statistic 83%

Normal vector to SVM hyperplane 81%

– with recursive feature elimination 64%

Distribution over Gaussian mixture components 83%

Factor analysis + means 94%
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