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ABSTRACT The same prototypal model used in a
previous paper to illustrate proper construction of a
muscle model is modified here with the much more
realistic choice e6P = 108 rather than eAp = 100, where eAP
is the ratio of physiological ATP activity to equilibrium
ATP activity. For steady isotonic contractions, the range
1 . eA S 104 can be approximated quite well by use of linear
terms only in expansions of F (force) and J (ATP flux) in
powers of eA - 1 and v (velocity). This will presumably
also be true in most cases of much more complicated
models. However, this region is of theoretical interest only
(irreversible thermodynamics, etc.) because F and J are
very small. In addition, numerical calculations of F and J
were made in the region 104 ( eA ( 108. The optimal effi-
ciency -q* is larger under physiological conditions (about
1%7) than at equilibrium by a factor of 2.1 X 104. The
rate of entropy production is discussed in this connection.

This work is a continuation of an earlier paper (1) with es-
sentially the same title. Availability of the previous paper to
the reader is assumed. In both of these papers, our object is to
illustrate the proper formulation and use of a complete and
self-consistent molecular model of muscle. Otherwise, the
model employed is not meant to be a practical muscle model.

In the first set of calculations (1), we used, arbitrarily,
evP = 100 for the "physiological" value of A = ( ATT-U
and investigated, primarily, the range eA = 100 to eA = 1
(equilibrium). Note that eA is proportional to ATP ac-
tivity (or concentration). This relatively small range in eA
had the pedagogical advantage of preserving a certain degree
of continuity between the two ends of the range. But the
actual physiological value of eA is of order 108. Therefore, in
this paper, we take eAP = 108 as the physiological value and
studly the much wider range in ATP activity (or concentra-
tion), eA = 108 to eA = 1, using the same model as before (1)
except for modifications required by the change in the value
of AP. To a considerable extent, the results can be divided into
two regimes: 104 < eA , 108 and 1 < eA < 104. The latter
regime is of theoretical interest only.

The model

The two-state cycle is shown in Fig. 1. We use the dimension-
less notation already introduced (1). The rate constants f(x)
and f' are unaltered (as are also the free energy functions):

f(x) = 3e-12/, ft = 0.17833. [1]

But for g(x) we use

g(x) = ge(x)eA [2]

where

9e(x) = (0.15 + e-1iix) X 10-8. [3]
Thus, the function g(x) under physiological conditions (A =

Ap) is unchanged, as is clear on comparing Fig. 2 here with
Fig. 2 in ref. 1. But g6(x) is reduced in magnitude here by a
factor of 106. Since f'g'(x) = f(x)g6(x), the function g'(x) is
also reduced by a factor of 106:

g'(x) = f(x)g6(x)/f'
= 0.16823 X 10-1 e _X2 (0.15 + ei-5x). [4]

Hence, on the scale of Fig. 2, g'(x) is essentially zero. [13ut we
use Eq. 4 for g'(x) in the comnuter program.] This virtual
elimination of g'(x) is the only change in the model, compared
to the previous case (1), under physiological conditions. This is
not a drastic change, since g'(x) in ref. 1 is already not very
large. But at equilibrium, both of the g and g' processes (in-
volving adsorption and (lesorl)tion of ATP, respectively) are
almost missing (Eqs. 3 and 4), as they should be in "real"
models. This produces drastic effects on properties of the
system "near" equilibrium (see below).

In both examples (eAr = 100 and 108) we have used 9 eA
over the whole concentration range of ATP. However, this is
not the only possibility (see Appendix II of ref. 2). Because
the diagram has been reduced to two effective states, other
examples would be possible in which there is a Langmuir-
isotherm type of del)en(lence of g on eA and a related (by de-
tailed balance) dependence of g' on eA (2).

Steady isometric contractions

Fig. 3 shows the calculated curves FP(A) and J0(A) for eA >
104. On the left of the figure are the same curves taken from
ref. 1 (eAr = 100). The arrows on the abscissa indicate phys-
iological values. Using the present more realistic and exten-
sive range in A, it is seen that, as the ATP activity is de-
creased, Fo and Jo have become practically zero when the
physiological ATP activity has been reduced by a factor of
about 104 for Fo and about 103 for Jo. For practical purposes,
further reduction of the ATP activity to eA = 1 (equilibrium)
is of little consequence. Because of the unrealistic small range
in e", this kind of two-stage behavior in Po and Jo does not
occur in the eAP = 100 case.
The dashed Fo curve in Fig. 3 refers to a different and simple

model for which an analytical expression for Po(A) can be
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FIG. 1. Two-state diagram used in calculations.

derived (see the Appendix). The value etv = 108 is also used in
this case.

To show the full range in eA, the eAP = 108 curves in Fig. 3
are replotted in Fig. 4 using a logarithmic ordinate. Near the
origin, all curves are heading for negative infinity since Po = 0

and Jo = 0 at equilibrium (eA = 1). The dotted curves labeled
"linear" will be discussed below.

Steady isotonic contractions

By solving the appropriate differential equation, Eq. 3 of ref.
1, we have calculated F and J at eA = 108, 1.5 X 107, 1.1 X 108
and 104, for several values of v in each case. Fig. 5 shows F(v)
and J(v) for the first three values of eA. These curves are ap-

proximately linear in the case eA = 1.1 X 106, and they are

very close to linear in the case eA = 104 (not shown).
Using the above results, we estimate, by interpolation, that

the optimal efficiency is -* = 0.0085, 0.0095, 0.0068, and
0.000415 for the four respective values of eA listed above.
These points, together with the corresponding estimates of
v*, are included in Fig. 6. The extension of the functions log
* and log v* to eA = 1, and the curves labeled "linear," are

discussed below. Note that -q* increases, at first, for greater
departures from equilibrium, and passes through a maximum
of about 0.95% at about eA = 1.5 X 107. The physiological
efficiency (0.85%) is less here than in the previous case (3.1%)
primarily because AP is larger (recall that 77 = Fv/JA).
Incidentally, as already mentioned (1), we have found self-

Jo

ied = 100

loge'
FIG. 3. Right side: isometric force and flux in the case (present

paper) evP = 108 (see the Appendix concerning the dashed curve).
Left side: isometric force and flux in the case (ref. 1) evP = 100.

consistent and rather realistic two-state models with effi-
ciencies very much larger (above 30%) than in these examples
(unpublished work with E. Eisenberg and R. Podolsky).

Steady isotonic contractions "near" equilibrium

We showed in the previous paper (1) how to find the beginning
coefficients in expansions of F and J in powers of A and v.
Linear and quadratic coefficients were actually calculated.
Alternatively, one can expand F and J in powers of eA- 1
and v. In fact, if we have found the coefficients in

F = At- By + c'11A2 + c12vA + c22v2 + .

J = CA + Av + d'11A2 + di2vA + d22v2 + ...
[5]

by the methods already outlined (1), we have immediately

F = A(eA- 1) - Bv + cl(eA- 1)2
+ c,2v(eA- 1) + c22v2 +

[6]J = C(e' - 1) + Av + di,(eA- 1)2
+ d,2v(eA- 1) + d2v2 +

where

or 'a FI
-4 -3 -2 -1 0 2 3 4

x

FIG. 2. Rate constant functions used in calculations (eAv =

108). The function g'(x) is not apparent on this scale.

Cl = cll- (A/2), di, = d'il - (C/2). [7]

log e'

FIG. 4. Replot of elp = 108 case in Fig. 3 with a logarithmic
ordinate. The dotted curves follow Eqs. 12.
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The range in v of primary theoretical interest is 0 $ v <
vmax. We can use the linear terms in Eq. 8 to obtain

J, eA =108

J, e= 5x107

F, e"= 0o8

vmax , 1.989 X 10-7 (eA - 1). [10]

If this value of v is substituted in Eq. 8, we find that at, say,
eA = 103, the two linear terms are about 130 times as large as
the largest quadratic term (the v2 term is negligible). Similarly,
in Eq. 9, at eA = 103 and v _ Viax, the first term is about 285
times as large as the largest quadratic term (the v and v2 terms
are negligible). Thus, the approximation

P = A(eA -1) - B
J = C(e - 1) [11]

is quite good at least to eA = 103.
On the scale of Fig. 4,

FFe 1.5x107 Fo= A(e'-1), Jo= C(eA-1)

0.5 1.0 1.5 2.0
V

FIG. 5. Force-velocity and flux-velocity curves for several
values of eA (in the eAP = 108 case).

The physical significance of eA - 1 is that it is proportional to
CT - CTe, approximately, or to the corresponding activity
difference, exactly.
Although the, expansions in Eqs. 6 are valid in the e6P = 100

case (1), they do not provide any advantage over Eqs. 5. But
in the eAP = 108. case, the range (in A) of applicability is ex-
tended considerably by use of Eqs. 6.

In the eAP = 108 case, we calculated the A, v linear and quad-
ratic coefficients just as before (1), and then used Eqs. 7 to
obtain

F = 3.0177 X 10-6(eA - 1) - 15.173v
- 2.35 X 10-11(eA- 1)2 + 4.5498 X 10-5v(eA- 1)

+ 5.4296 X 10-4v2 + [8]

J = 3.6547 X 10-7(eA
- 1.28 X 10-12(eA

- 1) + 3.0177 X 106v

1)2 + 2.3066 X 10-6v(eA - 1)

+ 1.9403 X 10-5v2 + [9]

2 4 6 8
log e

FIG. 6. Logarithmic plots of -q* and v* in the eAP = 108 case

and of q* in the eP = 100 case. The dotted curves follow Eqs. 13.

[12]

are good approximations to about e' = 104 (the dotted
"linear" curves in Fig. 4 follow Eqs. 12).
Using 7 = Fv/JA and Eqs. 11, we find easily the "linear"

approximation

7* (A) = i*() (e- 1)/A

7*(0) = A2/4BC = 4.105 X 10-7 [13]

v*(A) = (A/2B)(eA- 1) = Vmax(A)/2.
The solid curves for eA < 104 and the dotted curves for eA >
104 in Fig. 6 represent -q* and v* from Eqs. 13. The linear ap-
proximation is again satisfactory to eA = 104.
The efficiency at eA = 108 is larger than the efficiency at

equilibrium, q*(0), by a factor of about 2.1 X 104. The ex-
tremely low efficiency at equilibrium is obviously (Eq. 13) a
consequence of the values of A, B, and C (see below).
An examination of the explicit integral expressions for the

coefficients (1) clarifies the orders of magnitude found in the
results quoted above. The very small quantity (in the eAP =

108 case) e(x) = ge/Ze = 0(10-8) is crucial. The coefficients A
and C are seen to be of order e (the integrations over x have a
significant effect, of course). B is of order unity. Hence if we
take, say, eA = 103, Vrnax, Bvmax, AeA, and CeA are all of order
103,, while AVmrax is of order 103E2 (thus the v term in the J
expansion, Eq. 6, is negligible). Also, we observe (from the
integrals) that cii and di, are of order E2, C12 and d12 are of order
E, while c22 and d22 are of order unity. The corresponding
quadratic terms in Eqs. 6, at vmax and eA - 103, are then all of
order 108E2.

Results qualitatively similar to the above are presumably to
be expected "near" equilibrium from most diagrams, in the
realistic eAP = 0(108) case. These "near" equilibrium proper-
ties are of no physiological interest but it is important, in at
least one case, to examine the full e' range and to establish
the connection with irreversible thermodynamics (via A, B,
and C).
As an addendum, we mention here one further result.

Using Eqs. 5 and the derivatives bi/bv and b6/6A, one can
obtain (after some algebra) an explicit general expression for
the slope of 77*(A) at A = 0:

(a *) = a[(C + A a) (c'11 + cna + c22a2)

- (A - Ba) (d'11 + d12a + d22a2)]/(C + Aa)2 [14]
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where

a = (C/A){[1 + (A2/BC)Il/2 -_

The value of ,I*(0) depends on A, B, and C only; the slope at
A 0 depends on quadratic coefficients as well. The slope is
negative in our eAP - 100 case and positive in the e6P = 108
case (see Fig. 6). In the latter case, Eq. 14 simplifies to

{acts A2 1*(0)
VIA h= 8BC 2

Rate of entropy production

As we have seen in our two examples with e'P = 100 and eAV
= 108, the optimal efficiency q*(A) does not have a maximum
at A = 0, as might have been expected intuitively; in fact, in
the e"P = 108 case, n*(A) increases considerably between A =
0 and eA = 108 (and passes through a maximum on the way).
These "odd" properties of v* may be attributed to the fact
that the fundamental thermodynamic quantity is the difference
TSI = JA - Fv rather than the quotient 7v = Fv/JA, where ,s
is the rate of entropy production. Thus, SA (Av) has a mini-
mum at equilibrium (So = 0 when A = 0, v = 0). Near
equilibrium, TSs = CA2 + BV2. Along the line v = 0 in the A,
v plane (isometric contractions), S1(A) presumably increases
monotonically with A since, in the product J0A, J0(A) pre-
sumably never decreases and A always increases. We say
"presumably" because we do not have a general proof for an
arbitrary diagram.
The related question arises as to whether S1(v) has a mini-

mum at v = 0 for an arbitrary fixed A. This is true near
equilibrium, but it is easy to see that it is not true for an
arbitrary A (even in the quadratic regime of Eqs. 5). One
might surmise that S1(A) increases monotonically along the
curve v*(A) in the A, v plane. This is the case in our eAV = 100
and eat = 108 examples, but we have not proved that it is a
general property (i.e., for any diagram).

APPENDIX

A simple model with qualitative properties similar to the
above is one in which g(x) is a step function at x = 0. Fig. 1
applies here and the notation is now not dimensionless. We use

f(x) = koe -x'/2u' -I= constant

and

g(X) = geeA (x < 0)
= 0 (x > 0).

Then we must have

g'(x) = koe-x2/2u2,el/f (X < 0)

= 0 (x > 0).

[16]

[171

The force function is F(x) = kTx/o2. Ordinarily we take f'
and gee P of order ko, and eAP = 0(108). In this case g' is very
small.
One property that is easy to express in closed form is Fo(A).

Using no = (f + g')/(f + g' + f + g), we find from

1 f+
Io = - NO(x)F(x)dx

dJ Go

that

Fod_o= In
kT

[18]

[19]

When A =0, this gives (as it should) Fo =0. When e"-oo,

we have

[20],FodlkT --l n
(1 + ko

As a numerical example, let us take

f'= 1, ko= 10

geeAp = 108 g = 10, ge = 10-7.

Then

Pod
= In 11 (l + 10-7e) 1

kT - L(1. + 10-7 + 10-8eA)J
This function is included in Figs. 3 and 4 (dashed line).
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