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Abstract
In many genetic analyses of dichotomous twin data odds ratios have been used to test hypotheses
on heritability and shared common environment effects of a given disease (Lichtenstein et. al.,
2000, Ahlbom et. al., 1997, Ramakrishnan, et. al., 1992, 1996). However, estimates of these two
effects have not been dealt with in the literature. In epidemiology, the attributable fraction (AF), a
function of the odds ratio and the prevalence of the risk factor has been used to describe the
contribution of a risk factor to a disease in a given population (Leviton, 1973). In this article, we
adapt the AF to quantify the heritability and the shared common environment. Twin data on
cancer, gallstone disease and phobia are used to illustrate the applicability of the AF estimate as a
measure of heritability.
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1. INTRODUCTION
Methods for analyzing dichotomous twin data using odds ratios (or logistic regression) have
been considered extensively in the literature (Ramakrishnan, et.al., 1992, 1996, Betensky et.
al, 2001, Olson et al., 1996, Ananth and Preisser, 1999). These methods are primarily for
testing hypotheses regarding heritability and shared common environment effects of a
disease using the difference between the magnitude of the association among monozygotic
(MZ) twins and the dizygotic (DZ) twins. The method suggested for analyzing dichotomous
twin data (Ramakrishnan, et. al.) begins by designating one member of each twin pair as the
“index” twin and the other as the “co-twin.” Then a logistic regression model of the form,

(1)

where Y is the logit of the probability that the index twin has the disease, X is the indicator
of co-twins disease status (1 if present and 0 if absent), Z is the indicator of zygosity coded
as 1 if the pair is monozygotic (MZ) and 0.5 if the pair is dizigotic and XZ is the
corresponding interaction. The 1 and 0.5 coding for zygosity is used so that different
components of familial effects could be examined. Using this set up the effects for MZ and
DZ twin could be written,
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(2)

If there is a significant difference between the two types of twins (that is, β1 > 0 and β3 > 0)
there is evidence of familial aggregation. The familial aggregation could be due to
heritability or due to the shared common environment of the two twins. (Here, the term
heritability is used loosely. It corresponds to the additive effect of the genes. See Eaves
(1969) for a complete discussion of this.) It is known that the MZ twins share 100% of the
genes, while the DZ twins share, on an average, 50% of the heritable genes. If an observed
disease is purely genetic, the MZ coefficient and the DZ coefficient would be expected to
exhibit this 2:1 ratio of the genetic composition. In other words, β1 would be zero in
equation (2) and β3 would be greater than zero. Using this, tests for heritability, shared
common environment effect or both heritability and shared common environment effects
could be tested by testing the null hypotheses, β1 = 0, and/or β3 = 0. The logistic model
could be extended to include known specific environmental variables and differences could
be tested by including interaction terms.

One of the drawbacks of this approach is the arbitrary assignment of the outcome variable
by the index twin. For large samples this does not pose a problem. For small samples, a
simple way to account for this is to force the discordant events to be equal (i.e., assume
exchangeability). Olson, et. al (1996) provide a rationale for this through the estimating
equations approach under the Hardy-Weinberg law. Betensky et. al. (2001) propose a more
rigorous approach, in which they simultaneously fit models for Y given X as well as X given
Y and apply the generalized linear mixed models to account for the correlation between the
two.

Although the hypothesis tests are useful in determining whether or not a disease (or trait) is
heritable, a measure of the impact of this in the population is of interest. Measures
translating the tests of heritability and shared common environment that have a statistical (or
epidemiologic) interpretation are not presently available. One question of interest might be
what is the excess incidence of the disease in the population due to heritability? A measure
that has been proposed in the literature to answer such a question is the population
Attributable Fraction (AF) (Levine, 1953, Leviton, 1973, Miettinen, 1974, Rothman, 1986,
Greenland and Robins, 1988). A general definition of AF is it is the ratio of difference
between the incidence rate of the disease in the overall population and the incidence rate of
the disease in the exposed group to the incidence rate of the disease in the overall
population. In other words it is the proportion of the incidence that would disappear when
the incidence in the exposed group is reduced to the level in the unexposed group. There are
several variations of the formula that is used for the calculation of this measure. These have
been extensively discussed in the literature (Khoury, et. al.,1993, Rockhill, et. al., 1998).
The maximum likelihood estimation of AF and its asymptotic properties have also been
studied (Greeland and Drescher, 1993).

In this article, we propose a measure for the proportion of the disease incidence that is due to
heritability in terms of the AF. We also provide confidence intervals for this measure, based
on approximate (asymptotic) variance estimates. Properties of the asymptotic variance are
examined by comparing it to bootstrap variance. Results from a simulation study examining
the properties of the proposed estimate are also presented . To illustrate we apply the
proposed measure to twin data on cancer, gallstone disease and phobia.
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2. ESTIMATING AF AND ITS VARIANCE
We will use the definition of population AF in terms of a known prevalence of the risk
factor in the population (p) and the odds ratio ψ (Levin, 1953), namely

(3)

While there are other ways of calculating the AF we chose this one for the following reason.
The hypothesis test for the genetic effects has been developed using odds ratios
(Ramakrishnan, 1991) and therefore a definition of AF that involves the odds ratios is
naturally preferable. There are two variations of AF in terms of the odds ratios. One is
presented in equation (3) and the other is given by pc(ψ – 1)/ψ (Miettinen, 1974), where pc is
the proportion of risk factor among cases only, which is more applicable in case-control
studies. In the genetic analyses of twin data, an individual's disease status is considered a
risk factor for his/her twin. Therefore the prevalence of the risk factor is essentially the
prevalence of the disease in the population and disease prevalence is often known for most
populations. In addition, from a theoretical point of view, fixing the prevalence leads to a
more elegant estimate for the asymptotic variance of the AF. For these reasons, the
definition in (3) was chosen.

In the case of dichotomous twin data, the odds ratio represents the ratio of the odds of one
twin having a disease compared to the odds of the co-twin having the same disease.
Correspondingly, the AF estimates the excess fraction of disease one would observe among
individuals in a twin pair due to the presence of the disease in his/her co-twin. The
asymptotic variance of the maximum likelihood estimate (MLE) of AF (for a given
prevalence, p) could be obtained using Taylor's series expansion and is given by,

(4)

In section 1, we described the hypothesis tests for heritability and shared common
environment using the logistic regression models. To estimate the corresponding odds ratios,
the additive expressions expressed in terms of the log-odds ratios in equation (2), could be
written:

Here, ψMZ denotes the odds ratio for the MZ twins, ψDZ denotes the odds ratio for the DZ
twins, ψe(= eβ1) is the contribution of the shared common environment and ψa(= eβ3)
denotes the contribution of the heritability. Since MZ twins share 100% of the heritable
genes while the DZ twins share 50% on average, the model for MZ twins has twice the
contribution from the additive genetic effect.

Estimates of ψa and ψc could be derived as functions of the estimates of ψMZ and ψDZ. That
is,

(5)
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where the estimate of the MZ and DZ odds ratios are  and

, where A represents the number of concordant pairs with the
disease, B and C represent the number of discordant pairs (for index and co-twin,
respectively) and D represents the number of concordant pairs without the disease. The
subscripts 1 and 2 denote the MZ and DZ cases, respectively. The corresponding asymptotic
variances in terms of the variances of the log odds ratios is,

(6)

The estimate of the variances in equation 4 could be obtained by substituting the MLE of the
corresponding odds ratios.

Now, to obtain the estimates of the AF for the heritability and shared common environment,
we substitute the estimates of ψa and ψc from equation 3 in equation 1. That is,

(7)

The respective asymptotic variances for the AF's could be similarly obtained by substituting
from equations 3 and 4 in 2.

Typically the asymptotic variances of the estimates of AF are quite sensitive to the cell sizes
as well as the total sample size. One could also apply the Bootstrap method to obtain the
variance, especially when the cell size and/or the total sample size are small.

3. APPLICATIONS
Twin data on cancer, gallstone disease and phobia are used here to illustrate the estimation
of AF and its variance. These data are from four published sources. The first is a
compilation of data on cancer in twins from the Swedish, the Danish, and the Finnish twin
registries (Lichtenstein et. al., 2000). The data consist of 44,788 pairs of twins of which
there were 8,437 pairs of monozygotic women, 15,351 pairs of dizygotic women, 7,231
pairs of monozygotic men and 13,769 pairs of dizygotic men. The data consist of 28
different cancers in 10,803 individuals. Here we present the AF estimates for breast (women
only), colorectal, and prostate cancers. The second is on gallstone disease in twins in the
Swedish Twin Registry (Katsika et. al., 2005). A cohort of 29,256 same-sex twin pairs
stratified by gender and age groups are considered here. The third is on phobias in twin
children in the Swedish Twin Registry (Lichtenstein and Annas, 2000). Data on phobia were
reported by parents. A cohort of 1,106 twin pairs whose parents responded to the
questionnaire regarding these phobias was analyzed. Of the 1,106 pairs data from 649 same-
sexed pairs were analyzed. Here we present the AF estimates for the combined data on all
phobias. The data from these three sources along with odds ratios are presented in Table 1.

To demonstrate the computations of the AF estimates, we will use the data on breast cancer.
First we compute the odds ratios by zygosity.

The MZ odds ratio for breast cancer is:
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with

The DZ odds ratio for breast cancer is:

with

Next we compute the two components of the odds ratios as shown in equation 3. The

heritability component is,  with SE = 0.41 (using square root of

equation 4). The common environment component is,  with
SE = 0.51.

Next, to compute the AF estimates we need the prevalence of breast cancer. The prevalence
of breast cancer (i.e., the proportion of women who ever were diagnosed with breast cancer)
in various populations is available. In actual applications one should use the known
prevalence of the disease, specific to the population being studied. Here, for illustration
purposes, we calculated the prevalence as follows and assumed it to be fixed. Referring to
the different numbers of pairs in table 1 we could compute the total number of breast
cancers observed as, 2 × 42 + 505 + 2 × 52 + 1,023 = 1,716. The total number of women in
the cohort is 42,000. Therefore, the prevalence is 1,716/42,000 = 0.041. Substituting these in
equation 5, the corresponding AF's are computed as follows: The AF for heritability of
breast cancer is:

The AF for common environment of breast cancer is:

From these we could conclude, 3.0% (±1.6%) of the breast cancers in women is attributable
to inheritance, while about 1.8% (±2.0%) of the breast cancers in women are attributable to
shared common environment. In applications, since the AF estimates of the heritability and
the shared common environment are correlated, if these s.e.'s are used to compute
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confidence intervals one should consider adjustments to the confidence levels (e.g.
Bonferroni adjustment).

Since the index twin co-twin definition is arbitrary, the discordant cell probabilities are
exchangeable and therefore one could consolidate the B and C cells by substituting (B + C)/2
for B and C. (This is also analogous to using a Generalized Estimating Equation logistic
regression model in which the measurements from the twins are treated as repeated.) In table
1, the odds ratios and the standard errors were computed using the average of the discordant
cells, by substituting (B + C)/2 for B and C cells.

In table 2 the AF for the heritability and the shared common environment along with the
standard errors (SE) are presented (in percentages). For some diseases the AF estimates of
the common environment effects were zero (or negative), and they corresponded to
situations where they were not statistically significant. In table 2, these situations are
represented by zero.

One of the limitations of most analyses of twin studies is that the standard errors are large
even when the total sample sizes are in the thousands. This is the case in our applications as
well. A Bootstrap approach was also applied to estimate the variances in order to examine if
the asymptotic approximation of the variances were adequate. For each of the phenotype,
one thousand Bootstrap samples with replacement were drawn. So, for example, in the case
of breast cancer, random samples with replacement from the 7,231 pairs of observations
were drawn and the corresponding frequencies (as shown in table 1) were obtained. For each
of these data, keeping the prevalence constant, (e.g. fixed at 4.1% for the breast cancer), the
two AF's were estimated. The Bootstrap variance was obtained from the distribution of these
estimates. These Bootstrap variances are presented in Table 3. The differences observed in
the two methods seem negligible and therefore one might conclude that the asymptotic
approximation is reasonable.

4. SIMULATING TWIN DATA
In this section, first we introduce a method for simulating twin data given values of AF for
heritability, AF for shared common environment and prevalence of a disease. Then using
this method a simulation study is performed to examine the properties of the estimates of
AF. Specifically, the purpose of the simulation study is to examine how the bias and the
mean square error (MSE) of the estimates change as a function of the prevalence of the
phenotype and the size of the sample.

Consider the following 2 × 2 table showing the probabilities of the disease statuses, where
twins are labeled arbitrarily as twin 1 and twin 2.

Twin 1

Twin 2

Yes No

Yes π1 π2

No π2 π3

The cell probabilities are uniquely defined for a given prevalence p and AF as shown below.
Using equation (1) for a specified p and AF the corresponding odds ratio for the table, Ψ,
could be calculated using
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(8)

Then the cell probabilities can be uniquely determined by solving the simultaneous
equations,

(9)

Solving these equations yield,

(10)

Once these cell probabilities are obtained for a given prevalence, AFa and AFc, generating
the table for a given sample size is straight forward. A macro in SAS® IML was written to
generate the data tables. The input to this macro includes the desired number of simulations,
the desired sample size, and the desired cell probabilities and from this generates random
multinomial samples using the RANDMULTINOMIAL function in SAS® IML. A selected
number of combinations of levels of AFa, AFc, prevalence p and sample sizes 2 × 2 tables
were generated. The levels were chosen based on the range of values observed in the
applications presented in section 3. The levels considered are,

These lead to 64 scenarios many of which lead to unrealistic odds ratios. Therefore, 34
combinations resulting in MZ and DZ odds ratio less than 26.0 (again based on the data in
the literature) were selected for the simulations. For each of the 34 combinations 1,000
simulations were performed for MZ twin sample sizes of 900, 1,800 and 3,600. (The DZ
twin sample sizes were set to be equal to twice as many as MZ twins.)

For each combination, the simulations yielded estimates of the attributable fractions for the
shared common environment (AFc) and the heritable (AFa) components. The bias and the
mean squared error (MSE) were calculated for each combination. The results are presented
in Figures 1 and 2. The Figure 1 plots the bias squared versus the MSE for the estimates of
AFa for a each level of AFc (1a – 1c). Each line represents a certain prevalence and AFa for
decreasing levels of the sample size. The Figure 2 is the corresponding plot for the estimates
of AFc. All the plots show, as expected, large sample sizes lead to small biases as well as
MSE's (shown by the clustering of points near the origin in all the plots). The following
additional conclusions specific to other simulation conditions emerge.

1. As the prevalence increases the bias for both AFa and AFc decreases, irrespective of
the sample size. (Figures 1a – 1c).

2. The bias for AFa is smaller for larger magnitude of AFa, irrespective of the
magnitude of AFc (Figures 1a – 1c). Similarly, the bias for AFc is smaller for larger
magnitude of AFa, irrespective of the magnitude of AFa (Figures 2a – 2c).
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3. The bias of AFa are smaller for smaller magnitudes of AFa. However, for certain
cases the decrease in the MSE is not linear (Figure 1a).

4. The larger the value of AFc the more accurate (i.e. smaller bias and MSE) the
estimates of AFa. Similarly the larger the value of AFa the more accurate the
estimates of AFc.

In summary, the simulation study seem to indicate that the estimation of the attributable
fractions for the heritable and the common environment components is best when the sample
size is over 1,800 MZ twin pairs (3,600 DZ twin pairs), The estimates are reasonable in
terms of bias and MSE, if the disease prevalence is large (at least 15%), or the heritable
component is of large magnitude (at least 0.15) .

5. DISCUSSION
We have provided here a measure for describing the heritability and shared common
environment effects in dichotomous twin studies using the attributable fraction. We have
also provided a simple method to calculate the asymptotic variance of the estimate of AF
assuming the prevalence of the disease to be known. The AF is based on a combination of
the odds ratio and the prevalence of the risk factor in question. Thus, it combines the
magnitude of the risk associated with a risk factor and the prevalence of that risk factor.
Hence, it aims at providing a measure of the public health impact of a risk factor on the
disease in question. Several articles in the field of epidemiology caution the researchers
regarding the use and interpretation of AF. A careful consideration of the issues discussed in
these articles lead us to believe that the most appropriate use of AF might be in twin studies.

Although we have provided formulas for computing the estimate of AF and its variance
using the 2 × 2 table entries of the MZ and DZ tables, the estimates of the odds ratios (or the
log odds ratios) and their variances could also be obtained from a repeated measures logistic
regression method (as described in section 3). (There are several programs that can provide
these estimates directly. For instance, PROC GLIMMIX in SAS® or STATA could be
used.). Once these estimates are available a direct substitution in the equations 2, 3 and 4
will yield the corresponding MLEs of the AFs and their asymptotic variances.

While the asymptotic variance estimates provided are appropriate, as confirmed by the
bootstrap estimates, the asymptotic distribution of the estimate of AF needs to be further
explored. Typically, the log of the estimate of AF better approximates normality. For this
reason, to construct confidence intervals the log transformation may be considered. It is also
important to point out here that the estimates of odds ratios (and consequently the estimates
of AF) have large variances when cell sizes in the 2 × 2 tables are small. Therefore, the
method is suitable for twin data from large registries, such as the Swedish Twin Registry,
but may not be suitable for small samples.

In our illustrations, the prevalence was estimated from the data and assumed fixed. The
uncertainty in the estimate of prevalence is thus ignored. In reality, when independent
estimates of prevalence are not available, and are estimated from the data this uncertainty
can not be ignored. In this case, once should use the asymptotic estimator of the variance of
AF (Greenland, 1993).

The estimates proposed here for the AF could be extended to stratified analyses in which
one may consider specific environment effects. This could be achieved by fitting the
appropriate repeated measures logistic regression model (or the alternating logistic
regression model) to the data and extracting the corresponding stratified estimates of the MZ
and DZ odds ratios and their variances. For example, in the gallstone data one could fit a
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model including age groups and gender along with the zygosity and directly obtain adjusted
odds ratios and there SE's. However, if there are confounding factors the formula of AF
provided in equation 2 may have to be appropriately modified (13). The method also extends
easily to bivariate situations, where two diseases are simultaneously considered.

LIST OF ABBREVIATIONS

MZ Monozygotic

DZ Dizygotic

AF Attributable Fraction

MLE Maximum Likelihood Estimate

SEM Structural Equation Model

ACE Used in SEM for twin data to represent a model with Additive genetics, Common
environment and Error effects
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Figure 1.
AFa bias and MSE for simulation scenarios.
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Figure 2.
AFa bias and MSE for simulation scenarios.
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Table 1

Twin Data on Cancer, Gallstone and Phobia

Phenotype Number Discordant (B+C) Number Concordant Affected
(D)

Number Concordant Unaffected
(A)

Odds-ratio (SE)

Cancers Breast

MZ 505 42 6684 4.40 (0.79)

DZ 1023 52 12694 2.52 (0.38)

Colorectum

Men

MZ 202 10 8225 8.06 (2.79)

DZ 393 17 14975 6.59 (1.73)

Women

MZ 214 20 6997 12.22 (3.21)

DZ 453 15 13301 3.89 (1.07)

Prostate Cancer

MZ 299 40 8098 14.49 (2.84)

DZ 584 20 14787 3.47 (0.83)

Other Diseases

Gallstone

Ages: 64-102

Men

MZ 280 24 2498 3.06 (0.61)

DZ 456 25 4096 1.97 (0.44)

Women

MZ 410 49 3013 3.51 (0.61)

DZ 735 63 5529 2.58 (0.38)

Ages: 44-63

Men

MZ 58 7 2116 17.61 (8.11)

DZ 124 8 3403 7.08 (2.81)

Women

MZ 208 32 2378 7.04 (1.59)

DZ 305 25 3414 3.67 (0.85)

Phobia (any)

MZ 20 11 370 40.7 (22.05)

DZ 18 3 227 8.41 (6.29)
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Table 2

AF Estimates for Heritability and Common Environment

Attributable Fraction (SE)

Phenotype Additive Heritability Common Environment

Breast 3.0 (1.6) 1.7 (2.0)

Colorectum

Men 0.3 (0.7) 5.6 (4.0)

Women 3.6 (1.9) 0.4 (1.3)

Prostate 6.3 (2.4) 0.0

Gallstone

Ages: 64-102

Men 3.0 (2.7) 5.8 (4.0)

Women 2.5 (2.1) 4.3 (4.4)

Ages: 44-63

Men 2.7 (2.7) 1.5 (3.5)

Women 4.3 (2.8) 3.3 (4.5)

Phobia (Any) 1.6 (1.6) 3.6 (1.3)
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Table 3

Bootstrap Estimates for the Variance of AF

Actual Data Bootstrap Estimates Actual Data Bootstrap Estimates

AFa Asymptotic
Variance of AFa

AFa Variance of AFa AFc Asymptotic
Variance of AFc

AFc Variance of AFc

Breast Cancer 0.03 0.000248 0.03 0.000242 0.02 0.000405 0.02 0.000430

Colorectal Cancer

    Male 0.00 0.000052 0.00 0.000071 0.06 0.001694 0.07 0.002768

    Female 0.04 0.000379 0.04 0.000531 0.00 0.000172 0.01 0.000247

Prostate Cancer 0.06 0.000570 0.07 0.000654 0.00 0.000082 0.00 0.000094

Gallstone

    Male – 64-102 years 0.03 0.000717 0.03 0.000804 0.01 0.001221 0.02 0.001531

    Female – 64-102 years 0.02 0.000426 0.03 0.000434 0.06 0.001599 0.06 0.001643

Gallstone

    Male – 44-63 years 0.03 0.000706 0.04 0.001676 0.03 0.002054 0.05 0.004960

    Female – 44-63 years 0.04 0.000780 0.05 0.000956 0.04 0.001974 0.05 0.002240

Phobia (any) 0.16 0.025336 0.22 0.035641 0.04 0.017054 0.11 0.036453
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