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Summary
Chi-squared test has been a popular approach to the analysis of a 2 × 2 table when the sample sizes
for the four cells are large. When the large sample assumption does not hold, however, we need an
exact testing method such as Fisher's test. When the study population is heterogeneous, we often
partition the subjects into multiple strata, so that each stratum consists of homogeneous subjects
and hence the stratified analysis has an improved testing power. While Mantel-Haenszel test has
been widely used as an extension of the chi-squared test to test on stratified 2×2 tables with a
large-sample approximation, we have been lacking an extension of Fisher's test for stratified exact
testing. In this paper, we discuss an exact testing method for stratified 2 × 2 tables which is
simplified to the standard Fisher's test in single 2 × 2 table cases, and propose its sample size
calculation method that can be useful for designing a study with rare cell frequencies.
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1 Introduction
In this paper, we discuss an exact test for stratified 2 × 2 tables with rare cell frequencies.
Since the stratified exact test is simplified to the standard Fisher's (1935) exact test in single
2 × 2 table cases, we call it stratified Fisher's test.

Suppose that we want to compare the response probabilities between two groups,
experimental (or case) and control. Oftentimes in a two group comparison, the
characteristics of study subjects may be heterogeneous. In this case, the heterogeneity is
characterized by some stratification factors, and a stratified method is applied in the final
analysis. When the distribution of the stratification factors is identical between two groups,
an unstratified testing ignoring the population heterogeneity controls the type I error rate but
loses the efficiency. If the distribution of the stratification factors is different between two
groups, however, an unstratified testing does not control the type I error rate. We want to
test if the two groups have equal response probabilities or not while accounting for
heterogeneity of the population defined by strata.

Multiple asymptotic testing methods have been proposed for testing on stratified 2 × 2
tables. Under the assumption that the odds ratios are identical among strata, Cochran (1954)
proposes an asymptotic method for testing if the common odds ratio is 1 or not. Under the
assumption of constant risk ratios across strata, Gart (1985) proposes an asymptotic method
for testing if the common risk ratio is 1 or not. Woolson et al. (1986) and Nam (1992)
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propose sample size calculation methods for Cochran test, and Nam (1998) proposes a
sample size method for Gart test.

In order to use these tests for testing on many 2 × 2 tables, we have to check the assumptions
of common odds ratios or risk ratios in advance. For testing the common odds ratio
assumption, Zelen (1971) proposes an exact method, which is implemented by StatXact, and
Breslow and Day (1980) propose an asymptotic method.

If these assumptions do not seem to be valid, we need a robust test requiring no assumptions
on the primary parameters for testing. Mantel and Haenszel (1959) propose an asymptotic
test for testing if two groups have equal response probabilities without any assumption of
common odds ratio or common risk ratio. Jung et al. (2007) propose a sample size
calculation method for Mantel-Haenszel test. In this paper, we extend Fisher's exact test for
testing stratified 2 × 2 tables with rare cell frequencies, and propose its sample size
calculation method. These methods can be used in designing and analyzing small case-
control studies or clinical trials. The input parameters to be specified for the sample size
calculation of stratified Fisher's exact test are exactly the same as those for the sample size
calculation of Mantel-Haenszel test. We will compare the performance of the proposed test
with that of the asymptotic Mantel-Haenszel test and the standard Fisher's exact test
ignoring strata under some practical settings.

2 Stratified Fisher's Exact Test
Suppose that there are J strata. Let N denote the total sample size, and nj the sample size in

stratum . Among nj subjects in stratum j(= 1, ..., J), mj are allocated to
group 1 (case or experimental) and m ̄j to group 2 (control). For stratum j, group 1 has a
response probability pj and group 2 has a response probability qj. Let p̄j = 1 – pj, q̄j = 1 – qj,
and θj = pjq̄j/(qjp̄j) denote the odds ratio in stratum j. Suppose that we want to test

against

For stratum j(= 1, ..., J), let xj and yj denote the numbers of responders for groups 1 and 2,
respectively, and zj = xj + yj denote the total number of responses. The frequency data in
stratum j can be described as in Table 1.

We propose to reject H0 in favor of H1 if  is large. Under H0, conditioning on
the margin totals (zj, mj, nj), xj has the hypergeometric distribution
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for mj– ≤ xj ≤ mj+, where mj– = max(0, zj – m̄j) and mj+ = min(zj, mj). Let z = (z1, ..., zJ), m =

(m1, ..., mJ) and n = (n1, ..., nJ). Given (z, m, n), the conditional p-value for , pv
= pv(s|z, m, n), is obtained by

Given type I error rate α*, we reject H0 if pv < α*.

Similarly for the other one-sided alternative hypothesis

the conditional p-value given (z, m, n) is obtained by

A two-sided p-value may be calculated as two times the minimum of the two one-sided p-
values. Without loss of generality, we focus our discussions on the one-sided alternative
hypothesis H1 in our paper.

Note that Mantel-Haenszel test also rejects H0 in favor of H1 for a large value of S, and its p-
value is calculated using the standardized test statistic

which is asymptotically N(0, 1) under H0, where , , Ej = zjmj/nj and

. Westfall, Zaykin and Young (2002) propose a
permutation procedure for stratified Mantel-Haenszel test, which permutes the two-sample
binary data within each stratum in the context of multiple testing. Their permutation
maintains the margin totals for 2 × 2 tables, {(zj, mj, nj), 1 ≤ j ≤ J}, and Ej and Vj depend on
the margin totals only, so that the permutation-based Mantel-Haenszel test will be identical

to our stratified Fisher's exact test if they go through all the possible 
permutations. Their permutation test is implemented by SAS. Compared to our exact test,
the permutation test requires a much longer computing time. Furthermore, a permutation test
often randomly selects partial permutations to approximate the exact p-value. In this case,
the resulting approximate p-value will be different depending on the selected seed number
for random number generation or the number of permutations, while the exact method
always provides a constant exact p-value.

A real data example is taken from Li et al. (1979), where the investigators are interested in
whether thymosin (experimental), compared to placebo (control), has any effect in the
treatment of bronchogenic carcinoma patients receiving radiotherapy. Table 2 summarizes
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the data for three strata. The one-sided p-values are 0.1563 by the stratified Fisher's exact
test and 0.0760 by Mantel-Haenszel test. Stratified Fisher's test has a larger p-value than
Mantel-Haenszel test because of its conservative type I error control as demonstrated in
Section 4 or because of the very small numbers of failures across the strata that can lead to a
biased p-value for the asymptotic Mantel-Haenszel test.

3 Power and Sample Size Calculation
Jung et al. (2007) propose a sample size calculation method for Mantel-Haenszel test. In this
section, we derive a sample size formula for stratified Fisher's exact test by specifying the
values of the same input parameters as those for Mantel-Haenszel test by Jung et al. (2007).
Following are input parameters to be specified for a sample size calculation.

Input Parameters

• Type I and II error probabilities: (α*, β*)

• Success probabilities for group 2 (control): (q1, ..., qJ)

• Odds ratios: (θ1, ..., θJ) under H1, where θj > 0. Note that, given qj and θj, the
success probability for group 1 (experimental) is given as pj = θjqj/(q̄j + θjqj) in
stratum j(= 1, ..., J).

• Prevalence for each stratum: (a1, ..., aJ), where aj = E(nj/N). Note that aj > 0 and

.

• Allocation probability for group 1 (experimental) within each stratum, (b1, ..., bJ),
where bj = E(mj/nj) with 0 < bj < 1.

3.1 When Group and Stratum Allocations are Random
In designing a study, N is fixed at a predetermined size corresponding to a specified power.
At the moment, we assume that, given N, the strata sizes and the sample sizes for two groups
within each stratum are randomly selected by the prevalence rate of each category in the
population. Hence, given N, {(xj, zj, mj, nj), 1 ≤ j ≤ J} are random variables with following
marginal or conditional probability mass functions that are indexed by the above input
parameters.

Distribution Functions

• Conditional distribution of xj given (zj, mj, nj):

for mj– ≤ xj ≤ mj+, where mj– = max(0, zj – m̄j, mj+ = min(zj, mj) and j = 1, ..., J.
Under H0, this is simplified to f0(xj|zj, mj, nj).

• Conditional distribution of zj given (mj, nj): Given (mj, nj), xj ~ B(mj, pj) and yj ~
B(m̄j, qj) are independent, so that the conditional probability mass function of zj = xj
+ yj is expressed as
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for z = 0, 1, ..., nj and j = 1, ..., J, where B(m, p) denotes the binomial distribution
with number of trials m and success probability p. Under H0, this is simplified to

Note that  for p ∈ (0, 1).

• Conditional distribution of mj given nj: At the moment, we assume that, given a
total sample size nj of stratum j, the sample size of group 1 mj is a binomial random
variable with probability mass function

for 0 ≤ mj ≤ nj and j = 1, ..., J.

• Conditional distribution of (n1, ..., nJ) given N is multinomial with probability mass
function

for 0 ≤ n1 ≤ N, ..., 0 ≤ nJ ≤ N and .

We first derive the power function for a given sample size N using these distribution
functions. Given (z, m, n) and type I error rate α*, the critical value cα* = cα*(z, m, n) is the
smallest integer c satisfying

Note that s ≥ cα*(z, m, n) if and only if pv(s|z, m, n) ≤ α*. We call α(z, m, n) = P(S ≥ cα*|z,
m, n, H0) the conditional type I error rate given (z, m, n). Similarly, the conditional power 1
– β(z, m, n) given (z, m, n) is obtained by
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For a chosen N, the marginal type I error rate and power are given as

(1)

and

(2)

respectively, where  and
Ew(·) denotes the expected value with respect to a random vector w.

Since α(z, m, n) ≤ α* for all (z, m, n), we have αN ≤ α*. Given power 1 – β*, the required
sample size is chosen by the smallest integer N satisfying 1 – βN ≥ 1 – β*. In other words,
while the statistical testing controls the conditional type I error α(z, m, n), the sample size is
determined to guarantee a specified level of marginal power. In summary, a sample size is
calculated as follows.

Sample Size Calculation

A. Specify input parameters: J, (α*, β*), (q1, ..., qJ), (θ1, ..., θJ), (a1, ..., aJ), (b1, ..., bJ).

B. Starting from the sample size for Mantel-Haenszel test NMH, do following by
increasing N by 1,

B1
For j = 1, ..., J, zj ∈ [0, nj], mj ∈ [0, nj], nj ∈ [0, N], and ,

1. Find cα* = cα* (z, m, n).

2. Calculate 1 – β(z, m, n) = P(S ≥cα*|z, m, n, H1)

B2 Calculate 1 – βN = E{1 – β(z, m, n)|H1}.

C. Stop (B) if 1 – βN ≥ 1 – β*. This N is the required sample size.

3.2 When Stratum Allocation is Fixed
In a case-control study or a clinical trial, one may want to assign a fixed proportion of
subjects to stratum j, say 100aj%, regardless of its prevalence. In this case, in calculating αN
and 1–βN, nj are fixed at Naj and the step to calculate the expectations with respect to n are

omitted. That is, given N, we set , and
calculate (1) and (2) by
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and

where [a] is the round-off of a.

3.3 When Both Group and Stratum Allocations are Fixed
In a more simplified study design, we may want to further prespecify the allocation
proportion of group 1 within each stratum. In this case, given N, nj and mj are fixed at [Naj]
and [Najbj], respectively, and the calculation of (1) and (2) is further simplified to

and

4 Numerical Studies
We want to compare the small sample performance of stratified Fisher's test and Mantel-
Haenszel test using simulations. We generate B = 10,000 simulation samples of size N = 25,
50 or 75 with J = 2 strata under a1 = 0.25, 0.5 or 0.75; (b1, b2) = (1/4, 3/4), (1/2, 1/2) or (3/4,
1/4); q1 = 0.1, q2 = 0.3 or 0.7; (θ1, θ2) = (1, 1), (5, 10), (7.5, 7.5) or (10, 5). Stratified
Fisher's test, the standard (unstratified) Fisher's test and Mantel-Haenszel test are applied to
each simulation sample, and empirical power for each test is calculated as the proportion of
simulation samples rejecting H0 with one-sided α* = 0.05. The exact type I error rate and
power for stratified Fisher's test can be calculated by using the methods in Section 3, but
through simulations we want to compare the performance of the these testing methods
applied to the same data sets. We consider large odds ratios to investigate the performance
of Fisher's tests and Mantel-Haenszel test with small sample sizes.

Table 3 summarizes the simulation results. Under H0 : θ1 = θ2 = 1, stratified Fisher's test is
conservative overall. With 10,000 simulations and α* = 0.05, the 95% confidence limits for
the empirical type I error rate are 0.05 ± 0.004. Due to the discreteness of the exact tests and
the conservative control of conditional type I error at all possible outcomes, stratified
Fisher's test is always conservative as expected, especially with a small sample size (N =
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25). Unstratified test has a similar type I error rate to stratified Fisher's test when allocation
proportions are identical between two strata (i.e. b1 = b2 = 1/2). However, if more patients
are allocated in the stratum with a higher response probabilities (i.e. b1 = 1/4 and b2 = 3/4),
then unstratified Fisher's test becomes becomes anticonservative. On the other hand, if more
patients are allocated to the stratum with a smaller response probabilities (i.e., b1 = 3/4 and
b2 = 1/4), then unstratified Fisher's test becomes very conservative. In this sense, a testing
ignoring the strata can be biased unless the allocation proportions are identical across strata.
With N = 25 or 50, Mantel-Haenszel test is anti-conservative with q2 = 0.7 (i.e. when two
strata have very different response rates) or with a1 = 0.75 (i.e. when a small number of
subjects are allocated to the stratum with large response probabilities). The anti-
conservativeness diminishes as N increases, but is still of some issue with a1 = 0.75 and N =
75.

When allocation proportions are equal across the strata, ignoring the strata results in a slight
loss of statistical power. Stratified Fisher's test is less powerful than Mantel-Haenszel test,
but the difference in power decreases in N. For all three testing methods, the power increases
when more subjects are allocated to the stratum with the larger odds ratio, e.g. θ1 < θ2 and a1
< a2.

Table 4 reports sample sizes for Mantel-Haenszel test and stratified Fisher's test. Also
reported are sample sizes for stratified Fisher's test by fixing (m, n) or only n at their
expected values. The design parameters are set at one-sided α* = 0.05; 1 – β* = 0.9; J = 2
strata; a1 = 0.25, 0.5 or 0.75; (b1, b2) = (0.25, 0.25), (0.25,0.75), (0.5,0.5), (0.75,0.25) or
(0.75,0.75); (q1, q2) = (0.1, 0.3); (θ1, θ2) = (5, 10), (7.5, 7.5) or (10, 5). For stratified Fisher's
test, fixing (m, n) at their expected values reduces N, while fixing only n requires almost the
same N compared to the case with random (m, n). The sample sizes are minimized with a
balanced allocation, i.e. b1 = b2 = 1/2. We also observe that the cases of (b1, b2), (1–b1, b2),
(b1, 1–b2) and (1–b1, 1–b2) require similar sample sizes. That is, when the allocation
between two groups is unbalanced, the required sample size does not much depend on
whether the larger group is control or experimental across the different strata.

Under each setting, the sample size for stratified Fisher's test is about 30% larger than that of
Mantel-Haenszel test. This di erence results from the conservative type I error and power
control of stratified Fisher's test. For example, from Table 3, with (a1, b1, b2, q1, q2) = (0.5,
0.25, 0.75, 0.1, 0.3), stratified Fisher's test controls the type I error at 0.0230 with N = 75
and has a power of 0.9042 at (θ1, θ2) = (5, 10). Under this design setting, stratified Fisher's
test requires a sample size of size of N = 75 with (α*, 1 – β*) = (0.05, 0.9) from Table 4. For
Mantel-Haenszel test, the required sample size with (α*, 1 – β*) = (0.0230, 0.9042) under
the same design setting is N = 73 which is close to N = 75 required for stratified Fisher's test.
In other words, the conservativeness of the Fisher test results from the discreteness of the
exact testing distributions. Mantel-Haenszel test approximates this exact distribution when
the sample size is large. Crans and Schuster (2008) propose to conduct Fisher's test with a
larger type I error α* = α + ∊ (∊ > 0) so that the maximal marginal type I error rate within
the whole range [0, 1] of the response probability under H0 becomes close to the intended α
level.

Suppose that we want to design a study similar to that of Li et al. (1979). Since this is a
balanced randomized study, we fix (n1, n2, n3) at (N/3, N/3, N/3) and (m1, m2, m3) at (N/6,
N/6, N/6). We further assume that (q1, q2, q3) = (0.9, 0.75, 0.6), and (θ1, θ2, θ3) = (1, 30, 30).

(The estimates from Table 2 are  and .) In order to control the one-sided
conditional type I error at α* = 0.1 and the marginal power at 1 – β* = 0.9, we need N = 83.
Under the design, this sample size provides marginal αN = 0.0625 and power 1 – βN =
0.9087.
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5 Discussions
Numerous testing methods have been proposed to test on two binomial proportions adjusting
for stratum effect based on different assumptions. For example, Cochran (1954) test assumes
common odds ratios across strata and Gart (1985) assumes common relative risks. Mantel-
Haenszel test makes no assumption on the parameters. These methods are based on large
sample theories, so that their testing results may be distorted with a small sample size or
sparse data.

In this paper, we propose to use an exact test extending Fisher's test to the analysis of many
2 × 2 tables together with its sample size calculation method. This test does not make any
assumptions of large sample size or equal parameter values across strata, so that it does not
require to check any assumptions before conducting a testing. The power and sample sizes
are compared between the exact test and Mantel-Haenszel test using simulations and the
proposed sample size formulas. While the type I error for Mantel-Haenszel test can be anti-
conservative with a small sample size or sparse data, the exact test always controls the type I
error below a specified level. When the effect size is so large that the required sample size is
small (say, about N=70 or smaller), the exact test needs about 20% to 30% larger sample
size than Mantel-Haenszel test. However, due to the small sample sizes, the increase in
sample size in this case is not very large in absolute number (say, 10 to 20), so that, for
robustness of the testing results, we propose to use the exact test by slightly increasing the
sample size rather than obtaining a biased result by an asymptotic test.

If J ≥ 3, the sample size calculation for stratified Fisher's test requires a long computing
time. We found, in calculating the marginal type I error rate and power, that conditioning the
sizes of strata (n1, ..., nJ) on their expected numbers provides very accurate sample sizes for
the stratified Fisher's test even when (n1, ..., nJ) are random, while drastically saving the
computing time.
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Table 1

Frequency data of 2 × 2 table for stratum j(= 1, ..., J)

Group

Response Case Control Total

Yes xj yj zj

No mj – xj m̄j – yj nj – zj

Total mj m̄j nj
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Table 2

Response to thymosin in bronchogenic carcinoma patients (T=thymosin, P=placebo)

Stratum 1 Stratum 2 Stratum 3

T P T P T P

Success 10 12 22 9 11 20 8 7 15

Failure 1 1 2 0 1 1 0 3 3

11 13 24 9 12 21 8 10 18
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Table 3

Empirical power of stratified Fisher's test/unstratified Fisher's test/Mantel-Haenszel test with one-sided α* =
0.05, J = 2 strata, and q1 = 0.1

a 1 (b1, b2) q 2 (θ1, θ2) = (1, 1) (5,10) (7.5,7.5) (10,5)

(a) N = 25

.25 (1/4, 3/4) .3 .0094/.0354/.0370 .4812/.7864/.6809 .4305/.7230/.6332 .3470/.5989/.5387

.7 .0149/.1785/.0572 .2464/.7160/.5062 .2556/.7143/.5011 .2395/.6782/.4642

(1/2, 1/2) .3 .0179/.0176/.0522 .6164/.5878/.7595 .5764/.5762/.7179 .4668/.4855/.6261

.7 .0161/.0189/.0493 .2608/.2398/.5003 .2909/.2693/.5202 .2803/.2671/.4854

(3/4, 1/4) .3 .0171/.0055/.0599 .4447/.2817/.6448 .4061/.3229/.6053 .3354/.3220/.5223

.7 .0059/.0007/.0314 .0847/.0211/.2523 .1073/.0354/.2934 .1192/.0435/.3024

.5 (1/4, 3/4) .3 .0101/.0560/.0476 .3750/.7984/.5898 .4091/.7852/.6219 .3862/.7073/.5919

.7 .0157/.2987/.0668 .2285/.8140/.4737 .2847/.8356/.5371 .3156/.8318/.5563

(1/2, 1/2) .3 .0118/.0120/.0455 .4852/.4608/.6653 .5366/.5253/.6958 .5055/.5131/.6689

.7 .0164/.0210/.0507 .2564/.2177/.4796 .3441/.2914/.5603 .3980/.3447/.6036

(3/4, 1/4) .3 .0130/.0032/.0542 .3260/.1740/.5389 .3627/.2698/.5717 .3467/.3266/.5583

.7 .0052/.0001/.0255 .0951/.0146/.2684 .1547/.0308/.3673 .2019/.0511/.4286

.75 (1/4, 3/4) .3 .0096/.0380/.0564 .2830/.6508/.5041 .3815/.6876/.5959 .4382/.6830/.6485

.7 .0125/.2124/.0669 .2238/.6819/.4463 .3325/.7500/.5620 .4054/.7967/.6364

(1/2, 1/2) .3 .0104/.0106/.0425 .3572/.3681/.5478 .4739/.4814/.6543 .5553/.5570/.7143

.7 .0097/.0166/.0478 .2514/.2274/.4532 .3981/.3510/.5950 .5014/.4460/.6863

(3/4, 1/4) .3 .0033/.0009/.0321 .1904/.1315/.3921 .2896/.2468/.5013 .3479/.3443/.5649

.7 .0019/.0004/.0162 .0999/.0258/.2703 .1980/.0592/.4100 .2937/.1077/.5202

(b) N = 50

.25 (1/4, 3/4) .3 .0188/.0808/.0419 .8271/.9837/.9073 .7918/.9713/.8816 .6851/.9156/.7950

.7 .0228/.3873/.0525 .5607/.9696/.7422 .5702/.9702/.7431 .5318/.9555/.7115

(1/2, 1/2) .3 .0287/.0272/.0540 .9343/.9174/.9657 .9064/.8958/.9463 .8343/.8353/.8983

.7 .0219/.0278/.0460 .6610/.5045/.7930 .6856/.5609/.8058 .6426/.5581/.7657

(3/4, 1/4) .3 .0248/.0051/.0546 .8273/.5754/.9048 .7890/.6340/.8734 .6789/.6166/.7898

.7 .0170/.0002/.0473 .4361/.0335/.6240 .4653/.0614/.6427 .4568/.0870/.6180

.5 (1/4, 3/4) .3 .0192/.1345/.0522 .7341/.9864/.8457 .7670/.9848/.8652 .7416/.9670/.8373

.7 .0229/.6002/.0586 .5288/.9872/.7099 .6113/.9911/.7734 .6658/.9930/.8047

(1/2, 1/2) .3 .0208/.0212/.0498 .8547/.8247/.9174 .8818/.8670/.9344 .8610/.8560/.9173

.7 .0243/.0289/.0527 .6250/.4701/.7606 .7359/.5956/.8400 .7785/.6685/.8656

(3/4, 1/4) .3 .0199/.0014/.0507 .7192/.3740/.8281 .7542/.5538/.8476 .7333/.6580/.8377

.7 .0142/.0000/.0413 .4254/.0163/.5971 .5495/.0442/.7021 .6067/.0854/.7388

.75 (1/4, 3/4) .3 .0181/.1024/.0550 .6018/.9394/.7492 .7407/.9580/.8486 .7877/.9579/.8821

.7 .0197/.4640/.0624 .4961/.9534/.6698 .6632/.9773/.8036 .7632/.9863/.8708

(1/2, 1/2) .3 .0208/.0211/.0525 .7304/.7025/.8277 .8521/.8385/.9153 .8978/.8935/.9425

.7 .0206/.0250/.0521 .6033/.4931/.7383 .7891/.6826/.8764 .8757/.7958/.9325

(3/4, 1/4) .3 .0142/.0016/.0458 .5771/.3242/.7119 .7015/.5407/.8109 .7597/.6874/.8567

.7 .0083/.0000/.0321 .4141/.0343/.5740 .6104/.1125/.7415 .7184/.2060/.8282
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a 1 (b1, b2) q 2 (θ1, θ2) = (1, 1) (5,10) (7.5,7.5) (10,5)

(c) N = 75

.25 (1/4, 3/4) .3 .0250/.1274/.0474 .9552/.9995/.9779 .9335/.9980/.9639 .8760/.9887/.9250

.7 .0279/.5583/.0554 .7572/.9975/.8654 .7694/.9969/.8714 .7293/.9949/.8366

(1/2, 1/2) .3 .0262/.0279/.0472 .9917/.9872/.9961 .9844/.9806/.9919 .9561/.9538/.9726

.7 .0291/.0316/.0519 .8660/.7010/.9223 .8730/.7500/.9236 .8442/.7538/.8998

(3/4, 1/4) .3 .0249/.0028/.0559 .9545/.7684/.9761 .9339/.8248/.9646 .8701/.8162/.9197

.7 .0235/.0001/.0467 .7096/.0394/.8142 .7305/.0862/.8230 .7008/.1235/.7999

.5 (1/4, 3/4) .3 .0230/.1974/.0472 .9042/.9993/.9472 .9214/.9995/.9586 .9059/.9976/.9490

.7 .0266/.7866/.0547 .7246/.9999/.8375 .8066/.9996/.8946 .8395/.9999/.9145

(1/2, 1/2) .3 .0245/.0258/.0498 .9660/.9506/.9818 .9768/.9694/.9873 .9686/.9661/.9812

.7 .0280/.0307/.0544 .8388/.6587/.9044 .9096/.7792/.9496 .9294/.8395/.9611

(3/4, 1/4) .3 .0234/.0013/.0487 .8984/.5448/.9407 .9153/.7408/.9519 .9025/.8300/.9408

.7 .0212/.0000/.0477 .6646/.0130/.7738 .7788/.0473/.8618 .8244/.1121/.8891

.75 (1/4, 3/4) .3 .0238/.1521/.0543 .8057/.9919/.8838 .9024/.9964/.9468 .9277/.9967/.9627

.7 .0238/.6531/.0567 .6984/.9953/.8135 .8531/.9983/.9209 .9172/.9990/.9576

(1/2, 1/2) .3 .0236/.0237/.0491 .9092/.8914/.9491 .9672/.9591/.9837 .9830/.9786/.9907

.7 .0249/.0317/.0527 .8070/.6657/.8778 .9352/.8521/.9631 .9751/.9312/.9873

(3/4, 1/4) .3 .0193/.0016/.0469 .7965/.4821/.8670 .8917/.7363/.9323 .9260/.8699/.9581

. .7 .0171/.0000/.0413 .6444/.0400/.7582 .8299/.1583/.8996 .9038/.3032/.9475
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Table 4

Sample size for Mantel-Haenszel test/stratified Fisher's test with (m, n) fixed/stratified Fisher's test with n
fixed/stratified Fisher's test under J =2 strata, (q1, q2) = (0.1, 0.3), one-sided α* = 0.05, and 1 – β* = 0.9

(θ1, θ2)

a 1 (b1, b2) (5,10) (7.5,7.5) (10,5)

0.25 (0.25,0.25) 46/59/61/61 51/64/66/66 65/80/82/82

(0.25,0.75) 45/53/60/61 50/62/66/66 65/79/82/82

(0.5,0.5) 36/43/45/45 39/48/49/49 50/59/62/62

(0.75,0.25) 46/59/61/61 51/64/66/67 65/80/83/83

(0.75,0.75) 46/53/60/61 51/60/66/66 65/76/83/83

0.5 (0.25,0.25) 58/72/75/76 55/72/72/71 58/72/75/75

(0.25,0.75) 58/65/75/75 54/65/70/71 58/72/75/75

(0.5,0.5) 45/53/56/54 43/50/53/53 45/54/56/56

(0.75,0.25) 59/72/75/76 56/66/71/71 59/72/76/78

(0.75,0.75) 59/69/75/76 55/63/71/71 59/68/76/76

0.75 (0.25,0.25) 78/96/97/98 59/75/76/76 52/64/67/67

(0.25,0.75) 77/89/97/97 59/69/76/76 52/64/67/67

(0.5,0.5) 61/70/73/73 47/55/57/57 41/49/51/51

(0.75,0.25) 80/96/98/99 61/75/77/77 53/65/69/69

(0.75,0.75) 80/85/98/99 61/69/77/77 53/62/69/69
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