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Cytochromes ¢ (Cyt c) are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure
and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the
heme group is covalently attached to the apoprotein (apoCyt) in the cell is still largely unknown. This posttranslational process,
known as Cyt ¢ biogenesis or Cyt ¢ maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl
groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have
evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of
the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells
will be presented, dissecting the Cyt ¢ maturation process into three functional steps: (i) heme translocation and delivery, (ii) apoCyt
thioreductive pathway, and (iii) apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about
the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus

found in gram-negative bacteria.

1. Introduction

Cytochromes ¢ (Cyts ¢) are ubiquitous heme-containing
proteins involved in a variety of critical processes of cellular
metabolism; since their discovery by Keilin in the early
1920s, they have been the focus of multidisciplinary scientific
interests and nowadays are considered textbook proteins
in biochemistry courses. However, many aspects of c-type
cytochromes are still to be unveiled, from the control and
fine-tuning of electron transfer reactions and heme reactivity
[1-3] to the description of Cyt c folding pathways and stability
[4-6]. The presence of the covalently bound heme prosthetic
group dictates the functions of Cyts ¢, which are associ-
ated mainly with electron transfer processes in aerobic and
anaerobic respiration and in photosynthesis [7, 8]; however,
it is now clear that Cyts ¢ play important roles also in other
cellular processes such as H,O, scavenging, cytochrome
¢ oxidase assembly [9], lipid signaling [10], or apoptotic
processes in the eukaryotic cells [11, 12]. This review deals
with a complex and still largely unknown process, whereby

the heme is covalently and stereospecifically attached to the
apoprotein (apoCyt) in the cell; this posttranslational process
is known as Cyt ¢ biogenesis or Cyt ¢ maturation. Over
and above its scientific relevance, a full understanding of
this posttranslational process may pave the way for future
biotechnological applications, such as the design and the
production in vivo of novel heme-proteins and biosensors
endowed with innovative redox functions [13].

The heme b (Fe-protoporphyrin IX) is synthesized in
prokaryotes and eukaryotes along a conserved pathway
with highly related enzymes and biosynthetic intermediates
[14]; heme c is defined as a heme b, covalently linked to
the protein by thioether bonds (Figure 1). In bacteria, heme
biosynthesis occurs in the cytoplasm and the final step is the
insertion of iron into protoporphyrin IX by ferrochelatase; in
the eukaryotic cell, the heme biosynthetic pathway is splitted
between the cytosol and the mitochondrion: here, at the level
of the mitochondrial inner membrane, the ferrochelatase
enzyme catalyzes the heme iron insertion. Although the heme
biosynthetic pathway is well characterized, the molecular


http://dx.doi.org/10.1155/2013/505714

FIGURE 1: The heme-binding site typically observed in c-type
cytochromes, as exemplified by a close-up view of the structure of P
aeruginosa Cyt c551 (Pa-Cytc; PDB 351c). The heme is shown in red,
while the atoms of the residues from the heme-binding motif of Pa-
Cytc (C,,VAC,;H) and the distal Met61 are color-coded (C: green;
O: red; N: blue; S: yellow). The figure highlights the thioether bonds
between the Cysl2 (on the right) and the vinyl-2, and between Cysl15
(on the left) and the vinyl-4. The iron atom of the heme (in gray) is
axially coordinated by the distal methionine residue (Met61; shown
above the heme plane) and by the proximal histidine residue (His16;
shown below the heme plane).

mechanism(s) underlying the process of heme trafficking
across the membranes is still largely obscure (see [15, 16] for
reviews on heme synthesis and trafficking in eukaryotes). In
all known Cyts c, the heme is covalently linked to the apoCyt
with the same stereochemistry: two thioether bonds are
present between the vinyls at positions 2 and 4 of the tetrapyr-
role ring of heme b and the thiols of the N- and C-terminal
cysteines (Cysl and Cys2, resp.) of a conserved heme-binding
motif (C1XXC2H, where X denotes any residues). The iron
atom of the Fe-protoporphyrin IX is always axially coor-
dinated to the histidine of the heme-binding motif (on the
proximal side of the heme cavity), while a methionine residue
on the distal side generally represents the second axial ligand
(Figure 1). C-type cytochromes may contain more than one
heme c linked to the protein through different CIXXC2H
motifs. From a structural point of view, Cyt ¢ proteins define
a well-defined «-helical fold (see SCOP—http://scop.mrc-
Imb.cam.ac.uk/scop/ and CATH—http://www.cathdb.info/
protein structure databases), characterized by the presence
of three a-helices: the N- and C-terminal a-helices interact
each other in the native structure, while an additional «-helix
(historically known as the 60" helix) overlays part of the heme
cavity. Since the seminal experiment of Anfinsen on horse
heart Cyt ¢ [17], it is generally accepted that Cyt ¢ without
its covalently bound heme (apoCyt) is an unfolded protein,
devoid of appreciable secondary and tertiary structure and
that the polypeptide chain is able to fold into its typical Cyt
¢ structure only when the thioether bonds with the heme
are formed. As it will be discussed below, these observations
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raise interesting questions as to how an unfolded protein
such as apoCyt, is specifically recognized by the different
protein components of the maturation apparatus of the cell.
Recently, however, evidence has been presented that, at least
in some cases, the Cyt ¢ fold may be attained even in the
absence of the heme [18], challenging our current view of the
Cyt ¢ folding mechanism [4, 19].

C-type cytochromes are synthesized in the cytoplasm (n-
side of the membrane), but they exert their functions in
other subcellular compartments (p-side of the membrane),
that is, the periplasm of gram-negative bacteria, the bacterial
extracytoplasmic space of gram-positive bacteria, the inter-
membrane space—IMS, of mitochondria, or the chloroplast
thylakoid lumen. It is in these subcellular compartments that
the heme b is covalently attached to apoCyt by the appropriate
maturation apparatus. In prokaryotes, the necessary translo-
cation of apoCyt across the membrane is carried out by the
Sec machinery [26]; this apparatus, composed of the SecAB-
DYEFG proteins, is able to translocate unfolded proteins
carrying a specific targeting sequence [27]. In eukaryotes,
the newly synthesized apoCyt is probably translocated into
the mitochondrion via a different mechanism involving
components of the TOM complex on the outer side of the
membrane and the cytochrome ¢ heme lyase, which probably
acts also as an apoCyt receptor in the mitochondrial IMS
[28, 29]. However, the process is not completely clear, as we
still do not know whether the apoCyt is delivered to the
mitochondrial matrix and then exported to the IMS [30] or it
is translocated directly to the IMS via a different mechanism
[31]. It should be noticed that in plants, the translocation of
c-type cytochromes into the chloroplast lumen is probably
independent on the heme attachment reaction [32, 33].

Despite that in all c-type cytochromes, both prokaryotic
or eukaryotic, the heme is always covalently linked to the
conserved CXXCH heme-binding motif, different matura-
tion apparatuses composed of different proteins have been
identified ([34, 35]; see Figures 2, 3, and 4 and Table 1). Struc-
tural and functional properties of the protein components
of Systems I-III are the focus of the present review; other
maturation apparatuses, involved in the unusual attachment
of heme b to the protein moiety via a single thioether
bond (Systems IV-VI), have been described and reviewed
elsewhere [36, 37].

With the exception of system III which is present in
eukaryotic cells, the distribution of the other Systems among
Bacteria, Archaea, and plant cells is complicated by the
observation that in many cases, the maturation machinery is
not conserved [38], rendering the analysis of their evolution-
ary origins and relationships difficult [39-41]. In «- and -
proteobacteria, in some f3- and §-proteobacteria, in Archaea
and in the mitochondria of plants and algae, Cyt ¢ maturation
is carried out by a set of eight or nine proteins belonging
to System I [42] (Figure 2); in gram-positive bacteria, in
cyanobacteria, in the chloroplasts of plants and algae, in e-,
B- and some §-proteobacteria the Cyt ¢ maturation process
is carried out by three or four proteins belonging to System II
[43, 44] (Figure 3), while System III occurs in mitochondria
of fungi, metazoans, and some protozoa [16, 45] (Figure 4).
The observation that in plants, three systems are present


http://scop.mrc-lmb.cam.ac.uk/scop/
http://scop.mrc-lmb.cam.ac.uk/scop/
http://www.cathdb.info/

Scientifica

Periplasm

Cytoplasm

FIGURE 2: Schematic representation of the protein components of
System 1. Proteins involved in the heme translocation and delivery
pathway are shown in light brown; proteins involved in the apoCyt
thioreduction pathway are shown in green; proteins involved in
apoCyt chaperoning and heme attachment processes are shown
in light purple. Cyt ¢ (the 3D structure is that of the Cyt c551
from P. aeruginosa), Protein Data Bank accession number 2EXV
[20] and apoCyt (represented as a cartoon) are shown in blue.
The translocation process of heme (shown in red) is unknown.
The 3D structures of the soluble periplasmic domains of Ec-
CcmE, Pa-CcmG and Pa-CecmH are shown (Protein Data Bank
accession numbers are 1LIZ [21], 3KH7 [22], and 2HL7 [23], resp.).
Organisms employing System I: «- and y-proteobacteria, some
B-proteobacteria (e.g., Nitrosomonas) and §-proteobacteria (e.g.,
Desulfovibrio), and Deinococci and Archaea. Additionally, System I
is observed in plant mitochondria and in the mitochondria of some
protozoa (e.g., Tetrahymena).

(System I in mitochondria, System III in the p-side of the
thylakoid membrane, and System IV in the n-side of the
thylakoid membrane [16, 38]) makes the classification and the
distribution of the different maturation systems even more
difficult. With the exception of System III, which is apparently
composed of a single protein able to carry out the different
tasks of the Cytc maturation process (see below), the various
proteins of Systems I and II carry out different functions,
including the translocation and delivery of heme b from the
cytoplasm where it is synthesized to the relevant subcellular
compartment, the chaperoning of apoCyt and the reduction
of its disulfide, the formation of the covalent bonds between
the heme b and the CXXCH heme-binding motif of the
apoprotein (Table 1). The complexity of System I, compared
to the protein composition of other Cyt ¢ maturation systems,
has long been discussed; in particular, it has been proposed
that a possible explanation is to be found in the ability evolved
by organisms employing System I to utilize lower levels of
endogenous heme than those necessary for organisms which
evolved Systems II or IIT [46].

2. System I

The proteins belonging to System I (named CcmABCDE-
FGH(I), from Cytochrome ¢ maturation), are membrane
proteins exposing their soluble domains (when present) into
the periplasm (Figure 2). All of these proteins are encoded
by a single operon in «-, -, and y-proteobacteria [42,
47]. The availability of the entire Ccm operon in a single

Cytoplasm

Heme

FIGURE 3: Schematic representation of the protein components
of System II. Proteins involved in the heme translocation and
delivery and in the apoCyt chaperoning and heme attachment
processes are shown in light brown; proteins involved in the apoCyt
thioreduction pathway are shown in green. Cyt ¢ and apoCyt
(represented as a cartoon) are shown in blue. The 3D structure of the
soluble periplasmic domain of Bs-ResA is shown in green (Protein
Data Bank accession number is 1ST9 [24]. System II is found
in plant chloroplasts, in gram-positive bacteria, cyanobacteria, &-
proteobacteria, most f3-proteobacteria (e.g., Bordetella, Burkholde-
ria), and some §-proteobacteria (e.g., Geobacter).
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FIGURE 4: Schematic representation of System III. A single pro-
tein (HCCS) associated to the mitochondrial inner membrane
is required for Cyt ¢ maturation. The translocation process of
heme (shown in red) is unknown. System III is found in the
mitochondria of fungi (e.g., S. cerevisiae), vertebrates (e.g., human),
and invertebrates (e.g., C. elegans, Drosophila).

plasmid (pEC86; [48]) greatly facilitated the heterologous
over-expression of many c-type cytochromes in E. coli [49].
Apparently, c-type cytochromes specificity of the Ccm appa-
ratus is rather low; indeed, in an attempt to characterize the
minimal sequence requirements of the apoCyt polypeptide
recognized by System I, it was shown that this complex
multiprotein apparatus is able to attach the heme even to
short, microperoxidase-like peptides carrying the CXXCH
motif [50].

As discussed below, different studies, mainly carried out
by immunoprecipitation experiments, suggest that the Ccm
proteins may be assembled in the bacterial membrane in a
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maturase multiprotein complex(es). However, the existence
and/or stoichiometry of these complexes remains to be
determined, either because of the experimental difficulties
in handling membrane protein complexes, or because it
is possible that these complexes are unstable and only
transiently populated. Independently from their functional
existence in the bacterial periplasm as independent units or as
components of a multisubunit complex, it is clear that each of
the Ccm proteins plays a different role, from the transport and
chaperoning of the heme cofactor, to the necessary reduction
of the disulfide bond between the sulfur atoms of the two
Cys residues of the conserved CXXCH motif of apoCyt,
and finally to the catalysis of covalent heme attachment. An
additional interesting aspect is that, over and above their
role in the biogenesis of Cytc, there is also evidence that
inactivation of some ccm genes induces phenotypes that
cannot be explained only in terms of absence of synthesis of
Cyt c; all of these pleiotropic effects are linked to impairment
of heme and/or iron trafficking in the periplasm [47]. In
particular, it has been recently shown that, in a- and -
proteobacteria (including the human opportunistic pathogen
P, aeruginosa), mutations in the ccmC, ccml and ccmF genes
induce phenotypes such as reduced pyoverdine produc-
tion, reduced bacterial motility or impaired growth in low-
iron conditions ([51] and refs. therein). These observations,
suggesting that Ccm proteins perform additional functions
critical for bacterial physiology, growth and virulence, pro-
vide a rationale to explain why bacteria, at variance with
the eukaryotic cell, have evolved a metabolically expensive
operon to accomplish an apparently simple task such as
heme ligation to apoCyt. Novel hypotheses addressing these
aspects and awaiting experimental investigation include (i)
the utilization of Ccm-associated heme for additional cellular
processes besides attachment to apoCiyt, (ii) trafficking a non-
heme compound through the Ccm system required for iron
acquisition such a siderophore, (iii) the Ccm inactivation-
dependent accumulation of heme b, a photoreactive molecule
whose degradation leads to reactive oxygen species, and (iv)
the destructive effect on [Fe-S] clusters of ferrisiderophores
reductases.

In the following, the structural (when known) and
functional properties of the different components of the
System I maturation apparatus will be discussed, dissecting
the Cytc maturation process into three main functional
steps: heme translocation and delivery, apoCyt thioreductive
pathway, and apoCyt chaperoning and heme ligation (a
similar modular description can also be found elsewhere
(see [34, 52])). However, it should be remembered that in
many cases the proteins involved in the three steps are not
uniquely assigned to a specific module, as they interact with
each other; moreover, it has been shown that, in some cases,
more than one system can be present [41]. This modular
organization of Cyt c biogenesis should therefore be intended
only as a way to simplify the description of an overall, highly
integrated process. For each of the three functional steps,
presentation of the structural and functional properties of the
different protein components is followed by a discussion of
the proposed molecular mechanism(s).

2.1. System I: Components of the Heme Translocation and
Delivery Pathway. CcmA and CcmB proteins show the typ-
ical sequence features of the ABC (ATP binding Cassette)
transporter family and therefore these components of System
I were initially considered as the proteins responsible for
the translocation of the newly synthesized heme from the
cytoplasm to the periplasmic space. ABC transporters are
ubiquitous, multidomain integral membrane proteins that
translocate a large variety of substrates across cellular mem-
branes using ATP hydrolysis as a source of energy; they are
generally composed of a transmembrane (TM) domain and a
conserved cytosolic nucleotide-binding domain [53].

CcmaA is a cytoplasmic soluble protein, representing the
nucleotide-binding domain of the hypothetical ABC trans-
porter; according to this hypothesis, its sequence contains
a nucleotide-binding domain and Walker A and B motifs
for ATP hydrolysis [46]. It has also been shown that CcmA
possesses ATPase activity in vitro and that the protein is
associated with the membrane fraction only when CcmB is
also present [54].

CcmB and CemC are both integral membrane proteins
predicted to contain six TM helices. CcmC contains a short
WWD domain in its second periplasmic domain and belongs
to the heme handling protein family (HHP) [55]. WWD
domains are short, tryptophan-rich, aminoacid stretches
with the conserved WGX¢WXWDXRLT sequence (where ¢
represents an aromatic amino acid residue and X represents
any residue) [40, 56]; it has been proposed that proteins
containing WWD domains are involved in heme-binding
and, as we will see below, a WWD domain is also present
in the CcmF protein, another crucial heme-binding protein
of System I. CemC also contains two absolutely conserved
histidine residues in its first (between TM helices 1 and 2)
and third (between TM helices 5 and 6) periplasmic domains.
An attractive hypothesis, still requiring experimental proof,
is that the hydrophobic residues within the tryptophan-rich
motif provide a platform for the binding of heme, whereas
the two conserved His residues (H60 and HI184 in E. coli
CcmC) act as axial heme ligands [57]; this hypothesis is
strengthened by the observation that CcmC indeed interacts
directly with heme [58, 59]. Immunoprecipitation experi-
ments have shown that in E. coli, CcmABC proteins form
a multiprotein complex with a CcmA,CcmB;CemC; stoi-
chiometry, confirming that these components form an ABC-
type transporter complex with unusual functional properties
associated to the release of holoCcmE from CemC [41, 46],
rather than to heme transport per se. CcmC is an interesting
protein, worth of future experimental efforts, as it is known
that in some pathogenic bacteria, CcmC mutations are asso-
ciated to specific phenotypes apparently not related to Cyt
¢ maturation, such as siderophore production in Paracoccus
and Pseudomonas [51] and iron utilization in Legionella [60].

Limited information is available about the structure and
function of CcmD, which appears to be a small membrane
protein (about 70 aminoacid residues) with no conserved
sequence features, whose topology is currently debated;
contrary to the original proposal [61], additional experiments
have shown that in E. coli and R. capsulatus, CcmD is
an integral membrane protein composed of a single TM



helix, a periplasmic-oriented N-terminus, and a cytoplasmic-
oriented C-terminus [62]. Immunoprecipitation experiments
indicate that CcmD interacts with the CcmA,CemB, CemCy
complex; even if it is not essential for heme transfer and
attachment from CcmC to CcmE, CemD is strictly required
for the release of holoCcmE from the ABC transporter [61,
62].

CcmeE is a heme-binding protein, discovered as an essen-
tial System I component as early as the late 1990’s [63].
CcmE is a monotopic membrane protein, anchored to the
membrane via its N-terminal TM segment and exposing its
active site to the periplasm; it is the only Ccm component
of the heme trafficking and delivery module of System I for
which a three-dimensional structure is available ([21] PDB:
ISR3; [64] PDB: 1LMO0). The 3D structure of the apo-state
(without bound heme) consists of a six-stranded antiparallel
B-sheet, reminiscent of the classical OB-fold [65] with N-
and C-terminal extensions. CcmE can be considered a “heme
chaperone,” as it protects the cell from a potentially dangerous
compound by sequestering free heme in the periplasm [66];
it is thought to act as an intermediate in the heme delivery
pathway of Cytc maturation. The structure of apoCcmE
showed no recognizable heme-binding cavities and, in the
absence of a 3D structure of CcmE with bound heme (holoC-
cmE), the heme-binding region could only be predicted by
in silico modeling. It is generally believed that the heme
in holoCcmE is solvent exposed, but recent mutagenesis
experiments challenged this view [67]. The unusual covalent
bond between the nitrogen atom of a histidine residue present
in the conserved VLAKHDE motif located in a solvent
exposed environment (H130 in E. coli CcmE) and a 3-carbon
of one of the heme vinyl groups has been described in great
detail by NMR spectroscopy [68]. Recently, it was shown that
CcmE proteins from the proteobacteria D. desulfuricans and
D. vulgaris contain the unusual CXXXY heme-binding motif,
where the Cys residue replaces the canonical His binding
residue. NMR solution structure of D. vulgaris CcmE (PDB:
2KCT) revealed that the proteins adopt the same OB-fold
characteristic of the CcmE superfamily. Contrary to what
reported for the D. desulfuricans CcmE [69], the homologous
protein from D. vulgaris binds ferric heme noncovalently
through the conserved C127 residue [70]. An additional
conserved residue in CcmE proteins is Tyrl34, which was
shown to provide a coordination bond to the heme iron
of holoCcmE [71, 72] once it is released from CcmABCD
complex [36], as discussed below.

2.2. System I. Heme Translocation and Delivery Pathway
Mechanisms. We still do not know how the b heme is
translocated from the cytoplasm (where it is synthesized)
to the periplasm, where Cyt ¢ maturation occurs. Differ-
ent mechanisms such as translocation through a protein
channel or free diffusion across the membrane have been
proposed [73]. The CcmAB proteins show structural features
typical of the ABC transporters and for these reasons, they
were originally hypothesized to be involved in the heme b
translocation process [57, 63, 74, 75]. However, it is now
clear that an alternative process must exist, since it has
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been shown that periplasmic b-type cytochromes can be
produced in the absence of Ccm proteins [76] and that
inactivation of the ATPase activity of CcmA does not abolish
heme accumulation in the periplasm [46, 54]. We have now
evidence that CcmC has the ability to bind heme at its WWD
domain present in the second periplasmic domain, but it
is still not clear if this membrane protein acts as a protein
channel for heme translocation, or simply collects it in the
periplasm [77].

Another important aspect concerns the oxidation state of
the heme iron during translocation and delivery processes;
indeed, this property of the heme iron may determine the
reaction mechanism by which the unusual CcmE HI30
nitrogen is covalently linked to the vinyl S-carbon of the
heme (see [36] for a detailed discussion of this topic). Based
on mutagenesis studies on CcmC [59], a model has been
presented whereby oxidized heme is bound to CcmC only
in the presence of CcmE, forming a ternary complex. Both
CcmC and CemE provide critical residues for heme-binding:
the two conserved His residues (H60 and H180, coordinating
the heme iron) and the WWD domain of CcmC and His130 of
CcmeE, forming the unusual covalent bond with heme vinyl-
2 [59]. The ATPase activity of CcmA is then required to
release holoCcmE from the CcmABCD complex, a process
that depends also on the presence of CcmD [46, 54]. It should
be noticed that purified holoCcmeE alone or in the CcmCDE
complex [36, 59] contains the heme iron in the oxidized state,
an observation that is apparently in contrast with the fact that
the heme must be in its reduced state before attachment to
apoCyt can occur. Although the oxidation state of the heme
iron is currently debated [36, 78], it is possible that CcmF,
which was recently shown to contain a heme b cofactor, may
act as specific heme oxidoreductase (see Section 2.5).

2.3. System I. ApoCyt Thioreduction Pathway Components.
The periplasm can be considered a relatively oxidizing envi-
ronment, due to the presence of an efficient oxidative system
composed of the DsbAB proteins [79, 80]. DsbA is a highly
oxidizing protein (E, = 120mV) that is responsible for
the introduction of disulfide bonds into extracytoplasmic
proteins [81]. On the basis of the results obtained on E. coli
dsbA deletion mutants that are unable to synthesize c-type
cytochromes [82, 83], it was generally accepted that formation
of the intramolecular disulfide bond in apoCyt was a nec-
essary step in the Cyt ¢ biogenesis. However, only reduced
apoCyt is clearly competent for heme ligation. It is possible
that this seemingly paradoxical thioreduction process has
evolved in order to protect the apoCyt from proteolytic
degradation, aggregation, and/or formation of intermolec-
ular disulfide bonds with thiols from other molecules (see
also Section 3.1 for a discussion about this aspect in System
II). Recently, however, an analysis of c-type cytochromes
production in several E. coli dsb genes deletion strains led
to the hypothesis that DsbA is not necessary for Cyt c
maturation and that heme ligation to apoCyt and apoCyt
oxidation pathways is alternative, competing processes [84].

In gram-negative bacteria, a thioreduction pathway has
evolved to specifically reduce the oxidized apoCyt substrate,
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which includes the Ccm proteins CcmG and CcmH. The
necessary reducing power is transferred from the cytoplasmic
thioredoxin (TRX) to CcmG via DsbD, a large membrane
protein organized in three structural domains: an N-terminal
periplasmic domain with a IgG-like fold (nDsbD), a C-
terminal periplasmic domain with a thioredoxin-like (TRX-
like) fold (cDsbD), and a central domain composed of
eight TM helices [85]. Each of these domains contains a
pair of Cys residues and transfer electrons via a cascade
of disulfide exchange reactions, making DsbD a “redox-
hub” in the periplasm, performing disulfide bond exchange
reactions with different oxidized proteins [79]. In particular,
a combination of X-ray crystallography experiments and
kinetic analyses showed that electrons are transferred from
the cytoplasmic TRX to the membrane domain of DsbD,
followed by reduction of cDsbD and finally of nDsbD which
is the direct electron donor to CcmG [85].

CcmG is a membrane-anchored protein, linked to the
membrane via an N-terminal TM helix and exposing its
soluble TRX-like domain in the periplasm. The 3D structure
of the TRX-like domain of CcmG from different bacteria
has been solved by X-ray crystallography (E. coli: PDB 1Z5Y
[85]); PDB 2B1K [86]; B. japonicum: PDB 1KNG [87]; P
aeruginosa: PDB 3KH7, 3KH9 [22]) and is generally well
conserved, as proved by the low RMSD (0.8 A between Pa-
CcmG and Ec-CemG; 1.35A between Pa-CemG and Bj-
Ccm@G). Although all these proteins adopt a TRX-like fold
and contain the redox-active motif CXXC in the first a-helix,
they are inactive in the classic insulin reduction assay [75,
88]; CcmG proteins are therefore considered specific thiol-
oxidoreductase, able to recognize and selectively interact
only with their upstream and downstream binding partners
in the thioreduction process leading to reduced apoCytc.
Looking at the 3D structure of the periplasmic domain of
the prototypical Pa-CcmaG, it is possible to identify the Saf3
and B« structural motifs of the TRX fold linked by a short
a-helix and forming a four-stranded S-sheet surrounded by
three helices; the protein contains an additional N-terminal
extension (residues 26-62) and a central insert (residues 102—
123). The redox-active motif of Pa-CcmG (CPSC) is located
in the first a-helix of the TRX fold, as usually observed in all
TRX-like proteins. As for any molecular machinery, where
each component must recognize and interact with more than
one target (i.e., the substrate and the other components of
the apparatus), an open question concerns the mechanism
whereby CcmG is able to recognize its different partners.
The availability of the crystal structures of Pa-CcmG both
in the oxidized (2.2 A resolution) and reduced state (1.8 A
resolution) [22] allowed highlighting the structural similarity
between the two redox states (Rmsd of the Ca atoms in
the two redox forms is 0.19A) and therefore to exclude
structural rearrangement as the mechanism used by Pa-
CcmG to discriminate between reduced (such as the nDsbD
domain) and oxidized partners (Pa-CcmH and/or apoCyt).

The standard redox potential of Pa-CemG (E;, = 0.213V
at pH 7.0; [22], as well as that of Ec-CcmG (E(') = 0212V
[86]), indicates that these proteins act as mild reductants in
the thioreductive pathway of Cytc biogenesis. However, the

FIGURE 5: Three-dimensional structure of Pa-CcmH shown in
ribbon representation. The figure shows the three-helix bundle
forming the characteristic fold of Pa-CcmH. The active site disulfide
bond between residues Cys25 and Cys28 in the long loop connecting
helices a-helixl and «-helix 2 is highlighted in yellow.

function of thiol-oxidoreductases obviously depends on the
pK, values of their activesite Cys residues. The pK, of CysX
(6.13 + 0.05) and CysY (10.5 + 0.07) are consistent with the
pK, values measured in different TRXs, where the active N-
terminal Cys residue has a pK, close to pH 7.0, whereas the
C-terminal Cys has a much higher pK, [89, 90]. Such a large
difference between the two pK, values in the TRX family is
functionally relevant, because it allows the N-terminal Cys
to perform the nucleophilic attack on the target disulfide,
while the C-terminal Cys is involved in the resolution of the
resulting mixed-disulfide [90].

CcmH is the other component of System I involved
in the reduction of apoCyt. Notably, CcmH proteins from
different bacterial subgroups may display structural vari-
ability; indeed, while in E. coli Ec-CcmH is a bipartite
protein characterized by two soluble domains exposed to the
periplasm and two TM segments, CcmH from P. aeruginosa
(Pa-CcmH) is a one-domain redox-active protein, anchored
to the membrane via a single TM helix and homologous to
the N-terminal redox-active domain of Ec-CcmH. Surpris-
ingly, the 3D structure of the soluble periplasmic domain
of Pa-CcmH revealed that it adopts a peculiar three-helix
bundle fold strikingly different from that of canonical thiol-
oxidoreductases (Figure 5; PDB: 2HL7; [23]). The N-terminal
domain of Ec-CcmH was also shown to have the same 3D
structure, although helix-swapping and dimerization have
been observed in this case (PDB: 2KWO0; [91, 92]). The
conserved redox-active motif (LRCPKC) is located in the
loop connecting helices 1 and 2; close to the activesite, the
crystal structure reveals the presence of a small pocket on the
surface of Pa-CcmH surrounded by conserved hydrophobic
and polar residues, which could represent the recognition site
for the heme-binding motif of apoCyt.

Concerning the functional properties of this unusual
thiol-oxidoreductase, it is interesting to note that its standard
redox potential (E(') = 0.215V) [23] is similar to that ob-
tained for Pa-CcmG. This observation stands against the
linear redox cascade hypothesis, whereby CcmG reduces
CcmH. While in the canonical redox-active CXXC motif
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FIGURE 6: : Alternative thioreduction pathways which may be operative in System I and hypothesized on the basis of structural and functional
characterization of the redox-active Ccm proteins from P. aeruginosa [22, 23, 25]. Scheme 1 is a linear redox cascade whereby CcmG is the
direct reductant of CcmH, which reduces oxidized apoCyt. Scheme 2 envisages a more complex scenario involving the formation of a mixed-
disulfide complex between CcmH and apoCyt (Step 1). This complex is the substrate for the attack by reduced CcmG (Step 2) that liberates
reduced apoCyt. The resulting disulfide bond between CcmH and CemG is then resolved by the free Cys thiol of CemG (probably Cys77 in

Pa-CcmG). Adapted from [25].

of the TRX family, the N-terminal Cys is always solvent
exposed, in CcmH proteins, the arrangement of the two Cys
residues is reversed: the N-terminal Cys residue is buried,
whereas the C-terminal Cys residue is solvent exposed. On
the basis of this observation, it was suggested that, different
from the canonical TRX redox mechanism, CcmH proteins
perform the nucleophilic attack on the apoCyt disulfide via
their C-terminal Cys residue [23]. This mechanism, which is
in agreement with the mechanism proposed earlier for Ec-
CcmH on the basis of mutational-complementation studies
[93, 94], is substantiated by the peculiar pK, values of the
active site Cys residues of Pa-CcmH which were found to
be similar for both cysteines (8.4 + 0.1 and 8.6 + 0.1; [23]).
Again, this is different from what is generally observed in the
case of TRX proteins, where the pK, value of the Cys residue
performing the initial nucleophilic attack is significantly
lower than the pK, value of the Cys residue responsible for the
resolution of the intermediate mixed-disulfide. It is tempting
to speculate that the unusual pK, values of the Pa-CcmH
active site thiols may ensure the necessary specificity of this
component of the Ccm apparatus toward the CXXCH motif
of the apoCyt substrate.

2.4. System I. ApoCyt Thioreduction Pathway Mechanism.
Although we know that CcemG and CemH are the redox-
active components of System I involved in the thioreductive
pathway of Cyt c biogenesis, not only an accepted mechanism
for the reduction of apoCyt disulfide bond is still lacking,
but also the absolute requirement of such a process is now
debated [38, 84]. Focusing our attention on the reduction
of the apoCyt internal disulfide, at least two mechanisms
can been hypothesized, which involve either a linear redox
cascade of disulfide exchange reactions or a nonlinear redox

process involving transient formation of a mixed-disulfide
complex, as depicted in Figure 6 and Schemes 1 and 2,
respectively.

Both the thiol-disulfide exchange mechanisms depicted
in Figure 6 suggest that CcmH is the direct reductant of
the apoCytc disulfide; however, even if immunoprecipitation
experiments failed to detect the formation of a mixed-
disulfide complex between apoCyt and CcmH proteins [95],
some in vitro evidence supporting the formation of such
a complex has been presented. In particular, it has been
shown that Rhodobacter capsulatus and Arabidopsis thaliana
CcmH homologues (Rc-CecmH and At-CcmH) are able to
reduce the CXXCH motif of an apoCyt-mimicking peptide
[75, 96]. In the latter case, yeast two-hybrid experiments
carried out on At-CcmH, indeed revealed an interaction
between the protein and a peptide mimicking the A. thaliana
Cyt c sequence. In the case of Pa-CcmH, FRET kinetic
experiments employing a Trp-containing fluorescent variant
of the protein and a dansylated nonapeptide encompassing
the heme-binding motif of P. aeruginosa cytochrome c551
(dans-KGCVACHALI) [23] allowed to directly observe the
formation of the mixed-disulfide complex and to measure the
off-rate constant of the bound peptide. The results of these in
vitro binding experiments allowed to calculate an equilibrium
dissociation constant which combines an adequate affinity
(low uM) with the need to release efficiently reduced apoCyt
to other component(s) of the System I maturase complex
[23]. More recently, the results obtained by FRET binding
experiments carried out with single Cys-containing mutants
of Pa-CcmH and Pa-CcmG [25] substantiated the hypothesis
depicted in Scheme 2 (Figure 6). Altogether, these structural
and functional results suggest that the thioreduction pathway
mechanism leading to reduced apoCyt is better described
by Scheme 2 and that reducing equivalents might not be
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transferred directly from CcmG to apoCyt as depicted in
Scheme 1. According to Scheme 2, reduced CcmH (a non-
TRX-like thiol-oxidoreductase) specifically recognizes and
reduces oxidized apoCyt via the formation of a mixed-
disulfide complex, which is subsequently resolved by CcmG.
The resulting disulfide bond between CcmH and CemG is
then resolved by the free Cys thiol of CcmG (probably Cys77
in Pa-CcmG).

However, further in vitro experiments with CcmH and
apoCyt single Cys-containing mutants are needed to unveil
the details of the thioreduction of oxidized apoCyt by CcmH.
In particular, it would be crucial to identify the Cys residue
of apoCyt that remains free in the apoCyt-CcmH mixed-
disulfide complex intermediate (see Scheme 2 and Section 2.6
below) and available to thioether bond formation with one
of the heme vinyl groups. Clearly, structure determination
of the trapped mixed-disulfide complexes between CcmH,
CcmG, and apoCyt (or apoCyt peptides) would provide
key information for our understanding of this specialized
thioreduction pathway mechanism.

2.5. System I: ApoCyt Chaperoning and Heme Attachment
Components. The reduced heme-binding motif of apoCyt is
now available to the heme ligation reaction. However, the
molecular mechanism whereby the Ccm machinery catalyzes
or promotes the formation of the heme-apoCyt covalent
bonds is still largely obscure, representing the most important
goal in the field. Past observations and recent experiments
suggest that CcmF and Ceml, possibly together with CemH,
are involved in these final steps [16, 34, 36].

CcmF is a large integral membrane protein of more than
600 residues, belonging to the heme handling protein family
(HHP; [55]) and predicted to contain 10-15 TM helices (note
that some discrepancy exists as to the number of TM helices
predicted by computer programs and those predicted on
the basis of phoA and lacZ fusion experiments; [40, 97]),
a conserved WWD domain, and a larger domain devoid
of any recognizable sequence features, both exposed to the
periplasm. Only recently, E. coli CcmF (Ec-CcmF) has been
overexpressed, solubilized from the membrane fraction, and
spectroscopically characterized in vitro [36, 41]. Surprisingly,
the biochemical characterization of recombinant Ec-CcmF
allowed to show that the purified protein contains heme b as
cofactor in a 1:1 stoichiometry; this observation led to the
hypothesis that, in addition to its heme lyase function, Ec-
CcmF may act as a heme oxidoreductase. In particular, it is
possible that the heme b of Ec-CcmF may act as a reductant
for the oxidized iron of the heme bound to CcmE [41];
indeed, the in vitro reduction of Ec-CcmF by quinones has
been experimentally observed, strengthening the hypothesis
about the quinol:heme oxidoreductase function of this elusive
protein. The structural model proposed for Ec-CcmF predicts
13 TM helices and, notably, the location of the four completely
conserved His residues: according to the model, two of them
(His173 and His303) are located in periplasmic exposed loops
next to the conserved WWD domain, which is believed
to provide a platform for the heme bound to holoCcmeE,
while His261 is located in one of the TM helices and it is

predicted to act as an axial ligand to the heme b of Ec-CcmF;
the other conserved His residue (H491) could provide the
second axial coordination bond to the heme, although this
has not been experimentally addressed. This model of Ec-
CcmF therefore envisages that this large membrane protein
is characterized by two heme-binding sites: one of them
is embedded in the membrane and coordinates a heme b
prosthetic group necessary to reduce the CcmE-bound heme
hosted in the second heme-binding site and constituted by its
WWD domain.

It is interesting to note that in plants mitochondria the
CcmF ortholog appears to be split into three different pro-
teins (At-CcmFNI, At-CcmFN2 and At-CcmFC), possibly
interacting each other [16]. Since each of these proteins is
similar to the corresponding domain in the bacterial CcmF
ortholog, this observation may provide useful information
in the design of engineered fragments of bacterial CcmF
proteins, amenable to structural analyses.

The other System I component, which is generally
believed to be involved in the final steps of Cyt ¢ maturation,
is Ccml. As stated above, the ccml gene is present only in
some Ccm operons, while in others, the corresponding ORF
is present within the ccmH gene (as in E. coli). The functional
role of Ccml in Cytc biogenesis is revealed by genetic
studies, showing that in R. capsulatus and B. japonicum,
inactivation of the ccml gene leads to inability to synthesize
functional c-type cytochromes [98, 99]. In R. capsulatus and
P aeruginosa, the Ccml protein (Rc-Ceml and Pa-Ceml,
resp.) can be described as being composed of two domains,
starting from the N-terminus: a first domain composed of
two TM helices connected by a short cytoplasmic region
and a large periplasmic domain. Structural variations may
be observed among Ccml members from different bacteria;
indeed, multiple sequence alignment indicates that the cyto-
plasmic region of Rc-Ccml contains a leucine zipper motif,
which is not present in the putative cytoplasmic region of Pa-
Ccml [100-102]. Surprisingly, no crystallographic structure
is available up to now for the soluble domain of any Ccml
protein, with the exception of the ortholog protein NrfG
from E. coli, (Ec-NrfG) [103]. This protein is necessary to
attach the heme to the unusual heme-binding motif CWSCK
(where a Lys residue substitutes the conserved His) present in
NrfA, a pentaheme c-type cytochrome [103, 104]. According
to secondary structure prediction methods [105], it has
been proposed that the periplasmic domain of Pa-Ccml is
composed of a N-terminal a-helical region containing at least
three TPR motifs connected by a disordered linker to a «-f3
C-terminal region. Multiple sequence analyses and secondary
structure prediction methods show that the TPR region of Pa-
Ccml can be successfully aligned with many TPR-containing
proteins, including Ec-NrfG [106].

2.6. System I. ApoCyt Chaperoning and Heme Attachment
Mechanisms. TPR domain-containing proteins are common
to eukaryotes, prokaryotes, and archaea; these proteins are
generally involved in the assembly of multiprotein complexes
and to the chaperoning of unfolded proteins [103, 107]. It
is therefore plausible that Ccml (or the TPR C-terminal
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domain of Ec-CcmH) may act to provide a platform for the
unfolded apoCyt, chaperoning it to the heme attachment site,
presumably located on the WWD domain of CcmF. Ceml
may thus be considered a component of a membrane-integral
multisubunit heme ligation complex, together with CcmF
and CcmH, as experimentally observed by affinity purifi-
cation experiments carried out with Rc-CecmFHI proteins
[97, 99, 108]. According to the proposed function of Ccml, a
critical requirement is represented by its ability to recognize
different protein targets over and above apoCyt, such as CcmF
and CcmH. However, until now, direct evidence has been pre-
sented only for the interaction of Ccml with apoCyt, but the
possibility remains that CcmFHI proteins interact each other
via their TM helices and not via their periplasmic domains.
Interestingly, both for Pa-CcmlI [106] or Re-Ceml [99], CD
spectroscopy experiments carried out on the CcmI:apoCyt
complex highlighted major conformational changes at the
secondary structure level. It is tempting to speculate, on the
basis of these results, that in vivo the folding of apoCyt may
be induced by the interaction with Ccml. In the case of P
aeruginosa System I proteins, the binding process between
Pa-Ccml and its target protein, apoCyt ¢551 (Pa-apoCyt), has
been studied both at equilibrium and kinetically [106]; the
K, measured for this interaction (in the #M range) appeared
to be low enough to ensure apoCyt delivery to the other
components of the Ccm machinery. Clearly, a major question
concerns the molecular determinants of such recognition
process; interestingly, both affinity coprecipitation assays
[99] and equilibrium and kinetic binding experiments [106]
highlighted the role played by the C-terminal «-helix of Cyt
c. Similar observations have been made for the interaction of
Ec-NrfG with a peptide mimicking NrfA, its apoCyt substrate
[103]; in this case, isothermal titration calorimetry (ITC)
experiments indicate that the TPR-domain of NrfG serves as
a binding site for the C-terminal motif of NrfA. Altogether,
these observations are in agreement with the fact that TPR
proteins generally bind to their targets by recognizing their
C-terminal region [107].

The Ccml chaperoning activity has been experimentally
supported for the first time in the case of Pa-Ccml by citrate
synthase tests [106]: it has been proposed that the observed
ability to suppress protein aggregation in vitro may reflect the
capacity of Ccml to avoid apoCyt aggregation in vivo. Still
another piece of the Cyt ¢ biogenesis puzzle has been added
recently by showing that Rc-Ccml is able to interact with
apoCcmeE, either alone or together with its substrate apoCyt
2, forming a stable ternary complex in the absence of heme
[109]. This unexpected observation, obtained by reciprocal
copurification experiments, provides supporting evidence for
the existence of a large multisubunit complex composed of
CcmFHI and CemE, possibly interacting with the CcmABCD
complex. It is interesting to note that, while in the case of
the CcmlI:apoCyt recognition different studies highlighted
the crucial role of the C-terminal helical region of apoCyt
(see above), in the case of the apoCcmE: apoCyt recognition,
the N-terminal region of apoCyt seems to represent a critical
region.

It is generally accepted that CcmF is the Ccm compo-
nent responsible for heme covalent attachment to apoCyt;
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however, as discussed above, it is possible that this large
membrane protein plays such a role only together with
other Cem proteins such as CcmH and Ceml. Moreover, as
recently discovered by Kranz and coworkers [36, 41], CcmF
may also act as a quinole:heme oxidoreductase, ensuring
the necessary reduction of the oxidized heme b bound to
CcmE. Why it is necessary that the heme iron be in its
reduced state rather than in its oxidized state is not completely
clear, although it is possible that this is a prerequisite to the
mechanism of thioether bond formation [110]. According to
current hypotheses, it is likely that the periplasmic WWD
domain of CcmF provides a platform for heme b binding.
Sanders et al. and Verissimo et al. [34, 109] have presented
a mechanistic view of the heme attachment process, which
takes into account all the available experimental observations
on the different Ccm proteins. According to this model, stere-
ospecific heme ligation to reduced apoCyt occurs because
only the vinyl-4 group is available to form the first thioether
bond with a free cysteine at the apoCyt heme-binding motif,
since the vinyl-2 group is involved (at least in the Ec-CcmE)
in the covalent bond with His130 of CcmE [67]. However,
experimental proof for this hypothesis requires a detailed
investigation of the apoCyt thioreduction process catalyzed
by CcmH (see Section 2.4).

It should be noticed that the mechanisms described so
far for the function(s) played by CcmF (see [34, 36, 109]) do
not envisage a clear role for its large C-terminal periplasmic
domain (residues 510 to 611 in Ec-CcmF). It would be inter-
esting to see if this domain, apparently devoid of recognizable
sequence features, may mediate intermolecular recognition
processes with one (or more) component(s) involved in the
heme:apoCiyt ligation process.

3. System II

System II is typically found in gram-positive bacteria and in
in e-proteobacteria; it is also present in most - and some
d-proteobacteria, in Aquificales and cyanobacteria, as well
as in algal and plant chloroplasts. System II is composed
of three or four membrane-bound proteins: CcdA, ResA,
CcsA (also known as ResC), and CcsB (also known as ResB)
(Figure 3). CcdA and ResA are redox-active proteins involved
in the reduction of the disulfide bond in the heme-binding
motif of apoCyt, whereas CcsA and CcsB are responsible for
the heme-apoCyt ligation process and are considered Cyt ¢
synthethases (CCS). Both CcsA, which is evolutionary related
to the CcmC and CemF proteins of System I [55], and CcsB
are integral membrane proteins. In some e-proteobacteria,
such as Helicobacter hepaticus and Helicobacter pylori, a single
fusion protein composed of CcsA and CcsB polypeptides is
present [41, 111]. Although, as discussed below, evidence has
been put forward to support the hypothesis that the CcsBA
complex acts a heme translocase, we still do not know if the
heme is transported across the membrane by component(s)
of System 1II itself or by a different, unidentified process.

3.1. System II: ApoCyt Thioreduction Pathway. After the Sec
machinery secretes the newly synthesized apoCyt, it readily
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becomes a substrate for the oxidative system present on the
outer surface of the cytoplasmic membrane of the gram-
positive bacteria. In B. subtilis, the BdbCD system [112,
113] is functionally, but not structurally, equivalent to the
well-characterized DsbAB system present in gram-negative
bacteria. As discussed above for System I, the disulfide of
the apoCyt heme-binding motif must be reduced in order
to allow thioether bonds formation and heme attachment.
ResA is the extracytoplasmic membrane-anchored TRX-like
protein involved in the specific reduction of the apoCyt
disulfide bond; after the disulfide bond exchange reaction
has occurred, oxidized ResA is reduced by CcdA which
receives its reducing equivalents from a cytoplasmic TRX
[114]. Although ResA displays a classical TRX-like fold,
the analysis of the 3D structure of oxidized and reduced
ResA from B. subtilis (Bs-ResA) showed redox-dependent
conformational modifications not observed in other TRX-
like proteins. Interestingly, such modifications occur at the
level of a cavity proposed to represent the binding site for
oxidized apoCyt [24, 115, 116]. Another peculiar feature of Bs-
ResA is represented by the unusually similar pK, values of its
the active site Cys residues (8.8 and 8.2, resp.), as observed
also in the case of the active site Cys residues of the System
I Pa-CcmH (see Section 2.3). However, at variance with Pa-
CcmH, in Bs-ResA, the large separation between the two
cysteine thiols observed in the structure of the reduced form
of the protein can be invoked to account for this result.

CcdA is a large membrane protein containing six TM
helices [117, 118], homologous to the TM domain of E. coli
DsbD [85, 119]. Its role in the Cyt ¢ biogenesis is supported
by the observation that inactivation of CcdA blocks the
production of c-type cytochromes in B. subtilis [120, 121].
Moreover, over and above the reduction of its apoCyt sub-
strate, Bs-CcdA is able to reduce the disulfide bond of other
secreted proteins, such as StoA [122]. It is interesting to note
that ResA and CcdA are not essential for Cyt ¢ synthesis
in the absence of BdbD or BdbC or if a disulfide reductant
is present in the growth medium [123, 124]. As discussed
above (Section 2.4), a similar observation was made on the
role of the thio-reductive pathway of System I: in this case,
persistent production of c-type cytochromes was observed
in Dsb-inactivated bacterial strains [38]. Following these
observations, the question has been put forward as to why the
Cyt c biogenesis process involves this apparently redundant
thio-reduction route only to correct the effects of Bdb or
Dsb activity. Referring to the case of B. subtilis [111], it has
been proposed that the main reason is that BdbD must
efficiently oxidize newly secreted proteins, since the activity
of most of them depends on the presence of disulfide bonds.
Alternatively, it can be hypothesized that the intramolecular
disulfide bond of apoCyt protects the protein from proteolytic
degradation or aggregation, or from cross-linking to other
thiol-containing proteins.

3.2. System II: Heme Translocation and Attachment to ApoCyt.
Recent experimental evidence is accumulating supporting
the involvement of the heterodimeric membrane complex
ResBC, or of the fusion protein CcsBA, in the translocation
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of heme from the n-side to the p-side of the bacterial
membrane. In particular, it has been shown that CcsBA
from H. hepaticus (Hh-CcsBA) is able to reconstitute Cyt ¢
biogenesis in the periplasm of E. coli [36]. Moreover, it was
also observed that Hh-CcsBA is able to bind reduced heme
via two conserved histidines flanking the WWD domain
and required both for the translocation of the heme and
for the synthetase function of Hh-CcsBA [36]. A different
study carried out on B. subtilis System II proteins provided
support for heme-binding capability by the ResBC complex;
according to the results obtained on recombinant ResBC, the
ResB component of the heterodimeric CCS complex is able
to covalently bind the heme in the cytoplasm (probably by a
Cys residue) and to deliver it to an extracytoplamic domain of
ResC, which is responsible for the covalent ligation to apoCyt
[117]. Tt should be noticed, however, that the transfer of the
CCS-bound heme to apoCiyt still awaits direct experimental
proof. Moreover, it has also been reported that in B. subtilis,
the inactivation of CCS does not affect the presence of
other heme-containing proteins in the periplasm, such as
cytochrome b562 [111]; this observation, which is in contrast
to the heme-transport hypothesis by CCSs, parallels similar
concerns about heme translocation mechanism that are
currently discussed in the context of System I (see Section 2.2
above). In the case of the Hh-CcsBA synthetase, site-directed
mutagenesis experiments allowed to assign a heme-binding
role for the two pairs of conserved His residues; according
to the topological model of the protein obtained by alkaline
phosphatase (PhoA) assays and GFP fusions, the conserved
His77 and His858 residues are located on TM helices, while
His761 and His897 are located on the periplasmic side [36].
These observations, together with the results of site-directed
mutagenesis experiments, allowed the authors to suggest that
His77 and His858 form a low affinity—membrane embedded,
heme-binding site for ferrous heme which is subsequently
translocated to an external heme-binding domain of Hh-
CcsBA, where it is coordinated by His761 and His897. The
topological model, therefore, predicts that this last His pair
is part of a periplasmic-located WWD domain (homologous
to the WWD domains found in the CemC and CemF proteins
of System I described above).

4. System III

Strikingly different from Systems I and II, the Cyt ¢ mat-
uration apparatus found in fungi and in metazoan cells
(System III) is composed of a single protein, known as Holo-
Cytochrome ¢ Synthetase (HCCS) or Cytochrome ¢ Heme
Lyase (CCHL), apparently responsible for all the subprocesses
described above (heme transport and chaperoning, reduction
and chaperoning of apoCyt, and catalysis of the thioether
bonds formation between heme and apoCyt) (Figure 4).
Surprisingly, although this protein has been identified in S.
cerevisiae mitochondria several years ago [125,126], only very
recently the human HCCS has been expressed as a recombi-
nant protein in E. coli and spectroscopically characterized in
vitro [127]. It is worth noticing that human HCCS is attracting
interest since, over and above its role in Cyt ¢ biogenesis, it
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is involved in diseases such as microphthalmia with linear
skin defects syndrome (MLS), an X-linked genetic disorder
[128-130] and in other processes, such as Cytc-independent
apoptosis in injured motor neurons [131]. Different from
animal cells, where a single HCCS is sufficient for the
maturation of both soluble and membrane-anchored Cytc
(Cyt cand Cy cl, resp.), in S. cerevisiae two homologs, HCCS
and HCCIS located in the inner mitochondrial membrane
and facing to the IMS space [132,133] are responsible for heme
attachment to apoCyt ¢ and apoCyt cl, respectively [125, 134].
It should also be noticed that in fungi, an additional FAD-
containing protein (Cyc2p) is required for Cyt ¢ synthesis.
Cyc2p is a mitochondrial membrane-anchored flavoprotein
exposing its redox domain to the IMS, which is required
for the maturation of Cyt ¢ but not for that of Cyt cl [135].
This protein does not contain the conserved Cys residues
typically found in disulfide reductases and indeed it is not
able to reduce oxidized apoCyt in vitro. However, it has been
recently shown that Cyc2p is able to catalyze the NAD(P)H-
dependent reduction of heme in vitro [136], a necessary
step before the thioether bond formation can occur, as
discussed above (see Section 2.6). This result, together with
the observation that Cyc2p interacts with HCCS and with
apoCyt c and cl lends support to the proposal that Cyc2p is
involved in the reduction of the heme iron in vivo [136, 137].

Although HCCS proteins are crucial for Cyt ¢ maturation,
we still do not know how these proteins recognize their
substrates (heme and apoCyt) and how they promote or
catalyze the formation of thioether bonds between the heme
vinyl groups and the cysteine thiols of the apoCyt CXXCH
motif.

Contrary to the broad specificity of System I, which
is able to recognize and attach the heme to prokaryotic
and eukaryotic c-type cytochromes [49, 50], and even to
very short microperoxidase-like sequences [49, 50], mito-
chondrial HCCS is characterized by a higher specificity,
as it does not recognize bacterial apoCyt sequences. These
observations prompted the investigation of the recognition
process between apoCyt and HCCS. Recently, by using a
recombinant yeast HCCS and chimerical apoCyt sequences
expressed in E. coli, it was possible to conclude that a crucial
recognition determinant is represented by the N-terminal
region of apoCyt containing the heme-binding motif [35];
notice that, in the context of System I, the same N-terminal
region of the Cyt ¢ sequence has been recently identified to be
important for the recognition by apoCcmeE (see Section 2.6).
Over and above the role played by the intervening residues
in the CXXCH heme-binding motif [135], it has been shown
that a conserved Phe residue, occurring in the N-terminal
region before the CXXCH motif, is important for HCCS
recognition [35, 138]. These results support the hypothesis
that this residue, known to be a key determinant of Cytc
folding and stability [19, 20, 139], may also be crucial for Cytc
maturation by HCCS.

Another relevant question concerns the ability of HCCS
to recognize and bind the heme molecule, as the region of
the protein responsible for heme recognition remains to be
identified. Initially, it was hypothesized that the recognition
of heme could be mediated by the CP motifs present in
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the HCCS protein [140]; these short sequences are indeed
known to bind heme in a variety of heme-containing proteins
[141,142]. However, it has been recently shown that CP motifs
of the recombinant S. cerevisiae HCCS are not necessary
for Cyt ¢ production in E. coli [143], excluding them as key
determinants of heme recognition.

The long-awaited in vitro characterization of the recom-
binant human HCCS allowed for the first time to pro-
pose a molecular mechanism underlying Cytc maturation
in eukaryotes which can be experimentally tested [127].
According to the proposed model, the human HCCS activity
can be described as a four step mechanism, involving (i)
heme-binding, (ii) apoCyt recognition, (iii) thioether bonds
formation, and (iv) holoCyt ¢ release. In particular, the
heme is proposed to play the role of a scaffolding molecule,
mediating the contacts between HCCS and apoCyt. Muta-
genesis experiments carried out on the recombinant HCCS
strongly suggest that heme-binding (Step 1) depends on the
presence of a specific His residue (Hisl54), acting as an
axial ligand to ferrous heme. Residues present at the N-
terminus of apoCyt mediate the recognition with HCCS
(Step 2); as discussed above, it is known that this region
forms structurally conserved «-helix in the fold of all c-
type cytochromes. Unfortunately, no information is available
up to now concerning the region of HCCS involved in the
recognition and binding to the N-terminal region of apoCyt.
Coordination of the heme iron by the His residue of the
apoCyt heme-binding motif CXXCH provides the second
axial ligand to the heme iron and is probably important
for the correct positioning of the two apoCyt Cys residues
and formation of the thioether bonds (Step 3). The final
release of functional Cyt ¢ (Step 4) clearly requires the
displacement of the Hisl54:Fe*" coordination bond; such
a displacement is probably mediated by formation of the
coordination bond with the Cyt ¢ conserved Met residue
and/or by the simultaneous folding of Cyt c. Again, it is
interesting to note that this last hypothesis is in accordance
with in vitro folding studies on c-type cytochromes that
highlighted the late formation of the Met-Fe coordination
during Cyt ¢ folding [144, 145].
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