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Summary
Rho kinase (ROCK) is a major downstream effector of the small GTPase RhoA. ROCK family,
consisting of ROCK1 and ROCK2, plays central roles in the organization of actin cytoskeleton
and is involved in a wide range of fundamental cellular functions such as contraction, adhesion,
migration, proliferation, and apoptosis. Due to the discovery of effective inhibitors such as fasudil
and Y27632, the biological roles of ROCK have been extensively explored with particular
attention on the cardiovascular system. In many preclinical models of cardiovascular diseases
including vasospasm, arteriosclerosis, hypertension, pulmonary hypertension, stroke, ischemia-
reperfusion injury and heart failure, ROCK inhibitors have shown a remarkable efficacy in
reducing vascular smooth muscle cell hypercontraction, endothelial dysfunction, inflammatory
cell recruitment, vascular remodeling, and cardiac remodeling. Moreover, fasudil has been used in
the clinical trials of several cardiovascular diseases. The continuing utilization of available
pharmacological inhibitors and the development of more potent or isoform-selective inhibitors in
ROCK signaling research and in treating human diseases are escalating. In this review, we discuss
the recent molecular, cellular, animal and clinical studies with a focus on the current
understanding of ROCK signaling in cardiovascular physiology and diseases. We particularly note
that emerging evidence suggests that selective targeting ROCK isoform based on the disease
pathophysiology may represent a novel therapeutic approach for the disease treatment including
cardiovascular diseases.
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Introduction
Rho-kinase (Rho-associated coiled-coil-containing protein kinase, hereafter referred to as
ROCK) is one of the best-characterized effectors of small GTPase RhoA and belongs to the
AGC (protein kinases A, G and C) family of classical serine/threonine protein kinases.1–4

As a major downstream effector of RhoA, ROCK is best known for regulating actin
cytoskeleton organization and dynamics. ROCK promotes actin filament stabilization and
generation of actin-myosin contractility by phosphorylating numerous downstream target
proteins, including the myosin binding subunit of myosin light chain (MLC) phosphatase
(MYPT1),5–7 MLC2,5,8 LIM kinases,9–13 ezrin/radixin/moesin,14 and adducin.15 The
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ROCK family includes two members, ROCK1 (also called ROKβ or p160ROCK) and
ROCK2 (also known as ROKα), that share 65% overall identity and 92% identity in the
kinase domain. Both kinases contain a catalytic kinase domain at the N-terminus, followed
by a central coiled-coil domain, including a Rho-binding domain (RBD) and a C-terminal
pleckstrin-homology domain, with an internal cysteine-rich domain.1–4 In human and
mouse, both ROCK1 and ROCK2 are ubiquitously expressed across tissues.3

The Rho/ROCK family has been extensively studied, especially on its functions in the
cardiovascular system; several recent excellent reviews are worth reading.16–21 In addition,
many publications have evaluated the potential therapeutic application of ROCK inhibitors
in neurologic disorders, metabolic disorders, glaucoma and cancers.22–26 ROCK-mediated
signaling pathway was first identified in smooth muscle cells and connected to
cardiovascular diseases where abnormal smooth muscle contraction in vascular bed was
found.5–8 The potential therapeutic applications of ROCK inhibitors were initially
investigated for the treatment of cerebral vasospasm, hypertension and coronary artery
spasm resulting in myocardial ischemic injury.27–31 The recent progress in the translational
research continuously supports the therapeutic importance of the ROCK pathway in
cardiovascular pathophysiology. In this review, we focus on the current information derived
from studies of cardiovascular diseases, mainly covering hypertension, arteriosclerosis,
pulmonary hypertension, stroke, ischemia-reperfusion (I/R) injury and heart failure.
Commonly used ROCK inhibitors, in particular fasudil32 and Y27632,27 which target the
ATP-dependent kinase domain of ROCK1 and ROCK2, are discussed. Furthermore, we
examine their application in dissecting the roles of ROCK in experimental animal models
and clinical applications of cardiovascular diseases. Recent findings derived from targeting
ROCK1 and ROCK2 by genetic approach, short interfering RNA (siRNA)-based gene
silencing techniques and chemical inhibitors are also covered.

ROCK Isoform functions
Common and Selective Regulators of ROCK Isoform Activity

ROCK1 and ROCK2 are downstream targets of the small GTP-binding protein Rho
including RhoA, RhoB and RhoC, working as a mediator in the Rho-dependent signaling
pathway. Stimulation of tyrosine kinase and G-protein-coupled receptors leads to activation
of Rho via the recruitment and activation of guanine nucleotide exchange factors
(GEFs).33,34 Activated Rho directly interacts with the RBD of ROCK and induces a
conformational change, leading to activation of the serine/threonine kinase toward selective
substrates.1–4,35,36 ROCK activity can also be modulated through interaction of C-terminal
pleckstrin-homology domain with lipid mediators such as arachidonic acid and
sphingosylphosphorylcholine and with the plasma membrane,37–40 auto-
phosphorylation,41,42 mechanical stress, and proteolytic cleavage of the inhibitory C-
terminal domain.43–45

In addition to the common regulators such as RhoA/RhoB/RhoC, ROCK1 and ROCK2 can
be individually activated or inhibited by a number of positive or negative regulators. The
small GTP-binding protein RhoE interacts with the N-terminal region of ROCK1 (amino
acids 1–420) and prevents Rho binding to RBD.46–48 PDK1 selectively promotes ROCK1
membrane translocation and blocks its association with RhoE.49 ROCK1 is cleaved by
caspase 3 at the cleavage site DETD1113 during apoptosis.43,44 This consensus sequence for
caspase 3 cleavage is conserved in human, rat and mouse, but it is not present in ROCK2.
On the other hand, during cytotoxic lymphocyte granule-induced cell death, human ROCK2
can be cleaved by the proapoptotic protease granzyme B at IGLD1131 site, and this site is
not present in ROCK1.45 Human ROCK2, but not ROCK1, can also be activated by caspase
2-dependent cleavage in endothelial cells in response to thrombin, but the cleavage site
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remains to be identified.50 Other studies have revealed that ROCK1 and ROCK2 are
phosphorylated by other kinases at multiple sites which might differently influence their
activities.51–53

Overlapping and Non-redundant ROCK Isoform Functions
ROCK1 and ROCK2 share more than 30 immediate downstream substrates due to the high
degree homology in their kinase domains (reviewed in references 23,54–57). The majority
of ROCK substrates have been identified from in vitro or cell culture experiments under
overexpression conditions. Recent proteomic approach adds novel potential substrates.58 In
most cases, only ROCK2 was investigated. The consensus amino acid sequences which are
phosphorylated on these substrates are R/KXS/T or R/KXXS/T.7,11 However, these
substrates can also be phosphorylated by other serine-threonine kinases such as protein
MLC kinase, protein kinases A, C, and G.59,60 Two well-established downstream signaling
pathways of ROCK include MYPT1/MLC5–8 and LIM kinase/cofilin9–13 pathways. The
ROCK/MYPT1/MLC2 pathway is extensively described in smooth muscle cells, where it
mediates calcium sensitization and thereby enhances and sustains contraction in the vascular
bed. On the other hand, ROCK/MYPT1/MLC and ROCK/LIM kinase/cofilin pathways are
heavily involved in stress fiber formation. ROCK seems to induce and maintain stress fibers
by increasing contractility via MLC phosphorylation and by stabilizing actin filaments
through LIM kinase activation, resulting in cofilin phosphorylation and thereby inhibiting its
actin-depolymerisation activity. The prominent effects of RhoA/ROCK on cytoskeletal
dynamics not only control cell contraction, adhesion, morphology, and motility, but also
influence other cellular processes including transcriptional regulation, proliferation,
differentiation and apoptosis. In many instances, however, the molecular mechanisms have
not been fully characterized.

A growing body of evidence indicates that endogenous ROCK1 and ROCK2 also have non-
redundant functions. Recent studies with individual knockdowns of ROCK1 and ROCK2
using siRNA-based gene silencing or genetic approach have shown that these two isoforms
have non-redundant in vitro functions. For instance, although both ROCK1 and ROCK2
control assembly of the actin cytoskeleton and cell contractility via phosphorylation of
MYPT1, the mechanism may vary between the two isoforms. Only ROCK2 binds directly to
and phosphorylates MYPT1,61 suggesting that intermediate proteins are involved in ROCK1
binding to MYPT1. In addition, both ROCK1 and ROCK2 mediate insulin-stimulated
insulin receptor substrate (IRS)-1 phosphorylation, but only ROCK2 binds directly to
IRS-1.62 Moreover, functional differences between ROCK1 and ROCK2 have been reported
in fibroblasts,63–66 smooth muscle cells,61,67 endothelial cells,68–72 keratinocytes,73–75

adipocytes,62,65 neurons66 and cancer cells.76,77 These studies reveal that ROCK1 and
ROCK2 have functional differences in regulating actin cytoskeleton, but the underlying
mechanisms are not fully understood, which could be explained by the facts that both
isoforms are expressed at different levels, distributed at different subcellular locations, and/
or they have different interaction partners in individual cell types.43–46,49,57,61–64,78–82

Genetic approach using ROCK1 and ROCK2 deficient mouse embryonic fibroblasts (MEFs)
derived from ROCK1 and ROCK2 knockout mice further supports functional differences
between ROCK isoforms in regulating actin cytoskeleton65,83,84 These studies reveal that
ROCK1 or ROCK2 deficiency has a minimal effect on the architecture of actin cytoskeleton
in MEFs under baseline culture condition, but they have clearly distinct effects on the re-
organization of actin cytoskeleton induced by differentiation or cytotoxic stimuli. Only
ROCK2 deficiency enhances adipogenesis and insulin signaling, which is associated with
actin cytoskeleton changes from long stress fibers to cortical actin rings.65 We recently
observed that only ROCK1 deficiency inhibits doxorubicin-induced disruption of central
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stress fibers and formation of cortical contractile rings leading to reduced cell detachment.83

The anti-detachment effects of ROCK1 deficiency in response to this cytotoxic stress is
mediated through reduced MLC phosphorylation but preserved cofilin phosphorylation
leading to the reduced actomyosin contraction and preserved actin polymerization.
Moreover, only ROCK1 deficiency inhibits actin-cytoskeleton re-organization and cell
detachment in response to serum starvation, an environmental stress.84

The in vivo functional similarity and differences of ROCK1 and ROCK2 have been shown
by mouse genetic studies during development and under pathological conditions.85 ROCK1
or ROCK2 knockout in C57BL/6 genetic background can result in mice born with eyes open
at birth and an omphalocele phenotype due to disorganization of actin filaments in the
epithelial cells of the eyelids and of the umbilical ring.85–88 These phenotypes are absent in
other genetic backgrounds.89–92 For both genetic knockouts, the mice that survive perinatal
period develop phenotypically normal and are fertile, supporting the idea that the two
isoforms are mostly redundant. Homozygous and heterozygous ROCK1 and ROCK2
knockout mice have been used to examine their contributions to several pathological
conditions. For some diseases, such as glaucoma, both ROCK isoforms contribute to the
regulation of intraocular pressure.93 Both ROCK1 and ROCK2 are important in regulating
allergic airway responses.94 On the other hand, ROCK1 appears to play a predominant role
in vascular inflammation diseases.95 Both ROCK isoforms, but to a greater extent ROCK1,
are involved in diabetes-induced vascular endothelial dysfunction.96 In many studies, only
one isoform has been investigated87,89,91,92,97–109 and future studies are required to
determine the contribution of another isoform.

Development and therapeutic effects of ROCK inhibitors
Early drug discovery efforts concentrated on the development of non-isoform selective
ROCK inhibitors. Fasudil (for an overview see Figure 1) and Y-27632 are among the most
commonly used ROCK pan-inhibitors, all of which target the ATP-dependent kinase domain
of ROCK with Ki values of 330 and 140 nM, respectively.27,32,110 Hydroxyfasudil, the main
metabolite of fasudil after oral administration, and H-1152P, another analogue of fasudil, are
more potent than fasudil. These inhibitors have possible non-selective effects, and at higher
concentrations they also inhibit other serine/threonine kinases such as protein kinases A and
C.111,112 Fasudil is the only ROCK inhibitor approved for human use, and was approved in
Japan in 1995 for the prevention and treatment of cerebral vasospasm after surgery for
subarachnoid hemorrhage (SAH).113 Postmarketing surveillance studies have found that
fasudil has exhibited no serious side effects.31

Based on the overall promising studies showing beneficial effects of fasudil and Y27632 in
a variety of animal disease models, considerable interest and efforts have been devoted to
the development of more potent and selective ROCK inhibitors. Most of these novel
inhibitors, also targeting the ROCK ATP pocket, are non-isoform selective.114–124 The
resolution of crystal structure of ROCK1 complexes with inhibitors helps to improve the
selectivity and potency of novel inhibitors.125 Recent efforts have also been devoted to
developing isoform-selective inhibitors. Both traditional high-throughput library screens and
fragmented-based drug discovery approaches have yielded compounds that are reported to
have significant selectivity for ROCK1 or ROCK2.126,127 SLx-2119, which is also an ATP-
competitive inhibitor, exhibits IC50 values of 24 μM for ROCK1 and 0.105 μM for
ROCK2.126 A combined approach using high concentration biochemical assays and
fragment-based screening assisted by structure-guided design has yielded several
compounds with selectivity for ROCK1 or ROCK2 respectively.127 Future studies for
specific targeting ROCK1 or ROCK2 are needed, using compounds with isoform selectivity
or using systemic and conditional tissue-specific knockout mice, to determine whether
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isoform-selective inhibition would be a more efficacious therapeutic strategy than non-
selective ROCK inhibitors for the treatment of cardiovascular and other diseases.

An important puzzle for many clinicians is whether the efficacy and safety could be further
improved by combining conventional drugs with ROCK inhibitors to enhance their
effectiveness while minimizing adverse effects. An example is using statins in conjunction
with ROCK specific inhibitors.126,128 Statins, which inhibit HMG-CoA reductase and block
the synthesis of cholesterol, are drugs for the treatment of hyperlipidemia to reduce the risk
of adverse cardiovascular events. In addition to the cholesterol lowering effects, statins have
also been found to reduce ROCK expression and activity.129–132 The drug combination
stratagem was found to be synergistic in some studies; therefore brings beneficial effect in
reducing drug toxicity and enhancing outcome compared to monotherapy. These trials
include adding fasudil with nitroglycerin, another vasodilator, causing further dilations;133

fasudil with imidapril, an angiotensin-converting enzyme, further reducing renal interstitial
fibrosis induced by unilateral ureteral obstruction;134 fasudil with ozagrel, a thromboxane
A(2) synthase inhibitor, further decreasing cerebral infarction induced by middle cerebral
artery occlusion;135 fasudil with tissue plasminogen activator preventing hemorrhagic
transformation induced by this thrombolytic factor in an experimental stroke model in
mice;136 fasudil with prostacyclin or with sildenafil showing to be more effective for the
treatment of pulmonary hypertension when compared with each monotherapy;137,138 fasudil
with FR167653, a p38 MAPK inhibitor, demonstrating to be more effective for the
improvement of cardiovascular remodeling, inflammation, and oxidative stress in
hypertensive rats.139 In addition to cardiovascular diseases, the inclusion of fasudil in
therapeutic strategies has been tested in the treatment of cancers103,140 and in cell
transplantation therapy.141 A list of combination treatment is rapidly expanding, mainly
attributable to the wide spectrum of biological processes influenced by ROCK and to the
acceptable clinical safety of fasudil.

ROCK in Cardiovascular Diseases
The role of Rho/ROCK family in cardiovascular diseases has been extensively studied in
animal experimental models.16–21 Since this review is particularly focusing on fasudil
application, this section mainly covers experimental studies using fasudil in several
cardiovascular diseases as discussed below and some most recent studies are summarized in
Table 1.

Hypertension
Arterial hypertension is a major risk factor and one of the most common cardiovascular
diseases. It is characterized by a high arterial pressure level resulting from increased
peripheral vascular resistance attributable to increased vascular contractility and arterial wall
remodeling. Many studies have found that the activity of Rho/ROCK pathway increases in
experimental hypertension models142–149 and hypertensive patients.150–152 Increased RhoA/
ROCK activities appear to be the consequence of the up-regulation of renin-angiotensin-
aldosterone system143,144,147,148 and the increased production of reactive oxygen species
(ROS),149 which have been implicated in the pathophysiology of hypertension.153–157

Additional evidence supporting the importance of the Rho/ROCK pathway in hypertensive
humans comes from genetic studies showing that ROCK2 polymorphisms158,159 are
associated with changes in systemic blood pressure. Genetic variants in Arhgef11, an
activator of the Rho/ROCK signaling pathway are associated with kidney injury in the Dahl
salt-sensitive rat.160 Limited studies using ROCK1 and ROCK2 knockout mice have been
performed to examine their contributions to the regulation of blood pressure. ROCK1
haploinsufficiency had no effect on baseline blood pressure and angiotensin II-induced
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hypertension.87 In addition, we observed that ROCK1 homozygous knockout mice had
normal blood pressure under baseline condition (unpublished observation). One recent study
reported lower blood pressure levels at baseline and diabetes-induced hypertension in
ROCK1 and ROCK2 heterozygous knockout mice compared with wild type mice.96

The role of ROCK signaling in arterial hypertension has also been extensively studied using
ROCK inhibitors including fasudil142,145,146 and other inhibitors27,116 in a variety of
experimental models. Although ROCK inhibitors reduce vascular bed remodeling in
hypertensive models, they do not always lower blood pressure. ROCK inhibition reduces
smooth muscle contractility through decreasing MLC phosphorylation in smooth muscle
cells and improving endothelial function via restoring eNOS expression/activity and NO
production.27,144–146,161,162 ROCK inactivation also reduces inflammation and remodeling
through 1) suppressing the expression of pro-inflammatory cytokines and adhesion
molecules in endothelial and smooth muscle cells including plasminogen activator
inhibitor-1, monocyte chemoattractant protein-1 and transforming growth factor-
β1;145,163,164 2) inhibiting ROS production through down-regulation of NADPH oxidases in
endothelial cells149,165 and reducing the secretion of cyclophilin A from smooth muscle
cells.18 In addition, the administration of ROCK inhibitors in the brainstem lowered blood
pressure and reduced sympathetic nerve activity in hypertensive animals.166,167 Future
studies with systemic and conditional deletion of ROCK1 and ROCK2 are necessary to
validate ROCK as a crucial target for the treatment of hypertension.

Atherosclerosis
Atherosclerosis is characterized by progressive inflammation, lipid accumulation and
fibrosis occurred in arterial wall. Rho/ROCK pathway is substantially involved in
inflammatory and arteriosclerotic arterial lesions in animals and humans (reviewed in
references 16,168,169). Multiple studies in experimental models involving fasudil170–172

and other ROCK inhibitors173,174 have demonstrated that ROCK is a critical contributor to
the inflammatory atherosclerotic process. ROCK inhibitors lead to up-regulation of eNOS
and reduced endothelial dysfunction,174,175 decreased vascular cell contraction, proliferation
and migration,174,176,177 decreased vascular oxidative stress,178 decreased vascular
inflammation, macrophage infiltration and foam cell formation,171,173 and reduced arterial
intima-medial thickness and atherosclerosis plaque formation.171,172 More support for a
critical role of ROCK1 and ROCK2 in the development of atherosclerosis comes from
experiments using ROCK1 and ROCK2 knockout mice. These studies suggest that ROCK1
in bone-marrow-derived macrophages mediates macrophage foam cell formation and
macrophage chemotaxis,179 and that ROCK2 in bone-marrow-derived macrophages
mediates macrophage foam cell formation in part, through inhibiting cholesterol efflux.108

Pulmonary hypertension
Pulmonary hypertension is a general term comprising a spectrum of pulmonary hypertensive
disorders which is characterized by elevated pulmonary arterial pressure and increased
pulmonary vascular resistance, leading to right-sided heart failure and death. Multiple
mechanisms contribute to pulmonary hypertension including prolonged vasoconstriction,
increased smooth muscle cell proliferation and migration, inhibition of smooth muscle cell
apoptosis, endothelial dysfunction, increased ROS production and inflammatory cell
recruitment, and in situ thrombosis of pulmonary vessels, etc., all of which are involved in
the pulmonary vascular remodeling leading to disease progression. Robustly raised Rho/
ROCK signaling plays a substantial role in the pathogenesis of different experimental
models of pulmonary hypertension (reviewed in references 19,180–182). Recent studies
have shown that Rho/ROCK pathway is increased in pulmonary hypertension
patients.183,184 Numerous studies using fasudil137,185–197 and other ROCK
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inhibitors117,196,198 in different experimental models have shown that ROCK is a critical
contributor to pulmonary hypertension. ROCK inhibitors can reduce pulmonary arterial
pressure, pulmonary vascular resistance and remodeling by reducing pulmonary
vasoconstriction,185–187,193 improving endothelial function,188,191,193 decreasing smooth
muscle cell proliferation and migration,196,199,200 increasing smooth muscle cell
apoptosis,193,198 increasing myofibroblast apoptosis and reducing fibrosis,194 decreasing
vascular oxidative stress and inflammation.193 ROCK activity has also been specifically
linked to a number of known effectors of pulmonary hypertension, including
endothelin-1,198,201 serotonin,183 and eNOS.188 Because of non-isoform selectivity of
employed inhibitors, the roles of the two ROCK isoforms in pulmonary hypertension
pathogenesis remain largely unknown and need to be determined.

Stroke
ROCK has a role in the pathogenesis of several cerebral vascular diseases, such as ischemic
stroke and cerebral vasospasm (reviewed in references. 16,21,202). Fasudil was shown
highly effective in reducing cerebral vasospasm and beneficial to stroke prevention, acute
neuroprotection and chronic stroke recovery in experimental models.135,136,203–211.
Published studies have shown that ROCK inhibitors were able to reduce cerebral
vasoconstriction,205,212 up-regulate eNOS and decrease the inflammatory
response,136,203,205,206,208,209 reduce neuron degeneration,204,213 stimulate proliferation and
differentiation of adult neural stem cells.207 Further investigations are desired to evaluate the
function of each ROCK isoform in stroke and stroke recovery.

Myocardial Ischemic Injury
ROCK was found to have a role in cardiac I/R injuries, where blood flow is restricted or cut
off and then is reintroduced into the area. I/R provokes tissue damage due to augmented
oxidative stress, mitochondrial dysfunction and inflammation. A deleterious role of RhoA/
ROCK signaling in I/R injury has been demonstrated in several in vivo models including
mouse,214 rat,215–217 dog218 and swine.219 In these models ROCK inhibition with
fasudil215–220 or Y27632214,215,221 achieved smaller infarct size, less inflammation,
attenuated apoptosis, and enhanced cardiac contractile function. The proposed
cardioprotective mechanisms of ROCK inhibition include 1) activation of the PI3K/Akt/
eNOS signaling pathway215,216,218,220 and the JAK2/STAT3 signaling pathway;220 2)
reduction of endothelial-leukocyte interaction during ischemia-reperfusion injury by
preserving endothelial function222 and suppression of inflammatory responses;214–216 3)
reduction of endothelial cell shape changes and apoptosis through reducing actin
cytoskeleton re-organization;223,224 4) inhibition of myocyte apoptosis through increasing
the expression of antiapoptotic Bcl-2 protein,214 decreasing mitochondria-nuclear
translocation of apoptotic-inducing factor through the inhibition of c-Jun NH2-terminal
kinase,217 and reducing endoplasmic reticulum stress through the elevation of sarco-
endoplasmic reticulum Ca2+-ATPase (SERCA) activity;220 5) improving energy production
through increasing the levels of lactate dehydrogenase and glyceraldehyde-3-phosphate
dehydrogenase, normalizing creatine kinase levels, and inhibiting ATP synthase
degradation.221

The beneficial effects of ROCK inhibition by fasudil225–227 or Y27632228 in ischemic
preconditioning have also been observed in several animal models, which showed reduced
infarct size, oxidative stress and apoptosis. Although the studies cited above
overwhelmingly support a deleterious role for Rho/ROCK pathway in cardiac I/R, Rho/
ROCK pathway can also have cardioprotective activities as reported by other studies. For
example, it is involved in the protective effects of early ischemic preconditioning in the rat
heart229 and in KATP channel-induced improvement of postischemic functional
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recovery.230 Limited studies using ROCK1 and ROCK2 knockout mice have examined their
contributions to I/R injuries. In a model for repetitive ischemia/reperfusion injury, an
increase of fibrosis but not apoptosis was induced, and ROCK1 deletion significantly
reduced cardiac fibrosis through inhibiting cardiac fibroblast differentiation and the
monocyte-to-fibroblast transition of transmigrated monocytes.109 Further investigations
should evaluate the function of each ROCK isoform in acute I/R injuries.

Pathological Cardiac Hypertrophy and Heart Failure
Pathological cardiac hypertrophy is defined by the augmentation of ventricular mass induced
by pathological stimuli such as hypertension, valvular insufficiency and stenosis, myocardial
infarction or ischemia associated with coronary artery disease, etc. Cardiac hypertrophy is
initially beneficial to compensating elevated hemodynamic load in order to maintain cardiac
output, which is an adaptive response and characterized by increased ventricular wall
thickness. However, persistent overloading stress can eventually lead to decompensation and
consequently congestive heart failure, in which heart chambers become markedly enlarged
and the cardiac contractile function is compromised. Significant amount of evidence
indicates that RhoA/ROCK signaling mediates a hypertrophic response (reviewed in
references 20,231). Recent studies have shown that Rho/ROCK pathway is increased in
heart failure patients.232,233In vivo studies using pharmacological inhibitors, including
fasudil139,165,234–240 and other inhibitors,241–243 support an in vivo role for ROCK in the
pathogenesis of cardiac hypertrophy and remodeling in various animal models. The
proposed cardioprotective mechanisms of ROCK inhibition include 1) inhibition of
cardiomyocyte hypertrophy due to mechanic stretch and G-protein-coupled-receptor
agonists such as angiotensin II, α-adrenergic agonists, and endothelin-1;244–250 2) inhibition
of cardiac fibrosis and inflammation through suppressing expression of fibrogenic/
inflammatory cytokines and NADPH oxidase components in part by inhibiting cytoskeleton
re-organization and NF-kappaB activation;89,251,252 3) inhibition of cardiomyocyte
apoptosis through activation of the ERK/MAPK and/or PI3K/Akt survival pathways99,106

and suppression of Bax expression;253 4) improving cardiac contraction through inhibiting
phosphorylation of cardiac troponin I/T254 and preserving SERCA2a expression;255 5)
reduction of vascular resistance through decreasing MLC phosphorylation;256,257 6)
restoration of baroreflex sensitivity in the brainstem and reducing sympathetic nerve
activity.258,259

Although the studies described above largely support that Rho/ROCK pathway contributes
to maladaptive responses in pathological cardiac remodeling, Rho/ROCK pathway may also
contribute beneficially to adaptive responses. ROCK was reported to mediate agonist-
stimulated contraction in the hearts through MYPT/MLC pathway.260–263 In addition,
RhoA/ROCK is involved in cardiomyocyte protection through activation of focal adhesion
kinase/PI3K/Akt survival signaling.264 Genetic studies using ROCK1 deficient89,99,100 and
haploinsufficient mice87 have demonstrated a critical role for this isoform in pathological
remodeling. Partial or full ROCK1 deletion did not block the development of cardiomyocyte
hypertrophy,87,89,99,100 but significantly reduced a number of structural and functional
alterations attributable to pathological hypertrophic remodeling including cardiac
fibrosis,87,89 cardiomyocyte apoptosis,99,106 cardiac dilation and contractile
dysfunction.99,100 Genetic studies using cardiac-specific ROCK2 knockout mice have
demonstrated that ROCK2 is involved in cardiomyocyte hypertrophy and apoptosis, cardiac
fibrosis during compensatory cardiac hypertrophy.107 Further studies are needed to
determine the contribution of ROCK2 to cardiac decompensation and heart failure.
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Clinical Implications of Fasudil
In addition to the extensive preclinical data accumulated from experimental model systems
(Table 1), some clinical benefits of fasudil can be derived from large scale clinical treatment
for vasospasm after SAH and also from small clinical studies for the treatment of
cardiovascular diseases (Table 2). These clinical applications include 1) essential
hypertension,150,151 2) coronary vasospasm and atherosclerosis,133,175,265–273 3) pulmonary
hypertension,274–278 4) aortic stiffness,178 5) heart failure associated vascular resistance and
contraction,257 6) cerebral vasospasm30,31,279–282 and ischemic stroke,29,283 7) kidney
transplantation.284

Although fasudil is in general well tolerated without serious adverse reactions and there are
no statistically significant differences in fasudil vs. placebo group (Table 2), a serious
complication after intra-arterial administration for the treatment of cerebral vasospasm was
recently reported.285 Other reported mild side effects include convulsion,286 temporary
systemic hypotension and a disturbance in consciousness.287 In these clinical studies, the
underlying mechanism of the beneficial effects of fasudil has been attributable to the
inhibition of ROCK in the vascular system resulting in the attenuation of smooth muscle
hypercontraction, reduction of endothelial dysfunction and inflammatory response.
However, the clinical effects of fasudil may also result from inhibition of other kinases
because of the possible non-selective effects. Along with the development of ROCK
isoform-selective inhibitors, more clinical studies will be needed to further validate ROCK
as the crucial target of fasudil in the treatment of cardiovascular diseases and other diseases.

Conclusions and Future Directions
The research in RhoA/ROCK pathway has attracted much attention for more than a decade
since the discovery of ROCK in 1996. Our rapidly accumulated knowledge on ROCK
cellular functions, substrates, isoform functions and dynamic cross talks with other signaling
pathways are mainly derived from ROCK inhibitor studies ranging from in vitro studies
using various cell culture systems, in vivo studies in numerous animal models, and an
increasing number of clinical studies. Although the two isoforms are largely assumed to be
functionally redundant mainly based on that they are highly homologous within the kinase
domain and sharing major activators and substrates, recent studies with individual
knockdowns of ROCK1 and ROCK2 using siRNA-based gene silencing or a genetic
approach have shown that the two isoforms have non-redundant in vitro and in vivo
functions.

ROCK has been confirmed to be involved in various cardiovascular disease pathologies with
increased ROCK activity mediating vascular smooth muscle cell hypercontraction,
endothelial dysfunction, inflammatory cell recruitment, vascular and cardiac remodeling.
The obvious beneficial effects from applications of ROCK inhibitors have been
demonstrated by a significant amount of animal studies and human clinical trials, which
support the notion that ROCKs are promising therapeutic targets for broad spectra of human
diseases, including all the cardiovascular diseases discussed in this review.

Questions which remain to be answered are emerging. Although the effects of ROCK
inhibitors in animal models of cardiac diseases are getting clear, the cellular sites of
inhibitory action are still largely unsolved, in particular in the myocardium and brain.
Meanwhile, it remains to be determined whether the observed beneficial effects are
mediated by inhibiting ROCK1, ROCK2, or both. Moreover, most studies and trials were
done by using fasudil and/or Y-27632 to inhibit ROCK and they are known to have non-
specific effects, therefore the connections between the observed beneficial effects and other
co-inhibited kinases are not profoundly investigated by far, especially when ROCK
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inhibitors were used at higher concentrations. Prospectively, we will see more development
and application of isoform-specific ROCK inhibitors in animal studies and clinical trials.
Finally, we expect to see more fundamental studies with tissue-specific and conditional
ROCK isoform knockout animal models. Determining the specific functions of each isoform
in different organs and tissues will help to generate refined treatments for specific diseases
of cardiovascular and other body systems.
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Figure 1. Overview of fasudil on cardiovascular diseases
Studies using fasudil indicate that ROCK is a promising therapeutic target for cardiovascular
diseases. Fasudil is the only clinically approved ROCK inhibitor for the treatment of
cerebral vasospasm following subarachnoid hemorrhage. Fasudil has also been used in the
experimental and/or clinical studies for the treatment of other cardiovascular diseases as
indicated. Major beneficial effects of fasudil on cardiovascular diseases and the associated
cellular and molecular events are summarized in the Tables 1 and 2.
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Table 1

Beneficial effects of fasudil in recent experimental studies of cardiovascular diseases

Therapeutic area Species/Models Application Effects Mechanisms References

Hypertension

Rat SHR
10 mg/kg/
day IP, 6

weeks
Decreasing blood pressure

Decreasing MLC phosphorylation,
increasing eNOS expression and

activity
146

Rat DOCA-salt
100 mg/kg/
day OG, 3

weeks
Decreasing blood pressure

Increasing ACE2 and eNOS,
reducing PAI-1, MCP-1 and TGF-

β1 expression
145

Atherosclerosis

Mouse ApoE−/− high fat diet

100 mg/kg/
day DW, 8
or 12 weeks
for early or

delayed
study

Reducing both the early
development and later

progression of
atherosclerotic plaques

Reducing macrophage accumulation 171

Mouse ApoE−/−
100 mg/kg/
day DW, 8

weeks

Decreasing
atherosclerotic lesions
and intima/media ratio,

increasing SMC and
macrophage density in

plaque

Similar to the protective effects of
exercise associated with decreased

RhoA/ROCK activity
172

Pulmonary Hypertension

Transgenic Mouse
100 mg/kg/
day DW, 14

days

Decreasing PH, RVH, and
muscularization of
pulmonary arteries

BMPRII mutation-induced Smad-
independent pathway 190

Rat MCT-induced PH
100 mg/kg/
day DW, 14

days

Decreasing RV systolic
pressure and mean
pulmonary arterial

pressure

Reducing pulmonary arterial
remodeling 195

Rat MCT-induced PH 10 mg/kg
IV, 20 min

Decreasing PH,
improving pulmonary
blood flow distribution

Reducing SMC contraction,
improving endothelial-mediated

vasodilation
191

Rat hypoxia neonatal
20 mg/kg/
day IP, 14

days

Decreasing PH, RVH and
arterial wall remodeling,

but adverse effects on
somatic growth

Decreasing SMC proliferation
associated with reduced PDGFs and

their receptors
196

Stroke

Mouse H/R injury
10 mg/kg/
day IP, 3

days

Promoting neurogenesis
especially in the

subventricular zone after
H/R

Increasing G-CSF level and
astrocytes expressing G-CSF 207

Mouse Photothrombotic
cortical stroke

60 mg/kg/
day OG, 3
days after

stroke for 5
weeks

Improving motor function
and recovery after stroke,
no change on infarct size

Similar to the protective effects of
ephrin receptor inhibition 211

Rat MCAO tPA treatment
3 mg/kg IP,

before
reperfusion

Preventing tPA-induced
hemorrhagic

transformation, reducing
mortality, increasing
locomotor activity

Reducing endothelial cell damage,
inhibiting MMP-9 activity 136

Myocardial I/R

Rat I/R

10 mg/kg
IV, 15 min

before
reperfusion

Decreasing infarct size
and ER stress

Increasing JAK2/STAT3 and PI3K/
Akt signaling, and SERCA

expression
220

Rat IPC
10 mg/kg
IV, before

IPC

Decreasing infarct size
due to inhibition of ERK/

MAPK in IPC

Decreasing apoptosis, and caspase 3
activation 226

Cardiac Remodeling Mouse MI or TAC
10 mg/kg/
day IP, 3

weeks

Reducing fibrosis in TAC
and MI mice; reducing

LV cavity dilatation and
dysfunction in MI mice

Decreasing profibrotic gene
expression and TGF-β1-TAK1

pathway
239
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Therapeutic area Species/Models Application Effects Mechanisms References

Rat Doxorubicin cardiotoxicity
2 or 10 mg/
kg/day IP, 7

days

Improving cardiac
function, decreasing loss

of myofibrils

Decreasing apoptosis, Bax
expression, and NF-κB activity,
increasing c-FLIP (L) and Bcl-2

expression

240

Rabbit Rapid ventricular
pacing

1.5 mg/kg/
day ICV,
osmotic

minipump,
4 days

Decreasing resting heart
rate, restoring baroreflex

sensitivity in the
brainstem

Decreasing AT1R expression,
increasing eNOS expression in the

brain stem
258

ACE, angiotensin-converting enzyme; AT1R, angiotensin II type 1 receptor; DOCA, deoxycorticosterone acetate; DW, drinking water; ER,
endoplasmic reticulum; G-CSF, granulocyte colony-stimulating factor; H/R, hypoxia/reoxygenation; ICV, intracerebroventricular cannula; IP,
intraperitoneal; IPC, ischemic preconditioning; I/R, ischemia/reperfusion injury; IV, intravenous infusion; MCAO, middle cerebral artery
occlusion; MCT, monocrotaline; MMP, matrix metalloproteinase; OG, oral gavaging; PH, pulmonary hypertension; RVH, right ventricular
hypertrophy; SHR, spontaneously hypertensive rat; SMC, smooth muscle cell; TAC, transverse aortic constriction; tPA, tissue plasminogen
activator.
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Table 2

Beneficial effects of fasudil in human studies

Study Patient population Application Beneficial Effects Adverse Effects References

SAH PMS (1995–2000)
1462 patients Age 16–
69 years Mean age 54.0

± 9.9 years

30 mg IV over
30 min 3 times
daily 14 days

Preventing cerebral
ischemic injury and
improving clinical

outcome

a
Mild to moderate
in 3.8% patients,
similar to phase 3

trial: 3.5% in fasudil
vs. 5.7% in placebo

group

31

SAH PMS (1995–2000)
3690 patients for

fasudil; 1138 patients
for fasudil plus ozagrel

30 mg IV over
30 min 3 times
daily 14 days

Fasudil plus ozagrel was
well tolerated, but did

not result in better
efficacy than fasudil

only

Mild to moderate in
5.2% patients,

similar to phase 3
trial: 3.5% in fasudil
vs. 5.7% in placebo

group

279

SAH Database search
meta-analysis (1994–

2010)

8 randomized and
controlled clinical

studies
Variable

Reducing the occurrence
of CVS and cerebral

infarction (40–50% of
the placebo group);

improving the clinical
outcomes of the patients

282

Acute ischemic stroke
Multicenter Phase 3 trial

160 patients age ≥ 20
years mean age 68 years

60 mg IV over
60 min twice
daily 14 days

Improving neurological
functions and clinical

outcome

Mild to moderate,
no statistically

significant
differences in

fasudil vs. placebo
group

29

Stable angina Multicenter
Phase 2 trial

84 patients age 30–80
years

20 to 80 mg PO
3 times daily 8

weeks

Increasing the ischemic
threshold of angina

patients during exercise
and exercise duration

b
Mild to moderate,

63% in fasudil vs.
53% in placebo

group

267

Stable angina Multicenter
Phase 2 trial

125 patients age 37–81
years mean age 62 years

5 to 40 mg PO 3
times daily 2–6

weeks

Increasing the maximum
exercise time, decreasing

the number of anginal
attacks

Mild to moderate in
<10% patients,

including transient
headache

266

Stable angina

Study 1: 6 patients age
66.3+/−5 years Study 2:
10 patients age 68.7+/

−3.5 years

300 μg/min IC
15 min

Increasing oxygen
saturation in coronary
sinus vein in study 1;

improving pacing-
induced myocardial
ischemia in study 2

268

Vasospastic angina 20 patients age 49–74
years

300 μg/min IC
15 min

Decreasing ACh-
induced coronary

constriction, preventing
chest pain and ischemic

ECG changes

270

Vasospastic angina 26 patients age 61+/−11
years

30 mg, IV
following IC 300
μg nitroglycerin

Further dilating ACh-
induced coronary spasm

in addition to IC
nitroglycerin treatment

133

Coronary artery disease
13 patient with

confirmed ≥50%
stenosis

40 mg, PO 3
times daily 1

month

Improving flow-
mediated, endothelium-
dependent vasodilation

175

PAH 15 patients age 45+/−4
years

30 mg inhalation
over 10 min

Reducing mean PAP and
tending to decrease PVR 275

PAH Congenital heart
disease

12 pediatric patients age
9.4–16.5 yeras mean age

12.3 years

30 mg/kg IV
over 30 min

Decreasing PASP, PVR
and SVR, increasing

cardiac input and blood
oxygen saturation

276
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Study Patient population Application Beneficial Effects Adverse Effects References

PAH High-altitude

19 patients residents of
the Tien-Shan

Mountains (altitude
3,200-3,600 m)

1 mg/min IV
over 30 min

Increasing pulmonary
artery flow, decreasing

PASP and PVR

Mild, one patient
had facial flushing
and four patients
had feelings of
dryness of the

mouth.

274

ACh, acetylcholine; CVS, cerebral vasospasm; IC, intracoronary; IV, intravenous; PAP, pulmonary arterial pressure; PASP, pulmonary artery
systolic pressure; PAH, pulmonary arterial hypertension; PMS, post-marketing surveillance; PO, orally; PVR, pulmonary vascular resistance; SAH,
subarachnoid hemorrhage; SVR, systemic vascular resistance

a
Mild to moderate adverse effects: hemorrhage, cardiovascular system disorders, blood and lymphatic system disorders, hepatic and hepatobiliary

disorders, urinary system disorders, hypersensitivity, gastrointestinal system disorders.

b
The skin and vascular disorders are apparently more frequent in the fasudil group than in the placebo group; skin disorders: allergic dermatitis,

benign keratosis, bruise, erythematous rash, hive; vascular disorders: ecchymosis, face flushing, hypotension, hypertension, Raynaud-like
phenomenon.
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