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Numerous types of linear and nonlinear features have been extracted from the electrohysterogram (EHG) in order to classify labor
and pregnancy contractions. As a result, the number of available features is now very large. The goal of this study is to reduce
the number of features by selecting only the relevant ones which are useful for solving the classification problem. This paper
presents threemethods for feature subset selection that can be applied to choose the best subsets for classifying labor and pregnancy
contractions: an algorithm using the Jeffrey divergence (JD) distance, a sequential forward selection (SFS) algorithm, and a binary
particle swarm optimization (BPSO) algorithm. The two last methods are based on a classifier and were tested with three types of
classifiers. These methods have allowed us to identify common features which are relevant for contraction classification.

1. Introduction

Pretermbirth, that is, birth before the 37thweek of pregnancy,
remains a major problem in obstetrics. Children born before
term present a high risk of mortality as well as health and
development problems [1]. According to the World Health
Organization (WHO), preterm birth rates range between 5%
and 12% of births and perinatalmortality occurs in 3% to 47%
of these cases in even the most developed parts of the world
[2].

Delivery occurs after the onset of regular and effective
uterine contractions, which cause dilation of the cervix and
expulsion of the fetus. A contraction of the uterine muscle
occurs due to the generation of electrical activity in a given
uterine cell that spreads to other, neighboring cells. The
evolution of uterine contractions, from weak and ineffective
during pregnancy to strong and effective during labor, is
therefore related to an increase in cellular excitability to an
increase in the synchronization of the entire uterus [3].

A primary aim of pregnancy is to maintain the well-
being of both mother and fetus and to keep the latter in
utero as long as needed for a healthy birth. During pregnancy,
the monitoring of uterine contractility is crucial in order to
differentiate normal contractions, which are ineffective, from

those effective contractions which might cause early dilation
of the cervix and induce preterm birth. Despite increased
knowledge and understanding of the phenomena involved
in the onset of preterm labor, the methods currently used
in obstetrics are not precise enough for an early detection of
preterm birth threats. We need a more reliable method for
early detection and prevention of preterm birth threats.

One of the most promising methods for monitoring
uterine activity began in the 1950s and was developed in the
1980s. It is based on the study of the electrical activity of the
uterus as recorded on the mother’s abdominal surface [5].
The electrohysterogram (EHG) consists of the summation
of the electrical activity generated by the active uterine
muscle cells, plus the noise related to corrupting electrical
andmechanical activities. EHG, recorded externally, has been
demonstrated to be representative of the uterine electrical
activity as recorded internally [6].

Many teams have extracted features from the EHG signals
in order to find specific information leading to the detection
of preterm birth. Firstly, linear methods in both time and
frequency domains were used to extract features from the
EHG. In order to improve the results obtained by using linear
methods and because the EHG, like other biomedical signals,
presents some nonlinear characteristics, several measures
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Figure 1: (a) Position of the 16 monopolar electrodes [4]. (b) Vb𝑖 (𝑖 = 1–12) represent the 12 calculated bipolar signals.

have been proposed for detecting nonlinear characteristics in
the EHG.

A large number of features have thus far been extracted
from the EHG signal bymany different researchers using very
different population and recording protocols. In general, the
complexity of calculations required for diagnostic purposes
increaseswith the number of features in play.The reduction of
feature dimensionality through the elimination of irrelevant
and noisy features is very important in pattern recognition.
The objective of this study is to select the most significant
subset, among features extracted from the bibliography, in
order to discriminate pregnancy and labor contractions,
with these features being computed from the same given
population. In this study, we selected from the bibliographic
data 20 features (16 linear and 4 nonlinear) extracted from
the EHG: mean frequency (MPF) [7], peak frequency (PF)
[8–10], and deciles (𝐷1 . . . 𝐷9) [11] which contain the median
frequency [9, 11, 12], parameters extracted from wavelet
decomposition (𝑊1 . . .𝑊5) [13], Lyapunov exponent (LE)
[14, 15], time reversibility (Tr) [15], sample entropy (SE) [12],
and variance entropy (VarEn) [16].

In this work, three methods are presented for feature
subset selection.Thefirst one, developed in thiswork, is based
on the measurement of the Jeffrey divergence (JD) distance
between the parameter histograms computed from the preg-
nancy and labor EHG classes [17]. The last two methods,
developed for data mining, rely on the combination of a
classifier and a search procedure: either sequential forward
selection (SFS) [18] or binary particle swarm optimization
(BPSO) [19]. The goal of these methods is to select, from a
given feature set, the features subset that gives the maximum
classification accuracy.

This paper is organized as follows. In the first part we
will describe the experimental protocol.Then we will present
the features extracted from the EHG processing bibliography
and the three methods for feature selection. Finally, we will
present the results of feature selection.

2. Experimental Protocol

In our study we used signals recorded on 48 women: 32
during pregnancy (33–39 weeks of gestation) and 16 during

labor (39–42 weeks of gestation). The measurements were
performed at two hospitals in France and Iceland. In Ice-
land, the measurements were performed at the Landspitali
University Hospital, using a protocol approved by the rel-
evant ethical committee (VSN02-0006-V2). In France, the
measurements were performed at the Center for Obstetrics
and Gynecology (Amiens), using a protocol approved by
the relevant ethical committee (ID-RCB 2011-A00500-41)).
After the recording, we followed the pregnant women in
order to label the signals as either pregnancy or labor.
When the woman gave birth within 24 hours, the signal was
labeled “labor”. If the delivery occurred later, the signal was
labeled “pregnancy”. In our study not all pregnancies ended
by a spontaneous delivery, and in both hospitals different
drugs are routinely used for labor induction or progress. In
our study, 7 women received oxytocin (79 contractions), 3
women received Prostaglandin (49 contractions), 1 woman
received Epidural (3 contractions), and 8 women received no
drugs (38 contractions).Our database contains only singleton
pregnancies.

The EHGs were recorded using a multielectrode system
composed of 18 electrodes: 16 arranged in a 4 × 4 matrix
positioned on the woman’s abdomen and two reference
electrodes placed on each of her hips [20]. The amplifier
bandwidth is 0.16–128Hz. To increase the signal-to-noise
ratio, we calculated the vertical bipolar signals (Vb𝑖). Finally,
we obtained 12 bipolar signals as shown in Figure 1. The
bandwidth of our signal lies between 0.1 and 3Hz. The
sampling frequency used is 200Hz, downsampled by a factor
of 12 to obtain a new signal of 16.67Hz.

In this study, we used only one bipolar signal, Vb7,
because this signal is a reference recording position that has
been used for a long time in our research. It is located on
the median vertical axis of the uterus. The signal energy in
this area remains high throughout the pregnancy as well as
during labor. The bursts of uterine electrical activity that
correspond to contractions were manually segmented, based
on the tocodynamometer signal recorded simultaneously.
After this manual segmentation of EHG bursts, we obtained
a database containing 133 pregnancy bursts and 133 labor
bursts.
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3. Materials and Methods

3.1. Parameters Extraction. In our study 20 parameters have
been extracted from the EHG. These parameters are divided
into two categories: linear and nonlinear.

3.1.1. Linear Parameters
Parameters Related to the Power Spectral Density. Several
frequency parameters have been extracted from the power
spectral density (PSD), 𝑆

𝑥
(𝑓). In our work, we use the Welch

Periodogram method to calculate the power spectral density
of each burst [11]. This Welch Periodogram uses a window of
type nfft, with size equal to the length of signal/2, with 50%
overlap, for a total of three windows used. Eleven frequency
parameters are extracted from this PSD: mean frequency
MPF [7], peak frequency (PF) [8–10], and deciles 𝐷1 . . . 𝐷9
[11], which contain the median frequency 𝐷5 [9, 11, 12].
Deciles correspond to the frequencies 𝐷1 . . . 𝐷9 that divide
the power spectral density into parts with each containing
10% of the total energy. Consider the following:

∫

𝐷𝑃

𝐷𝑃−1

𝑆
𝑥
(𝑓) 𝑑𝑓 = 0.1 ∫

𝑓max

0

𝑆
𝑥
(𝑓) 𝑑𝑓. (1)

Parameters Extracted from Wavelet Decomposition. Some
authors have also used time-frequency methods, such as
wavelet decomposition, to characterize the nonstationary
characteristics of the EHG. In our work, we used the wavelet
symlet 5, a choice based on the study referenced in [21]. This
study compared several types of wavelets. The results have
shown that the symlet 5 appears to be the most appropriate
wavelet for the analysis of EHG signals for detection and
classification purposes. After decomposition of each EHG
burst into detail coefficients, we calculate the variances on
the following detail levels: 2, 3, 4, 5, and 6 (named W1,
W2, W3, W4, and W5) as previously proposed in [13].
These detail coefficients are as follows: D2 [2.08–4.17Hz],
D3 [1.04–2.08Hz],D4 [0.52–1.04Hz],D5 [0.26–0.52Hz], and
D6 [0.13–0.26Hz] (see Figure 2). The choice of the details
depends on the sampling frequency of the signal (sample rate
equal to 16.67Hz after downsampling) in order to correspond
to the same frequency bands as the one selected in [13].These
selected details represent more than 96% of the signal energy
and cover the frequency band of interest.

3.1.2. Nonlinear Parameters
Time Reversibility (Tr). A time series is reversible if the
probabilistic properties are unchanged with respect to time
reversal. Time irreversibility is a good indicator of nonlinear-
ity. To calculate the time reversibility (Tr) of the signal 𝑥 we
have used equation described in [15] as follows:

Tr (𝜏) = ( 1

𝑁 − 𝜏
)

𝑁

∑

𝑛=𝜏+1

(𝑥
𝑛
− 𝑥
𝑛−𝜏
)
3

, (2)

where𝑁 is the signal length and 𝜏 is the time delay.

Lyapunov Exponent.TheLyapunov exponent (LE) studies the
stability and the sensitivity to initial conditions of the system.
It measures the rate of trajectory separation between adjacent

0–8.33 Hz EHG

0–4.17 Hz 4.17–8.33 Hz Detail 1

0–2.08 Hz 2.08–4.17 Hz Detail 2 = W1

0–1.04 Hz 1.04–2.08 Hz Detail 3 = W2

0–0.52 Hz 0.52–1.04 Hz Detail 4 = W3

0–0.26 Hz 0.26–0.52 Hz Detail 5 = W4

0–0.13 Hz 0.13–0.26 Hz Detail 6 = W5

Figure 2: Wavelet decomposition.

tracks in the phase space [14, 15]. In our study we used the
equation of LE described in [15] and represented by

𝜆 = lim
𝑡→∞

lim
󵄩
󵄩
󵄩
󵄩
󵄩
Δ 𝑑0

󵄩
󵄩
󵄩
󵄩
󵄩
→0

(
1

𝑡
) log(

󵄩󵄩󵄩󵄩󵄩
Δ
𝑑𝑡

󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩
Δ
𝑑0

󵄩󵄩󵄩󵄩󵄩

) , (3)

where ‖Δ
𝑑0
‖ represents the Euclidean distance between two

states of the system at an arbitrary time 𝑡
0
and ‖Δ

𝑑𝑡
‖

corresponds to the Euclidean distance between the two states
of the system at a later time 𝑡.

Sample Entropy.We used the sample entropy (SE) to identify
the regularity of EHG signals. In our work, we used the
sample entropy described in [12]. A less predictable time
series presents higher sample entropy. Consider a time series
𝑥(𝑡) of length𝑁 and patterns 𝑎

𝑗
(0, . . . , 𝑚−1) of length𝑚, with

𝑚 < 𝑁, and 𝑎
𝑗
(𝑖) = 𝑥(𝑖+𝑗); 𝑖 = 0, . . . , 𝑚−1; 𝑗 = 0, . . . , 𝑁−𝑚.

The time series 𝑥(𝑡) in a time 𝑡 = 𝑡𝑠, 𝑥(𝑡𝑠, . . . , 𝑡𝑠 + 𝑚 − 1) is a
match for a given pattern 𝑎

𝑗
, if |𝑥(𝑡𝑠 + 𝑖) − 𝑎𝑗(𝑖)| ≤ 𝑟, for each

0 ≤ 𝑖 < 𝑚. Sample entropy is then computed as follows:

SE
𝑚,𝑟
(𝑥) =

{{{{

{{{{

{

− log(
𝐶
𝑚

𝐶
(𝑚−1)

) , 𝐶
𝑚
̸= 0 ∧ 𝐶

𝑚−1
̸= 0,

− log( (𝑁 − 𝑚)
𝑁 − 𝑚 − 1

) , 𝐶
𝑚
= 0 ∨ 𝐶

𝑚−1
= 0,

(4)

where the four parameters 𝑁, 𝑚, 𝑟, and 𝐶
𝑚

represent,
respectively, the length of the time series, the length of
the sequences to be compared, the tolerance for accepting
matches, and the number of patternmatches (within amargin
for 𝑟) that is constructed for each𝑚.

In our study, the value of 𝑚 equals 2. This value is deter-
mined by the method of the false nearest neighbors (FNN);
the value of 𝑟 equals 0.2 according to the literature [12].
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Variance Entropy. Recent studies have used the variance
entropy (VarEn) to study biological signals but not for the
EHG. We are interested in using variance entropy because
this method combines the variance with sample entropy via
inverse-variance weighting. For a time series 𝑥, variance
entropy is defined as

VarEn (𝑥,𝑚, 𝑟) =
∑
𝑝

𝑖=1
SE
𝑚,𝑟
(𝑥
𝑖
) × 𝑤
𝑖

∑
𝑝

𝑖=1
𝑤
𝑖

, (5)

where 𝑥
𝑖
is the 𝑖th segment of 𝑥, 𝑤

𝑖
is the inverse variance

of 𝑥
𝑖
, and 𝑝 is the number of sliding windows. 𝑝 is not fixed

because the length of signals in our database depends onEHG
burst durations.

The sliding window, of size equal to 50 (window size),
slides over time with a step of 45 (step size), leading to an
overlap between the sliding windows which is equal to 5.The
choices of window size and step size were made empirically
after several trials. 𝑝 therefore depends on window size.

Because variance entropy combines the variance with
sample entropy via inverse-variance weighting, the number
of windows is very important and can significantly affect the
results. 𝑝 must be neither too high nor too small. A too
large 𝑝 value induces large computing time and does not
give a precise result. A too small 𝑝 value limits detection of
variability.

3.2. Feature Selection Techniques

3.2.1. Feature Selection Based on Jeffrey Divergence Distance.
This method consists of calculating, for each feature, the
Jeffrey divergence (JD) distance between the two histograms
obtained from the pregnancy and labor burst classes. This
distance between the two histograms allows us to measure
the similarity/dissimilarity of their corresponding statistical
properties. A smaller distance means a larger similarity
while a larger distance implies a lower similarity [22]. The
divergence distance is then used to select the discriminating
features. Indeed, the greater the distance between the feature
histograms of pregnancy and labor classes is, the more
discriminating the feature is [17].

This method has two parts. The first part consists of
calculating parameters and their histograms.The second part
consists of computing the distance between the histograms.

Calculating Parameters and Their Histograms. For each con-
traction of each group, we apply the following steps.

(1) Calculate the nonlinear parameters on the whole
EHG. These methods are time reversibility (Tr),
Lyapunov exponent (LE), sample entropy (SE), and
variance entropy (VarEn).

(2) Calculate the variances on the following details levels
after wavelet decomposition 2, 3, 4, 5, and 6 (W1,W2,
W3,W4, andW5).

(3) For each signal, compute the frequency parameters:
deciles (𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5, 𝐷6, 𝐷7, 𝐷8, and
𝐷9), mean frequency (MPF), and peak frequency
(PF), from the PSD of EHG.

(4) Group these values in a matrix calculated on the
whole EHG database. Thus, we obtain, for a given
contraction, a vector with dimension 20. The 20
columns of thematrix correspond to the 20 parameter
values computed from one EHG. As we have 133
contractions in each class, we obtain 133 vectors of
dimension 20 by class (one 133 × 20 matrix for each
class).We then compute from these 133 vectors of each
class the histogram for each parameter, giving us 2 sets
of 20 histograms, one for each parameter and for each
class.

Distance between Histograms. After obtaining, for a given
parameter, the two histograms for the labor and pregnancy
classes, we measure the distance between the histogram of
the two classes. To measure this distance, we use the Jeffrey
divergence method presented in [22]:

𝐷
𝐽𝑒
(𝐻, 𝐺) = ∑

𝑦

(ℎ
𝑦
log
ℎ
𝑦

𝑔
𝑦

+ 𝑔
𝑦
log
𝑔
𝑦

ℎ
𝑦

) , (6)

where 𝐻 and 𝐺 are the two histograms and where 𝑁 bins
(𝑁 = 10) are defined as 𝐻 = {ℎ

𝑦
} and 𝐺 = {𝑔

𝑦
}, with the

bin index 𝑦 ∈ {1, 2, . . . , 𝑁}. After calculating the distances
between every two corresponding parameter histograms for
the 20 parameters, we obtain a distance vector of dimension
20.We compute the distribution of the distances contained in
this distance vector.The goal of our study is to select themost
discriminating parameters; therefore, we apply a threshold
on the vector of distances in order to select the parameters
associated with the larger distances. After verification of the
Gaussianity of this distribution by using the Lilliefors test,
the threshold is chosen to be equal to mean +1∗ standard
deviation of the distance distribution.

3.2.2. Sequential Forward Selection (SFS). Sequential forward
selection (SFS) is a sequential search algorithm for feature
selection [23] developed for data mining. SFS begins with
an empty subset. The value of the criterion function (𝐽) is
calculated for each feature by using a classifier. The feature
presenting the best classification performance is selected (𝑌

𝑘
)

and then added to the subset.The next step consists of adding
sequentially the feature 𝑥+ that has the highest criterion
function 𝐽(𝑌

𝑘
+ 𝑥
+

) when combined with the features 𝑌
𝑘

that have already been selected. This cycle is repeated until
no criterion improvement is obtained when extending the
current subset. The following steps present the algorithm of
SFS [18].

(1) Start with an empty subset 𝑌
0
= {Φ}

(2) Select the next best feature: 𝑥+ = arg max[𝐽(𝑌
𝑘
+𝑥
+

)]

(3) If 𝐽(𝑌
𝑘
+ 𝑥
+

) > 𝐽(𝑌
𝑘
)

(a) Update 𝑌
𝑘+1
= 𝑌
𝑘
+ 𝑥
+

, 𝑘 = 𝑘 + 1

(b) Go to step 2

End
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For our study, three classical classifiers have been used to
compute the criterion function 𝐽 (minimal error). The clas-
sifiers are as follows: linear discriminant analysis (LDA) [24],
quadratic discriminant analysis (QDA) [25], and 𝐾-nearest
neighbors (KNN) with 𝐾 = 11 (the choice of 𝐾 is based on
the number of training sets) [24].The SFS algorithm searches
sequentially for the best feature subset. We then chose only
the combination of features that presents this minimal error.

The SFS algorithm is applied to synthetic data to test its
efficiency. The synthetic data consists of a matrix 400 ∗ 6
(400 observations corresponding to two classes defined by 6
features). Four features (features 1, 2, 4, and 6) are generated
randomly (centered normalized Gaussian). The remaining
ones (features 3 and 5) are generated using normalized
Gaussian distributions of meanm1 for class 1 andm2 for class
2. After verification of its efficiency on synthetic data, we have
applied it to our EHG database. We used 70% of the data set
for classifier training and the remaining 30% for testing.

3.2.3. Binary Particle Swarm Optimization (BPSO). Particle
swarm optimization (PSO) was developed by Eberhart and
Kennedy in 1995. It is a population-based stochastic opti-
mization technique that was inspired by the social behavior
of bird flocking or fish schooling [26]. PSO uses a number of
particles (the swarm) moving around in the search space in
order to achieve the best solution. We assume that our search
space is 𝑛-dimensional and that each particle is a point in
this space. The position of the 𝑖th particle of the swarm is
represented as 𝑋

𝑖
= (𝑥
𝑖1
, . . . 𝑥
𝑖𝑑
, . . . 𝑥
𝑖𝑛
). Each particle has a

best previous position 𝑝best𝑖 = (𝑝
𝑖1
, . . . , 𝑝

𝑖𝑑
, . . . 𝑝
𝑖,𝑛
),which

corresponds to the best fitness value (in our case best classifi-
cation given by a classifier fed with the selected features).The
global best particle among all the particles in the population
is represented by 𝑔best = (𝑝

𝑔1
, . . . , 𝑝

𝑔𝑑
, . . . , 𝑝

𝑔𝑛
).The velocity

of the 𝑖th particle is denoted by 𝑉
𝑖
= (V
𝑖1
, . . . V
𝑖𝑑
, . . . , V

𝑖𝑛
). The

particles velocity and position are manipulated according to
the following two equations:

V𝑘+1
𝑖𝑑
= 𝑤V𝑘
𝑖𝑑
+ 𝑐
1
𝑟
𝑘

1
(𝑝
𝑘

𝑖𝑑
− 𝑥
𝑘

𝑖𝑑
)

+ 𝑐
2
𝑟
𝑘

2
(𝑝
𝑘

𝑔𝑑
− 𝑥
𝑘

𝑖𝑑
) ,

(7)

𝑥
𝑘+1

𝑖𝑑
= 𝑥
𝑘

𝑖𝑑
+ V𝑘+1
𝑖𝑑
, (8)

where𝑤 is the inertia weight, 𝑐
1
and 𝑐
2
are positive constants,

and 𝑟
1
and 𝑟
2
are two random values in the range [0, 1].

Kennedy and Eberhart also proposed a binary particle
swarm optimization (BPSO) in order to solve optimization
problems with discrete valued parameters [19]. In BPSO, the
position of each particle is represented as binary strings.
By comparing PSO and BPSO we found that they have a
common velocity equation and a different particle position
equation which can be computed as follows:

𝑆 (V𝑘+1
𝑖𝑑
) =

1

1 + 𝑒
V𝑘+1
𝑖𝑑

, (9)

𝑥
𝑘+1

𝑖𝑑
= {
1 if 𝑟

3
< 𝑆 (V𝑘+1

𝑖𝑑
)

0 otherwise,
(10)

where 𝑆(V𝑘+1
𝑖𝑑
) is the sigmoid function and 𝑟

3
is a random

number in the range [0, 1].
BPSO has been widely used recently in the literature for

feature subset selection [27]. In this case, the length of a
binary string of each particle is equal to the length of the total
number of features, and each particle presents a candidate for
subset selection. If the bit included in the binary strings has
a value of “1”, the feature is selected; otherwise, the feature is
not selected.The following steps present the BPSO algorithm.

(1) Initialize all particles positions and velocities ran-
domly. Set the number of iterations𝐾 and other BPSO
parameters.

(2) Calculate the fitness value 𝐹(𝑋
𝑖
) of each particle.

Fitness represents the percentages of correct classifi-
cation.

(3) Compare the fitness of each particle to its best fitness
so far (𝑝best𝑘

𝑖
of last iteration 𝑘):

if 𝐹(𝑋𝑘+1
𝑖
) > 𝐹(𝑝best𝑘

𝑖
) then 𝐹(𝑝best𝑘+1

𝑖
) =

𝐹(𝑋
𝑘+1

𝑖
) and 𝑝best𝑘+1

𝑖
= 𝑋
𝑘+1

𝑖

Else 𝐹(𝑝best𝑘+1
𝑖
) = 𝐹(𝑝best𝑘

𝑖
) and 𝑝best𝑘+1

𝑖
=

𝑝best𝑘
𝑖

(4) Determine the global best position 𝑔best𝑘+1 from all
𝑝best𝑘+1
𝑖

. Then compare 𝑔best𝑘+1 with 𝑔best𝑘:

if 𝐹(𝑔best𝑘+1) > 𝐹(𝑔best𝑘) then 𝑔best =

𝑔best𝑘+1

Else 𝑔best = 𝑔best𝑘

(5) Update the position and the velocity of each particle
according to (7) and (10).

(6) Go to step 2, and repeat until the number of iterations
is reached.

When the limit number of iterations is reached, we obtain an
optimal solution (best subset of feature selection).

The parameters for the BPOS were chosen classically as
30 particles, with the length of each particle being equal to
20 (maximum number of features), 𝐾 = 100 iterations. The
acceleration constants 𝑐

1
and 𝑐
2
were set to 2. We also used a

linear descending inertia weight passing from 0.6 to 0.1.
In our paper, for BPSO algorithm, three classical classi-

fiers have been used to compute the fitness: linear discrim-
inant analysis (LDA) [24], quadratic discriminant analysis
(QDA) [25], and 𝐾-nearest neighbors (KNN) with 𝐾 = 11
(the choice of 𝐾 is based on the number of training sets)
[24].The best feature subset chosen by the BPSO algorithm is
defined as the one giving themaximumpercentages of correct
classification after 100 iterations (1 run). Then, to evaluate
the performances and variability of BPSO, we performed
multiple runs (200 runs). This algorithm is applied to the
same synthetic and real data as described above.
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Table 1: Mean ± standard deviation (STD) of parameters and results of Gaussianity test.

Parameter Mean ± STD (pregnancy) Gaussian Mean ± STD (labor) Gaussian
Tr 0.001 ± 0.01 N −0.0001 ± 0.01 N
LE 5.47 ± 0.63 Y 5.33 ± 0.52 Y
SE 1.17 ± 0.19 Y 1.23 ± 0.18 Y
VarEn 0.61 ± 0.30 Y 0.71 ± 0.29 Y
W1 0.0084 ± 0.0076 N 0.0118 ± 0.0114 Y
W2 0.03 ± 0.02 N 0.04 ± 0.03 Y
W3 0.07 ± 0.04 N 0.13 ± 0.09 Y
W4 0.27 ± 0.11 N 0.30 ± 0.10 Y
W5 0.48 ± 0.11 Y 0.41 ± 0.13 Y
D1 0.14 ± 0.02 N 0.15 ± 0.02 Y
D2 0.16 ± 0.03 N 0.17 ± 0.04 N
D3 0.18 ± 0.03 N 0.20 ± 0.05 N
D4 0.20 ± 0.04 N 0.23 ± 0.07 N
D5 0.22 ± 0.05 N 0.27 ± 0.08 N
D6 0.25 ± 0.06 N 0.32 ± 0.10 Y
D7 0.29 ± 0.07 N 0.37 ± 0.10 Y
D8 0.36 ± 0.09 N 0.45 ± 0.12 Y
D9 0.52 ± 0.18 N 0.64 ± 0.22 Y
MPF 0.30 ± 0.06 N 0.35 ± 0.08 Y
PF 0.18 ± 0.07 N 0.21 ± 0.10 N

Tr LE SE VarEn W1 W2 W3 W4 W5 D1 D2 D3 D4 D5 D6 D7 D8 D9 MPF PF

50
100

Figure 3: Color vector representing the distribution of distances between parameters.

4. Results

4.1. Results of Parameters Extraction. For each contraction
of each group, we calculate the 20 parameters (linear and
nonlinear parameters) from the EHG. Table 1 presents the
mean ± standard deviation of each of the parameters in each
class. Additionally, in this table we present for each parameter
the Lilliefors test result concerning its Gaussianity.

4.2. Results of Feature Selection Using JD Distance. We first
present the results obtainedwith the feature selectionmethod
based on the Jeffrey divergence. After calculating the dis-
tances between every two corresponding feature histograms
for the 20 features, we obtain a distance vector of dimension
20, as presented in Figure 3. The red color represents the
maximum distance value of the distribution and the blue
color its minimum. Each coordinate of this vector represents
a different feature.

Figure 4 shows the selection vector obtained after apply-
ing the threshold (equal to the mean +1∗ standard deviation
of the distance distribution) on the distance vector. A white
color indicates that the feature has been selected as being
discriminating between pregnancy and labor.

With this approach we selected 5 discriminating features:
variance on the wavelet decomposition detail level 4 (W3),
decile 6 (D6), decile 7 (D7), decile 8 (D8), and decile 9 (D9).

Table 2: Results of BPSO and SFS on synthetic data. The features
marked in bold font, correspond to the discriminating features.

Classifiers BPSO (gbest that have
best fitness)

SFS (combination of features
with minimal error)

QDA [3, 4, 5] [3, 5, 6]
LDA [1, 3, 4, 5, 6] [3, 5, 6]
KNN [3, 4, 5, 6] [2, 3, 5]

4.3. Results of Feature Selection Using SFS and BPSO

4.3.1. Results on Synthetic Data. The algorithms BPSO and
SFS were first applied to the synthetic data described above
in order to test their efficiency. Table 2 presents the results
obtained after applying SFS and BPSO to these synthetic data.
We notice that the two features 3 and 5 marked in bold
font in Table 2 are always selected by the two algorithms
(BPSO and SFS) whatever the meanm1 andm2 (m1#m2) and
whatever the classifier. We can also notice that both methods
select larger sets than the minimum set containing the 2
clearly discriminating features, whatever the classifier, with
SFS giving smaller sets than BPSO most of the time.

4.3.2. Results on Real Uterine EMG Signals. Table 3 presents
the selected feature subset obtained fromBPSOand SFSwhen
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Tr LE SE VarEn W1 W2 W3 W4 W5 D1 D2 D3 D4 D5 D6 D7 D8 D9 MPF PF

Figure 4: Selection vector representing the best parameters for the discrimination between pregnancy and labor.

Table 3: Comparison between BPSO and SFS. The common features between the subsets obtained from BPSO and SFS by using the three
classifiers are marked in bold font.

Classifier BPSO (gbest that have best fitness between 200 runs) SFS (combination of features with minimal error)
QDA LE, VarEn,W1, W4, D1, D2, D4, D5, D8, D9 TR, LE, SE, VarEn,W1, W2, W4, D8,D9
LDA SE, VarEn,W1, W2, D1, D4, D8,MPF SE, VarEn,W2, W3, D1, D3, D7, D8,D9,MPF

KNN LE, SE, VarEn,W3, W4, D1, D3, D5, D6, D8 TR, LE, SE, VarEn,W1, W2, W3, W4, W5, D1, D2, D3,
D4, D7, D8,MPF

Table 4: Comparison of the percentage of correct classification of the selected features subset by using QDA.

Selection method Selected feature subset Correct classification using QDA
JD W3, D6, D7, D8, D9 79.95%
SFS with QDA TR, LE, SE, VarEn,W1, W2, W4, D8, D9 87.47%
SFS with LDA SE, VarEn,W2, W3, D1, D3, D7, D8, D9,MPF 83.71%
SFS with KNN TR, LE, SE, VarEn,W1, W2, W3, W4, W5, D1, D2, D3, D4, D7, D8,MPF 84.96%
BPSO with QDA LE, VarEn,W1, W4, D1, D2, D4, D5, D8, D9 88.72%
BPSO with LDA SE, VarEn,W1, W2, D1, D4, D8,MPF 81.20%
BPSO with KNN LE, SE, VarEn,W3, W4, D1, D3, D5, D6, D8 86.22%

applied to our EHG database by using the 3 different classi-
fiers. Each selected feature subset corresponds to that giving
the maximum percentage of correct classification (93.73%
withQDA, 91.23%with LDA, and 89.97%with KNN). Table 3
also presents the best feature subsets as selected by SFS, which
corresponds to the minimal error.

From Table 3, we can notice that BPSO always selects 3
features regardless of classifier type.These features are VarEn,
D1, and D8. For SFS, the common features between the
subsets obtained from the three classifiers are SE, VarEn,W2,
and D8. Only VarEn and D8 marked in bold font in Table 3
are systematically selected by both methods.

4.4. Validation. The results presented above give seven sub-
sets of features selected by using JD, SFS with QDA, SFS with
LDA, SFS with KNN, BPSO with QDA, BPSO with LDA,
and BPSO with KNN. We then evaluated the performances
of these seven selected subsets by calculating the percentages
of correct classification that they give when used as inputs of
a classifier. We used for this validation the same classifiers as
used for the selection phase: QDA, LDA, and KNN.

Table 4 presents the percentages of correct classification
for each subset by using the QDA classifier. The subset of
features selected by BPSO with QDA presents the highest
percentage of classification (88.72%) followed by the one
selected by SFS with QDA (87.47%). Table 5 presents the
percentage of correct classification for each subset by using
the LDA classifier.The result indicates that the subset selected
by SFS with QDA and SFS with KNN presents the highest
percentage (84.96%) followed by the ones selected by SFS
with LDA and BPSO with LDA (83.71%). Table 6 presents

the percentage of correct classification for each subset by
using the KNN classifier. The result indicates that the subset
selected by BPSO with QDA presents the highest percentage
of classification (87.47%) followed by the ones selected by
BPSO with KNN (84.96%).

5. Discussions and Conclusions

In this paper, we have extracted several features (linear
and nonlinear) from the EHG. Then we have applied three
selection techniques (Jeffrey divergence distance, SFS, and
BPSO) in order to select the most pertinent features allowing
discrimination between labor and pregnancy contractions.

It is clear from Table 2 (results obtained for synthetic
data) that the algorithms BPSO and SFS have the ability
to select discriminating features. In Table 3, which presents
the selection results obtained from EHG signals, we notice
that BPSO and SFS selected different subsets of features
when using the three different classifiers. It is very important
to highlight the most repetitive features selected with the
different methods. Indeed, these features are expected to
be very pertinent. Five features have been selected when
applying the JD algorithm (W3, D6, D7, D8, and D9). Three
others have been repeatedly selected by BPSO (VarEn, D1,
and D8) and three others have been repeatedly selected by
SFS (SE, VarEn, W2, and D8), whatever the type of classifier.
Only D8 is common to these 3 subsets. D8 corresponds to
the decile of mean value 0.36 ± 0.09 for the pregnancy class
and 0.45 ± 0.12 for the labor class (Table 1). This increase in
D8 value is in agreement with the most accepted observation
made by teams that have worked on EHG frequency content,
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Table 5: Comparison of the percentage of correct classification of the selected features subset by using LDA.

Selection method Selected feature subset Correct classification using LDA
JD W3, D6, D7, D8, D9 81.20%
SFS with QDA TR, LE, SE, VarEn,W1, W2, W4, D8, D9 84.96%
SFS with LDA SE, VarEn,W2, W3, D1, D3, D7, D8, D9,MPF 83.71%
SFS with KNN TR, LE, SE, VarEn,W1, W2, W3, W4, W5, D1, D2, D3, D4, D7, D8,MPF 84.96%
BPSO with QDA LE, VarEn,W1, W4, D1, D2, D4, D5, D8, D9 82.46%
BPSO with LDA SE, VarEn,W1, W2, D1, D4, D8,MPF 83.71%
BPSO with KNN LE, SE, VarEn,W3, W4, D1, D3, D5, D6, D8 82.46%

Table 6: Comparison of the percentage of correct classification of the selected features subset by using KNN.

Selection method Selected feature subset Correct classification using KNN
JD W3, D6, D7, D8, D9 78.70%
SFS with QDA TR, LE, SE, VarEn,W1, W2, W4, D8, D9 83.71%
SFS with LDA SE, VarEn,W2, W3, D1, D3, D7, D8, D9,MPF 81.20%
SFS with KNN TR, LE, SE, VarEn,W1, W2, W3, W4, W5, D1, D2, D3, D4, D7, D8,MPF 83.71%
BPSO with QDA LE, VarEn,W1, W4, D1, D2, D4, D5, D8, D9 87.47%
BPSO with LDA SE, VarEn,W1, W2, D1, D4, D8,MPF 81.20%
BPSO with KNN LE, SE, VarEn,W3, W4, D1, D3, D5, D6, D8 84.96%

whatever the species: a clear shift towards higher frequencies
of the EHG frequency content when going from pregnancy to
labor [3, 6].

Comparing the 6 subsets of features obtained by BPSO
and SFS, we notice that two features, VarEn and D8, are also
common. This confirms the observation made by different
teams concerning the interest of taking into account the
nonlinear characteristics of EHG for diagnostic purposes
[12, 14, 15]. VarEn also increases from pregnancy to labor
(Table 1), indicating an increase in EHG nonlinearity from
pregnancy to labor, which is in agreement with the work done
by different teams [12, 14, 15]. VarEn performed better here
than the other nonlinear features computed by these teams.
This short subset should also be of diagnostic interest.

From the validation study, developed in order to test the
performance of the selected subsets, we notice from Table 4
that the feature selected by BPSO with QDA corresponds
to the highest percentage of correct classification (88.72%)
obtained when using QDA. Table 6 presents the second
highest percentage of correct classification (87.47%) obtained
with the subset of features selected by BPSO with QDA by
using KNN. This allows us to say that BPSO associated with
QDA seems to be the most efficient feature selection method
in our study.

Two conclusions can be drawn from these results.

(i) The most discriminating subset should be (or at least
should contain) the 2 following features: VarEn and
D8. Indeed, they are the most pertinent features
selected in the 7 subsets of features defined by using
JD, SFS, and BPSO, whatever the classifier.

(ii) BPSO with QDA gives larger selected sets than the
JD method, which might be demanding in time and
in training data. But these sets also give much better
results for the validation phase when using nonlinear

classifiers.This tends to imply that the classification of
EHG should be based on a nonlinear approach, either
for feature selection or classification, rather than on
linear ones.

As future work, we will classify the EHG by using, as inputs
of the classifier, only the selected features in order to compare
the obtained results with the ones obtained by using all the
features.Wewill also test the bestmethods of feature selection
on a larger database. Accordingly, we will be able to use
more robust and relevant cross-validation techniques than
the simple one used in this study. Additionally, we should
try other classification methods for the validation phase,
such as those based on neural networks, SVM, or KNN. We
will also include in this selection process features related to
uterine synchronization and activity propagation that have
been proven to beof interest for EHGmonitoring [4], as soon
as they are available from the work currently in progress
in our team. With this work we expect to obtain the most
pertinent data analysis features for predicting the preterm
labor threat as early as possible.
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