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Abstract
We describe an oxidative Strecker reaction that allows for direct cyanation of para-
methoxyphenyl (PMP)-protected primary amines. A vanadium(V) complex was used as the
catalyst and TBHP as the oxidant. The cyanation occurs at the α-C position bearing either an alkyl
or an aromatic group. This method provides a direct access to α-aminonitrile from amines with
one-carbon extension.
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Cyanide, or nitrile, is a valuable one-carbon unit. It can be converted into a variety of polar
functional groups, for example, amine, aldehyde, ketone, carboxylic acid, and amide. The
Strecker reaction is the most commonly used cyanation reaction, which gives α-
aminonitriles from imines.1 Imines are normally prepared by condensing amines and
aldehydes (Figure 1, top), but can also be generated by oxidizing amines (Figure 1, bottom).
Recently, this oxidative approach has been recognized as a powerful new way to
functionalize amines.

The oxidative Strecker reaction is a cross-dehydrogenative coupling (CDC) reaction.2 It
provides a more direct access to α-aminonitriles than the traditional Strecker reaction. It also
uses the amine building blocks in a different way. Instead of cyanating aldehydes at the
carbonyl position after imine formation, this one-carbon extension reaction functionalizes
amines at the α-C-position. The focus of current research on this type of CDC reaction is the
oxidative functionalization of tertiary amines, in particular, N,N-dialkylaniline and
tetrahydroisoquinoline.3,4 Issues associated with primary and secondary amines arise from
the N–H oxidation step,5,6 which often yields nitrones or N-oxides instead of imines.7
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Vanadium complexes have been used widely to catalyze the oxidation of olefins, thioethers,
alcohols, phenols, but not amines.8 There is only one report of vanadium-catalyzed CDC
reaction, specifically, oxidative Strecker reaction of tertiary amines.9 As part of a program to
expand the utility of vanadium complexes, we searched for vanadium catalyst systems that
promote the N–H oxidation. We report here that vanadium-Schiff base complexes can
catalyze oxidative Strecker reaction of PMP-protected primary amines.

We recently found that vanadocene dichloride (Cp2VCl2) catalyzes benzylic C–H oxidation
selectively and efficiently.10 We hypothesized that high-valent vanadium complexes could
also oxidize the weakly activated α-C–H group of amines and promote a Strecker reaction.
We envisioned that methods for cyanating primary amines would be most versatile because
the nitrogen center of the products could be further functionalized. We chose to use the
electron-rich para-methoxyphenyl (PMP) protecting group to promote the oxidation and
circumvent the self-condensation issue of primary amines. After C–H cyanation, the N-PMP
group can be removed easily to give α-aminonitriles that bear a primary amino group.11

We began our study by searching for an active vanadium catalyst at 5 mol % loading. We
used PMP-benzylamine (1) as the substrate, TBHP as the oxidant, and TMSCN as the
cyanide source (Table 1). All the vanadium(III) and vanadium(IV) complexes we examined
were not able to promote this reaction (entries 1 and 2). However, various vanadium(V)
complexes were found active (entry 3), with the vanadium(V)-Schiff base complex 3a
catalyzing the oxidative cyanation of 1 to give 2 in 50% yield (entry 4). Introducing two
sterically bulky and slightly electron-donating tert-butyl groups to the aromatic ring of the
Schiff base ligand resulted in decreased reaction rate (entry 5), whereas adding an electron-
withdrawing nitro group led to a complex mixture of products (entry 6). Acetonitrile was
proved to be the solvent of choice (entries 7–11). The yield of 2 could be improved to 61%
by increasing the reaction concentration to 0.2 M (entry 12).

The generality of this vanadium-catalyzed oxidative Strecker reaction is shown in Table 2.
A variety of PMP-protected primary amines can be cyanated easily. For substituted
benzylamines, both electron-donating and withdrawing groups can be tolerated at the para,
meta, or ortho position (4–9). In general, electron-rich benzylamines (4 and 5) are more
reactive than the electron-deficient ones (6–9). Aromatic rings other than phenyl can also be
tolerated. For example, both the PMP-protected naphthylmethylamine and
thiophenylmethylamine were cyanated smoothly (10 and 11). Importantly, activation of the
α-position by an aromatic group is not necessary. This oxidative Strecker reaction can be
used to functionalizing PMP-protected aliphatic amines (12–14).

This oxidative Strecker reaction allows us to make use of amine building blocks to prepare
α-aminonitriles that cannot be easily accessed by traditional methods. For example, α-C-
cyantion of the PMP-protected (+)-dehydroabietylamine (15) gave 16 in 61% yield as a 2:1
mixture of diastereomers. 15 was synthesized by copper-catalyzed N-arylation of (+)-
dehydroabietylamine (see Supplementary Material for details).

Mechanistically, we believe that 3a first reacted with TBHP to give I as the active catalyst.
The PMP-amine then coordinated to I and formed complex II. Similar to other metal-
catalyzed amine oxidation reactions,2 a single-electron transfer (SET) from the electron-rich
nitrogen center to the vanadium complex occurred to give III, a valence tautomer of II.
Subsequent O–O homolysis and C–H abstraction gave IV and the iminium ion, which
reacted with cyanide to give the α-aminonitrile. Support for the SET hypothesis followed
from the observation that electron deficient acetyl, tosyl, and Boc-protected benzylamines
did not react under these conditions. In addition, vanadium(III) complexes could not
promote this oxidative Strecker reaction, suggesting that a two-electron vanadium(III/V)
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redox mechanism was not operative. We also believe that amine oxidation was not mediated
by tert-butoxyl radical,12 because vanadium(IV) complexes did not catalyze the reaction,
and vanadium(V) complexes other than 3 gave only less than 10% conversion. For the same
reason, we believe that the aminium ion was coordinated to vanadium (III) when the C–H
abstraction occurred. The Schiff base ligand likely served as an electron sink to facilitate the
SET. We further propose that the silyl transfer from TMSCN to the oxide ligand of III or IV
promoted the regeneration of I and released the cyanide for the Strecker reaction.

In summary, we have developed a vanadium-catalyzed oxidative Strecker reaction of PMP-
protected primary amines. This α-C–H cyanation reaction allows for functionalization of
amines at the α-C-position, and is complimentary to the traditional Strecker reaction which
functionalizes aldehydes. Efforts are underway to further explore the utility of vanadium-
catalyzed CDC reactions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Traditional vs. oxidative Strecker reactions.
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Figure 2.
Functionalization of natural product dehydroabietylamine. Reaction conditions: 15 (0.2
mmol), TBHP (70 wt. % in water, 0.3 mmol), TMSCN (0.24 mmol), 1 mL CH3CN. PMP =
para-methoxyphenyl (p-MeOPh).
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Figure 3.
Proposed mechanism for the vanadium-catalyzed α-C-cyanation reaction.
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Table 1

Development of the vanadium-catalyzed oxidative α-C-cyanation reaction
a

Entry Catalyst Solvent Yield

1 VCl3 or VBr3 CH3CN 0%

2 VF4, VO2, VOSO4 or VO(acac)2 CH3CN 0%

3 V2O5, VO(OiPr)3, VO(OSiPh3)3 CH3CN <10%

4 3a CH3CN 50%

5 3b CH3CN 32%

6 3c CH3CN <10%

7 3a CH2CI2 30%

8 3a DMF <10%c

9 3a THF <10%

10 3a dioxane <10%

11 3a toluene <10%

12 3a CH3CN
b 61%

a
Reaction conditions: 1 (0.1 mmol), TBHP (70 wt. % in water, 0.15 mmol), TMSCN (0.12 mmol), 1 mL solvent.

b
0.5 mL solvent.
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Table 2

Scope of the α-C-cyanation reaction
a,b

a
Reaction conditions: amine (0.2 mmol), TBHP (70 wt. % in water, 0.3 mmol), TMSCN (0.24 mmol), 1 mL CH3CN.

b
Isolated yields. PMP = para-methoxyphenyl (p-MeOPh).
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