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Abstract

SHOX and SHOX2 transcription factors are highly homologous, with even identical homeodomains. Genetic alterations in
SHOX result in two skeletal dysplasias; Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD), while no
human genetic disease has been linked to date with SHOX2. SHOX2 is, though, involved in skeletal development, as shown
by different knockout mice models. Due to the high homology between SHOX and SHOX2, and their functional redundancy
during heart development, we postulated that SHOX2 might have the same transcriptional targets and cofactors as SHOX in
limb development. We selected two SHOX transcription targets regulated by different mechanisms: 1) the natriuretic
peptide precursor B gene (NPPB) involved in the endochondral ossification signalling and directly activated by SHOX; and 2)
Aggrecan (ACAN), a major component of cartilage extracellular matrix, regulated by the cooperation of SHOX with the SOX
trio (SOX5, SOX6 and SOX9) via the protein interaction between SOX5/SOX6 and SHOX. Using the luciferase assay we have
demonstrated that SHOX2, like SHOX, regulates NPPB directly whilst activates ACAN via its cooperation with the SOX trio.
Subsequently, we have identified and characterized the protein domains implicated in the SHOX2 dimerization and also its
protein interaction with SOX5/SOX6 and SHOX using the yeast-two hybrid and co-immunoprecipitation assays.
Immunohistochemistry of human fetal growth plates from different time points demonstrated that SHOX2 is coexpressed
with SHOX and the members of the SOX trio. Despite these findings, no mutation was identified in SHOX2 in a cohort of 83
LWD patients with no known molecular defect, suggesting that SHOX2 alterations do not cause LWD. In conclusion, our
work has identified the first cofactors and two new transcription targets of SHOX2 in limb development, and we
hypothesize a time- and tissue-specific functional redundancy between SHOX and SHOX2.
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Introduction prevalence of SHOX haploinsufficiency is 1 in 1000 individuals
[10].

The clinical symptoms produced by SHOX alterations, reflect its
molecular function and also its expression pattern during limb
development. SHOX belongs to the paired-related homeodomain
family of transcription factors [11]. Two major SHOX isoforms
stature (I\/IH\’I 300582) [1*9] Heterozygous mutations in SHOX or exist, SHOXa and SHOXb [1]7 both containing a homeodomain

its enhancers results in LWD, a disproportionate short stature (HD), but only SHOXa (which from now will be called in this
syndrome due to mesomelic shortening of the limbs, and the ’

typical abnormality of the forearms known as Madelung

Alterations of SHOX and its enhancers have been reported in
two skeletal dysplasias: Léri-Weill dyschondrosteosis (LWD, MIM
127300) and Langer mesomelic dysplasia (LMD, MIM 249700) as
well as in a small proportion of individuals with idiopathic short

paper SHOX) acts as a transcriptional activator in osteogenic cells
via its transactivation domain, the OAR (Otp, Aristaless, Rax),

deformity, characterized by the bowing of the radius and dorsal which is absent in SHOXb. SHOX has been shown to regulate
dislocation of the distal ulna. LMD is due to homozygous or

X . ) various genes involved in limb development: directly regulating
compound heterozygous mutations in SHOX or its enhancers,

the transcription of the natriuretic peptide precursor B gene

resulting in severely disproportionate short stature with marked (NPPB, MIM 600295) [12] which encodes the brain natriuretic

mesomelic and rhizomelic limb shortening. The estimated protein (BNP), and fibroblast growth factor receptor 3 gene
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(FGFR5, MIM 134934) [13], two genes involved in the signalling
of endochondral ossification. In contrast, SHOX cooperates with
the SOX trio, via its protein interaction with SOX5/SOX6, to
regulate the Aggrecan gene (ACAN, MIM 155760) which encodes
a major component of cartilage extracellular matrix [14].
Recently, the homeobox transcription factor HOXAY, which is
thought to be important in limb patterning [15], has been
identified as the first regulator of SHOX expression [16].

During limb development, SHOX is principally expressed in
the mesomelic portions of the limbs [17,18], in the mesenchymal
cells during the first steps of chondrogenesis [17,18] and in the
developing chondrocytes of the human growth plate throughout
endochondral ossification [14,19].

SHOX2 is the human paralog of SHOX, presenting a global
homology of 83% and identical homeodomains [11]. Two
SHOX?2 isoforms exist, SHOX2a (which we call SHOX2 from
now onwards) and SHOX2b, which differ only in their N-terminal
regions [l1]. However, the functional significance of these
isoforms remains elusive.

Whilst no ortholog for SHOX exists in mice, an ortholog of
SHOX?2 does exist [17]. The first Shox2 knockout mouse was
embryonically lethal, but it revealed the importance of this gene in
palatogenesis and heart and limb development [20]. Subsequent
analyses of different Skox2 knockout mice and in xenopus showed
that Shox2 participates in an intricate signalling pathway that
regulates the sinoatrial node formation and pacemaking function
[21-24].

Different conditional Skox2 knockout mice models have showed
severe rhizomelic limb but also mesomelic hindlimb shortening
[20,25,26]. Shox2 regulates progression through chondrogenesis
at two distinct stages, it prevents the onset of early chondrocyte
differentiation and it controls the transition from mature to
hypertrophic chondrocytes, regulating the expression of, among
others, Sox9, Sox6, Acan, Col2al, CollOal, Bmp2, Bmp4, Runx2 and
Runx3 [26,27]. When Shox2 is deleted from developing chondro-
cytes, Bmp4 expression is significantly increased, driving chon-
drocyte maturation and hypertrophy. However, when Shox2 is
deleted earlier in the limb bud, as in micromass cultures of Shox2
mutant limb cells or in primary mouse bone marrow mesenchymal
stem cells, only a modest increase in Bmp4 expression occurs,
sufficient to trigger early chondrogenesis but not enough to drive
chondrocyte maturation and hypertrophy [26,27].

We set out to determine whether SHOX?2 could regulate the
same transcription targets and interact both with SHOX and its
cofactors, SOX5 and SOX6, during limb development as: 1)
SHOX and SHOX2 are highly homologous; 2) both are expressed
in the developing limbs, even overlapping in some regions [17,18];
3) they possess similar transcriptional activities [22]; and 4)
functional redundancy between these proteins has been demon-
strated in the regulation of sinoatrial node formation and
pacemaking function [28].

Using luciferase reporter assays, we show that SHOX2, like
SHOX, has the capacity to activate directly NPPB whilst requiring
the SOX trio to activate ACAN. Moreover, using yeast two-hybrid
assays and co-immunoprecipitation we have characterized the
domains implicated in the dimerization of SHOX2 and its
interaction with SHOX, SOX5 and SOX6. Immunohistochem-
istry of human fetal growth plates demonstrated that SHOX2 is
coexpressed with SOX5, SOX6, SOX9 and SHOX. Taken
together, our work has identified the first cofactors and two new
transcription targets of SHOX2 in limb development.
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Materials and Methods

Generation of recombinant constructs

The full-length cDNA of SHOX2a (NM_006884.3) was obtained
by eliminating a 70 bp region of the IMAGE SHOXZ clone
4122010 (Source Biosource, Berlin, Germany). The two regions of
interest of this clone were amplified (PCRs A and B) and then
fused by PCR ligation using appropriate oligonucleotides (Table
S1 in File S1). The obtained product was subsequently cloned
using the TA-cloning kit (Invitrogen, Life Technologies, Carlsbad,
CA, USA) and then subcloned into different plasmids. The
SHOX2h (NM_003030.4) and various SHOX2a fragments were
amplified using the SHOXZ2a cloned region and appropriate
oligonucleotides (Table SI in File S1). The SHOX2a missense
mutations and various SHOXZ2a fragments were created using the
QuickChange Site-Directed Mutagenesis Kit (GE Healthcare,
Fairfield, Co, USA), appropriate mutagenic oligonucleotides and
different plasmids as templates (Table S2 in File S1). The SHOX,
SOX5, SOX6 and SOX9 clones were as previously described
[14].

The NPPB 1030 bp promoter was amplified using oligos and
PCR conditions as previously described [12], cloned into the
pCR2.1 vector (Invitrogen) and then subcloned into pGL3-Basic
luciferase vector (Promega, Madison, WI, USA). The Acan
enhancer plasmid (4XAl1)pCol2Luc [29] was kindly donated by
Dr Veronique Lefebvre.

Cell culture

Human osteosarcoma (U20S, ATCC HTB-96) and human
embryonic kidney 293 cells (HEK293, ATCC CRL-1573) were
maintained in Dulbecco’s modified Eagle’s medium (Invitrogen
Gibco BRL), supplemented with 10% fetal bovine serum
(Invitrogen Gibco BRL) and 1% penicillin and streptomycin
(Invitrogen Gibco BRL). Cells were cultured at 37°C and 5%
COa.

Luciferase assay

Luciferase assays were performed with U20S cells as previously
described [14]. Transient transfections in U20S or stable U20S
cell lines expressing SHOX under an inducible system have
proven to be very valuable tools allowing the initial characteriza-
tion of the function of SHOX and SHOX2 and the identification
of their target genes and cofactors [11-14,16,27,30]. Basically,
cells were transfected using FuGene (Roche Applied Bioscience,
Switzerland) at a DNA:Fugene ratio of 2:1 with different
combinations of SHOX, SHOX2, SOX5/SOX6 and SOX9
expression plasmids and reporter vectors. In the case of NPPB
reporter assays, 200 ng pRL-TK, 1500 ng reporter plasmid and
250 ng expression plasmids was employed whilst, in the Acan
reporter assays, 1.5 ng pRL-SV40, 750 ng reporter vector and
125 ng expression plasmids were added. Samples were normal-
ized, firstly, with respect to the Renilla luciferase activity and then
to that transfected with the empty reporter plasmid. Each
combination was transfected three times, and three biological
replicates were analyzed. Statistical analyses were undertaken with
SPSS v15.0 for Windows. We employed one-factor analysis of
variance (ANOVA) with the Bonferroni post hoc test for analysing
the results of luciferase assay.

Yeast two-hybrid assay

The yeast two-hybrid assay was undertaken as previously
described [14]. All values represent the mean and standard
deviation of five independent transformation experiments, each
performed in triplicate.
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Co-immunoprecipitation and Western blot analysis

Immunoprecipitations were carried out in HEK293 cells as
previously described [14]. Western blot analyses were undertaken
using the following rabbit polyclonal antibodies: anti-SHOX [30]
at a dilution of 1:3000, anti-SHOX2 (SAB2102137, Sigma
Aldrich, St Louis, MO, USA) at a dilution of 1:1000, anti-
SOX5 (Ab26041, Abcam, Cambridge, UK) and SOXG6 (Sc-20092,
Santa Cruz Biotechnology, Dallas, TX, USA) at a dilution 1:2000.
No cross reactivity was observed between SHOX2 and SHOX
(Fig. S1 in File S1).

Immunohistochemistry

Human tibia growth plate sections were obtained from
spontaneously aborted normal fetuses of 18, 27, 32 and 38 weeks,
after obtaining ethical approval and informed consent. The
detailed immunohistochemical procedure was as previously
described [14]. Negative controls (Fig. S1 in File S1) were
performed by: 1) replacing the primary antibody with PBS; 2)
using a rabbit polyclonal IgG isotype control (Ab27472, Abcam) at
a dilution of 1:50; 3) incubating sections of normal adult colon
(where SHOX2 protein is not expected to be expressed) with the
SHOX2 antibody. Specificity of the employed SHOX, SOX5,
SOX6 and SOX9 antibodies had been previously demonstrated
[14].

SHOX2 mutation screening

Ethical approval was obtained from “Hospital Universitario La
Paz”. All participants provided informed consent for the
performed studies. The cohort consisted of 83 probands with
LWD or suspected LWD. Clinical details were obtained for all
patients recruited into the study. Whenever possible, these
included birth details, anthropometric measurement, actual height
and height standard deviation scores according to national
standards [31], physical examination of extremities, and X-rays
of the lower arm. Family histories were also documented,
including parental heights. In all cases, the presence alterations
in SHOX or its enhancers had been previously excluded [4,7—
9,32,33]. The control cohort consisted of 95 Spanish individuals
with normal heights (Spanish DNA Bank, University of Sala-
manca).

Peripheral blood was drawn from probands for DNA extrac-
tion. Genomic DNA was isolated by the salt precipitation method
[34]. The screening of point mutations, small deletions and
msertions in the coding sequences and intron/exon boundaries of
SHOX2 (NM_006884.3) was performed using High Resolution
Melting. DNA fragments were amplified using MegaMix-Gold
(Microzone, Southampton, UK) and LC Green Plus + fluorescent
dye (BioFire Diagnostics, Salt Lake City, UT, USA). PCR
conditions are available in Table S3 in File S1. Melting curves
of amplified samples were analyzed using LightScanner HR96
(BioFire Diagnostics). Subsequent sequencing of any sample with
abnormal melting profiles was carried out using the BigDye
Terminator V3.1 kit (Applied Biosystems, Foster City, CA, USA).

SHOX? deletions and duplications were studied using micro-
satellite markers or a self-designed MLPA (multiplex ligation-
dependent probe amplification) assay. Microsatellite analysis was
undertaken through the detection of heterozygosity at four
different markers flanking SHOX?2 (Table S4 in File S1). PCR
conditions were as previously described (4). The self-designed
MLPA assay consisted of five SHOX2 probes and three control
fragments (Table S5 in File S1). MLPA reactions were carried out
using EK1 SALSA MLPA Kit (MRC-Holland, Amsterdam, The
Netherlands) according to the manufacturer’s protocol. The ratios
of the test’s peak areas versus control’s samples were determined
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subsequently. Normal peaks were classified as showing a ratio of
0.65-1.35 whilst deletions and duplications were classified as
having a ratio <0.65 or >1.35, respectively.

Results

SHOX2 activates NPPB and ACAN

We firstly analyzed the ability of SHOX2 to activate NPPB, a
direct SHOX target (12), using a luciferase assay in U20S cells.
Cells overexpressing SHOX2 were cotransfected with a luciferase
reporter plasmid carrying the NPPB promoter. SHOX2 was able
to activate NPPB expression to an even greater degree than that
observed for SHOX (Fig. 1A). With the purpose of confirming the
SHOX2 activation, we included two SHOX2 mutants which
mimic SHOX mutants reported in LWD patients (SHOX mutation
database;  http://hyg-serv-01.hyg.uni-heidelberg.de/lovd/index.
php?select_db = SHOX): p.L155V that mimics the SHOX homeo-
domain p.LL132V mutation, and p.Q234X, homolog to the SHOX
p-O211X mutation in which the OAR domain is absent. Both
SHOX?2 mutants failed to activate the NPPB promoter (Fig. 1A).

We subsequently set out to determine if SHOX?2 was also able
to activate the Acan enhancer via the SOX trio. Luciferase assays
were undertaken using combinations of SHOX2, SOX5, SOX6
and SOXO9. Due to the mutual redundancy of SOX5 and SOX6
[35] these proteins were included independently in the assays. As
with  SHOX, SHOX2 was able to activate Acan enhancer
transactivation in cooperation with SOX6/5S0OX9 (Fig. 1B) and
SOX5/50X9 (Fig. S2 in File S1), but not directly (Fig. 1B and
Fig. S2 in File S1). The two SHOX2 mutants, p.LL155V and
p-Q234X, reduced Acan enhancer activation (Fig. 1B and Fig. S2
in File S1), as observed with their SHOX homologues [14].

SHOX2 isoforms dimerize

Given that cooperative dimerization of paired-related homeo-
domains to DNA increases the transactivation efficiency to higher
levels [36] and that SHOX preferentially binds to DNA as dimers
[30], we assumed that SHOX2 should also dimerize to
transactivate its target genes. Using the yeast two-hybrid assay,
we verified that the SHOX2a and SHOX2b isoforms are capable
of homo- and hetero-dimerization (Fig. 2A).

Using a series of SHOX?2 deletion constructs (Fig. 2B) and the
yeast two-hybrid assay, we observed that only the SHOX2(139-
331) construct containing the homeodomain and the OAR
domain clearly interacted with SHOX2 (Fig. 2B), whilst weaker
interactions were observed for the constructs that contained only
one of these two domains.

Subsequently, we analyzed the interaction capacity of wild-type
SHOX?2 with seven artificially designed SHOX2 missense
mutations (Fig. 2C) that mimic SHOX mutations identified in
LWD patients (SHOX mutation database, http://hyg-serv-01.
hyg.uni-heidelberg.de/lovd/index.php?select_db = SHOX). Two
homeodomain mutants (p.L155V and p.A193P) together with
the OAR mutant p.R319P diminished their interaction capacity
with SHOX?2 (Fig. 2C). Interestingly, the SHOX2 p.R196C
homeodomain mutant heterodimerizes with SHOX2 at similar
levels to that of the wild-type (Fig. 2C), mimicking to that what was
observed for its SHOX homologue, p.R173C [14,37].

Thus, these experiments showed that both the homeodomain and
the OAR are the domains implicated in the SHOX?2 dimerization.

SHOX2 interacts with SOX5 and SOX6

Previously we had demonstrated that SHOX interacts with
SOX5/50X6 to activate the Acan enhancer in combination with
SOXO9 [14], thus, we proposed that as SHOX2 also increases Acan
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Figure 1. SHOX2 transactivates NPPB and ACAN. Luciferase reporter activity of U20S cells transfected with reporter plasmids containing the
NPPB promoter (A) or the Acan enhancer (B), renilla luciferase control plasmid and different combinations of SHOX, SHOX2, SHOX2(p.L155V),
SHOX2(p.Q234X), SOX6 and SOX9 expression plasmid as indicated. Fold-increase values were obtained by normalizing the relative luciferase units of
each sample with the relative luciferase units of the sample transfected only with the reporter plasmid. All values represent the mean and standard
deviation of three independent samples, with each sample assayed in triplicate. Significant p-values obtained comparing different independent

samples are indicated with an asterisk (*p<<0.05 and **p<<0.001).
doi:10.1371/journal.pone.0083104.g001

expression, it could interact with the SOX trio in a similar
manner. The yeast two-hybrid assay showed that SHOX2
interacts strongly with SOX6 whilst very weakly with SOX5
(Fig. 3A). Co-immunoprecipitation in HEK293 cells clearly
demonstrated that SHOX2 interacts with both SOX5 and
SOX6 (Fig. 3B).

Given that SOX5 and SOX6 are highly homologous, with an
overall homology of 67% and 90% identity in their HMG and
coiled-coil domains [38], we decided to characterize only the
SHOX2-SOXG6 interaction using the yeast two-hybrid assay and a
series of SHOX2 deletion constructs (Fig. 3C), SHOX2 missense
mutations (Fig. 3D) and SOX6 deletion constructs (Fig. 3E). The
three SHOX2 deletion constructs that were able to interact with
SOX6, SHOX2(1-200), SHOX2(139-200) and SHOX2(139-
331), share the homeodomain (Fig. 3C). The assay with various
SHOX2 missense mutations confirmed that the homeodomain is
involved in the SHOX2-SOX6 interaction since all the homeo-
domain mutants (p.L155V, p.A193P and p.R196C) diminished
their interaction ability (Fig. 3D). Moreover, the p.K139E mutant,
located in the amino acid adjacent to the homeodomain, also
reduced its interaction capacity with SOX6 (Fig. 3D), suggesting
that this amino acid is important for the interaction, as observed
for its SHOX homologue p.K116E, which had a reduced
mteraction with SOX6 [14]. Although the SOX6(479-787)
construct containing the HMG domain alone is able to interact
with SHOX2 (Fig. 3E), the fact that the SOX6(263-787) construct
containing both the HMG and the second coiled-coil domain
interacts with SHOX2 at a greater strength than the SOXG6 full
protein, suggests that the second coiled-coil may confer structural
stability to the HMG domain.

Therefore, the SHOX2 homeodomain and the SOX6 HMG
domain are involved in the SHOX2-SOX6 interaction.
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SHOX2 interacts with SHOX

Due to the high homology and the overlapping expression
pattern in limb development of SHOX and SHOX2, we set out to
determine if they could interact between each other. Using the
yeast two hybrid assay we identified that the two SHOX?2 isoforms
could interact with SHOX w vivo (Fig. 4A). We confirmed the
SHOX?2a-SHOX interaction by co-immunoprecipitation of
HEK293 nuclear lysates overexpressing SHOX2a and SHOX
(Fig. 4B).

Subsequently, we determined the domains implicated in this
interaction employing deletion constructs (Fig. 4C-D) and SHOX
missense mutations (Fig. 4E) in the yeast two hybrid assay. Only
the SHOX2(139-331) construct containing the homeodomain and
the C-terminal region including the OAR domain clearly
interacted with SHOX (Fig. 4C), suggesting that both SHOX2
regions are required for the interaction with SHOX.

Among the different SHOX fragments examined, the
SHOX(1-211), SHOX(117-274), SHOX(117-292)  and
SHOX(178-292) constructs were able to interact with SHOX2
(Fig. 4D) but to levels below 50% of the wildtype. The SHOX
fragments appeared to be less stable and the SHOX interacting
domain with SHOX2 was not clearly visible. Thus, further
analysis was undertaken using eight SHOX missense mutations
observed in LWD patients and located throughout the protein
(Fig. 4E). The SHOX homeodomain mutants p.LL132V and
p-Al70P showed a significant reduction in their interaction
capacity with SHOX2 (Fig. 4E), whilst the OAR mutant
p-D278A, had a reduced interaction but to a lesser extent
(Fig. 4E). Therefore, the SHOX homeodomain appears to be the
domain principally involved in the interaction with SHOX?2 whilst
the OAR domain appears to stabilize the interaction.
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Figure 2. Identification and characterization of the SHOX2 dimerization. A) SHOX2a and SHOX2b homo- and hetero-dimerize in the yeast-
two hybrid system. The S. cerevisiae strain Y187 was cotransformed with pGBT9 (containing the GAL4 binding domain - BD) and pACT2 (containing
the GAL4 activation domain - AD) vectors. Interactions were determined using a B-galactosidase liquid assay with CRPG as substrate. Empty vectors
were employed as negative controls. B) Characterization of the SHOX2 domains involved in the SHOX2 dimerization. The SHOX2 protein structure
showing the amino acid location of the homeodomain (HD) and the OAR domain is shown with the various analysed SHOX2 fragments, indicating
their name and amino acids that they contain. To the right of each fragment the corresponding yeast two-hybrid results are shown. Y187 cells were
cotransformed with SHOX2 in the pGBT9 vector and SHOX2 fragments in the pACT2 vector. Protein interaction percentages were obtained by
normalizing the B-galactosidase units of the different SHOX2 fragments to that obtained with full-length SHOX2. Empty vectors were employed as
negative controls. C) SHOX2 mutants impair the SHOX2 dimerization. SHOX2 protein structure scheme showing the localization of the seven analysed
missense mutations. Yeast two-hybrid assay of Y187 cotransformed cells with SHOX2 in the pGBT9 vector and the different SHOX2 mutants in the
pACT2 vector. Protein interaction percentages were obtained by normalizing the B-galactosidase units of the various SHOX2 mutants to the wildtype
SHOX2. Empty vectors were employed as negative controls.

doi:10.1371/journal.pone.0083104.g002

SHOX2 is coexpressed with SHOX, SOX5, SOX6 and SOX9 and SOXY in certain regions and stages of limb development

in the human growth plate [17.18]. L . . .
Tissue and time dependent coexpression of proteins must occur We firstly studied if SHOX2 is expressed in human fetal tibia

for the interactions to occur between these proteins. Previous growth plates of different developmental stages by immunohisto-

studies have shown that SHOX2 expression overlaps with SHOX chemisty, and showed that SHOX2 is expressed in the reserve,
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Figure 3. Identification and characterization of the SHOX2-SOX5 and SHOX2-SOX6 protein interactions. A) SHOX2 interacts with SOX5
and SOX6 in the yeast-two hybrid system. The S. cerevisiae strain Y187 was cotransformed with the pGBT9 (BD) and pACT2 (AD) vectors. Interactions
were determined by using a B-galactosidase liquid assay with CRPG as substrate. Empty vectors were employed as negative controls. B) SHOX2
interacts with SOX5 and SOX6 in human cells. Nuclear extracts of HEK293 cells overexpressing FLAG:SHOX2 and HA:SOX5 or HA:SOX6 were
immunoprecipitated using anti-FLAG-agarose. Western blots (WB) of immunoprecipitates (IP) were probed with SHOX2, SOX5 and SOX6 antibodies.
Nuclear extracts corresponding to 10% input were included as protein expression controls and nuclear extract immunoprecipitates of cells
transfected only with HA:SOX5 or HA:SOX6 were included as negative controls. The western-blot images clearly show that SOX5 and SOX6
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immunoprecipitate only in the presence of SHOX2. C) Characterization of the SHOX2 domains involved in the interaction with SOX6. An scheme of
the SHOX2 protein structure showing the amino acid location of the homeodomain (HD) and the OAR domain is shown with the various analysed
SHOX2 fragments, indicating their name and the amino acids that they contain. To the right of each fragment, the corresponding yeast two-hybrid
results are shown. Y187 cells were cotransformed with SOX6 in the pGBT9 vector and the SHOX2 fragments in the pACT2 vector. Protein interaction
percentages were obtained by normalizing the B-galactosidase units of the different SHOX2 fragments to that obtained with full-length SHOX2.
Empty vectors were employed as negative controls. D) SHOX2 mutants impair the interaction with SOX6. SHOX2 protein structure scheme showing
the localization of the seven missense mutations analyzed. Yeast two-hybrid assay of Y187 cotransformed cells with SOX6 in the pGBT9 vector and
the different SHOX2 mutants in the pACT2 vector. Protein interaction percentages were obtained by normalizing the B-galactosidase units of the
various SHOX2 mutants to the wildtype SHOX2. Empty vectors were employed as negative controls. E) Characterization of SOX6 domains involved in
the interaction with SHOX2 using the yeast two-hybrid assay. SOX6 is schematically drawn showing the amino acid location of two dimerization
domains, the first and the second coiled-coils (1st cc and 2nd cc, respectively), and the HMG DNA-binding domain. Depicted below are the SOX6
generated constructs, indicating the name of each fragment and the amino acids that they contain. Y187 cotransformed cells with the different SOX6
fragments in the pGBT9 vector and SHOX2 in the pACT2 vector. The protein interaction percentages were obtained by normalizing the (-
galactosidase units of the different SOX6 fragments to that obtained with full-length SOX6. Empty vectors were employed as negative controls.

doi:10.1371/journal.pone.0083104.g003

proliferative and hypertrophic zones at 18, 27, 32 and 38-weeks
(Fig. S3 in File S1). Subsequently, we also demonstrated that
SHOX2 is coexpressed with SHOX, SOX5, SOX6 and SOX9
proteins in the three differentiation regions of 18 and 38-weeks
human fetal tibia growth plates (Fig. 5 and Fig. S4 in File S1).

SHOX2 mutations are not responsible for the LWD
phenotype in our cohort of patients with unknown
molecular defect

Defects in SHOX or its regulatory elements have been
identified in ~70% of LWD patients [33,39,40], whilst the
remaining ~30% remain genetically uncharacterized. Screening
of the coding regions and intron-exon boundaries of SHOXZ2 in 83
LWD patients with no known defect was performed using HRM.
Samples with abnormal melting profiles were subsequently
sequenced. Complete or intragenic SHOX?2 deletions/duplications
were analysed using four microsatellite markers surrounding
SHOX?2 (Table S4 in File S1) or by a self-designed MLPA assay
(Table S5 in File S1).

Only two variants were identified, both located in exon 1 of
SHOXZ2: a duplication of three glycines in the glycine-rich repeat,
p.Gly77-Gly78dup (c.232_233dupGAGGAGGTG) and a mis-
sense mutation p.E21K (c.61G>A). We therefore evaluated the
pathogenicity of these variants by determining their frequencies in
control populations and by analyzing their cosegregation with the
LWD phenotype when possible. In contrast to SHOX, where
msertions and deletions of the homologous SHOX glycine repeat
have been described in patients with LWD/ISS (SHOX mutation
database, http://hyg-serv-01.hyg.uni-heidelberg.de/lovd/index.
php?select_db=SHOX), the SHOX2 glycine repeat length
appears to be a non-pathogenic CNV, since 183/7815 controls
(Exome Variant Server) and 3/95 Spanish control individuals with
normal heights carried this three amino acid insertion. The second
mutation, p.E21K was assessed in the control population and in
family members. Although the p.E21K mutation was only present
in 2/12092 individuals (Exome Variant Server) and was absent in
the 95 Spanish normal height controls, it did not cosegregate with
the phenotype in the family (data not shown). Thus, SHOX? is not
the molecular cause of the studied LWD cases.

Discussion

We have demonstrated that SHOX2 regulates NPPB directly
whilst activating ACAN via its cooperation with the SOX trio. The
SHOX2 activation of the NPPB promoter was even higher than
that observed for SHOX. Both analysed SHOX2 mutants,
p.L155V with reduced dimerization capacity and the p.Q234X
lacking the OAR domain, failed to upregulate NPPB, thus

PLOS ONE | www.plosone.org

suggesting that the SHOX2 homeodomain and the transactivation
domain are both critical for the NPPB activation.

A role for NPPB during endochondral ossification and
longitudinal growth was initially suggested by the observation of
skeletal overgrowth and alterations in the growth plate of Nppb
transgenic mice [41]. Despite this, no further implication in
skeletal development has been reported to date. With our new
data, it would be interesting to test if Njpb expression is reduced in
embryonic limb bud micromass cultures from Skox2 mutant mice
models. In contrast, the involvement of BNP in cardiovascular
function is much clearer, to the extent that this peptide is a
biomarker for diagnosis and prognosis of heart failure [42]. Given
that Shox2 participates in heart development as shown by different
knockout mice models [20,22,23], it is tempting to speculate that
Shox2 also regulates Nppb expression in heart and that the
disruption of this pathway is critical for the heart failure in Shox2
knockout mice models.

The other SHOXZ2 transcriptional target discovered in this
work is ACAN, which codifies for Aggrecan, a main component of
the cartilage extracellular matrix. Previously, our group demon-
strated that SHOX interacts with SOX5/SOXG6 to cooperate with
SOXO9 in the activation of ACAN [19]. As with SHOX, SHOX?2
cannot directly activate the Acan enhancer but requires the
cooperation of the SOX trio. These results correlate with those
observed in Shox2 mutant mice where Acan levels were significantly
lower in Col2al-CreShox2 mutant limb bud micromass cultures
[26]. Further characterization demonstrated that the SHOX2
homeodomain and OAR domains are both critical for this Acan
induction, since mutants in both domains failed to upregulate Acan.
In this work, we have also demonstrated that SHOX2 interacts
with SOX5 and SOX6. The SHOX2 homeodomain was shown
to interact with the SOX6 HMG domain, thus in agreement with
the results observed with SHOX-SOX6 [14] and other protein
interactions [43-45]. Interestingly, the p.K139E mutant, located
in the amino acid adjacent to the homeodomain of SHOX2,
reduced its interaction capacity with SOX6 as observed previously
with the homologous SHOX mutant, p.K116E [14], thus,
mmplicating that this amino acid is also important for the
interaction.

Our finding the homeodomain of SHOX and SHOX2 is
mmplicated in the heterodimerization agrees with previous studies
of other homeodomain proteins [46]. This interaction could: 1)
alter the transactivation of their transcription targets by interacting
with different cofactors and/or binding to DNA with different
affinities; and 2) regulate different transcription targets, compared
to that of the homodimers. More research is required in order to
decipher the biological function of the discovered SHOX-SHOX2
protein interaction. In the future, it will be important to confirm
these interactions and enlighten our knowledge further using i vivo
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Figure 4. Identification and characterization of the SHOX2-SHOX interaction. A) SHOX2 interacts with SHOX in the yeast-two hybrid
system. The S. cerevisiae strain Y187 was cotransformed with the pGBT9 (BD) and pACT2 (AD) vectors. Interactions were determined by using a -
galactosidase liquid assay with CRPG as substrate. Empty vectors were employed as negative controls. B) SHOX2 interacts with SHOX in human cells.
Nuclear extracts of HEK293 cells overexpressing FLAG:SHOX2 and HA:SHOX were immunoprecipitated using anti-FLAG-agarose. Western blots (WB)
of immunoprecipitates (IP) were probed with SHOX2 and SHOX antibodies. Nuclear extracts corresponding to 10% input were included as protein
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expression controls and nuclear extract immunoprecipitates of cells transfected only with HA:SHOX were included as negative controls. The western-
blot images clearly show that SHOX immunoprecipitate only in the presence of SHOX2. C) Characterization of the SHOX2 domains involved in the
interaction with SHOX. A scheme of the SHOX2 protein structure showing the amino acid location of the homeodomain (HD) and the OAR domain is
drawn together with the various SHOX2 fragments analysed, indicating the name of each fragment the amino acids that they contain. Yeast two-
hybrid assay of Y187 cells cotransformed with SHOX in the pGBT9 vector and different SHOX2 fragments in the pACT2 vector. Protein interaction
percentages were obtained by normalizing the B-galactosidase units of the different SHOX2 fragments to that obtained with full-length SHOX2.
Empty vectors were employed as negative controls. D) Characterization of the SHOX domains involved in the interaction with SHOX2 using the yeast
two-hybrid assay. An scheme of the SHOX protein structure showing the amino acid location of the homeodomain (HD) and the OAR domain is
shown with the various SHOX fragments analysed, indicating their name and the amino acids that they contain. To the right of each fragment are the
corresponding yeast two-hybrid results. Y187 cells were cotransformed with the different SHOX fragments in the pGBT9 vector and with SHOX2 in
the pACT2 vector. Protein interaction percentages were obtained by normalizing the B-galactosidase units of the different SHOX fragments to that
obtained with full-length SHOX. Empty vectors were employed as negative controls. E) SHOX mutants impair the SHOX2-SHOX interaction. Schematic
structure of SHOX showing the homeodomain (HD), the OAR domain and the localization of the eight analyzed missense mutations. Yeast two-hybrid
assay of Y187 cotransformed cells with the different SHOX mutants in the pGBT9 vector and SHOX2 in the pACT2 vector. Protein interaction
percentages were obtained by normalizing the B-galactosidase units of the various SHOX mutants to the wildtype SHOX. Empty vectors were

employed as negative controls.
doi:10.1371/journal.pone.0083104.9g004

models, such as the SHOX/Shox2 knock-in mouse model [28], a
skeletal-specific conditional knock-in mouse or chicken limb buds.

For these interactions to have physiological importance, SHOX
and SHOX2 have to be coexpressed in a tissue and time
dependent manner. It has been reported that SHOX is mainly
expressed in the mesomelic portion of the limbs whilst SHOX2
expression occurs in the rhizomelic region, but overlapping
expression has been observed [17,18]. Further evidence of SHOX
expression in the rhizomelic region has been shown in LMD
individuals who lack SHOX, but present with both mesomelic and
rhizomelic shortening of the limbs [47]. Shox2 expression has also
been detected in the mesomelic parts of the limbs in mouse
[25,48], although it is difficult to extrapolate this data to humans
due to the lack of a SHOX ortholog in mouse. In this work, we
have demonstrated that SHOX and SHOXZ2, and also the SOX
trio members are coexpressed in human tibial growth plates at
different developmental stages. This data thus, argues for the
coexpression of SHOX and SHOX2 proteins in some limb regions
during specific time points.

Therefore, due to the high homology between SHOX and
SHOX2 and their identical homeodomains, their overlapping
expression in some limb regions, the sharing of transcriptional

SHOX2 SHOX

SOX5

targets implicated in limb development (i.e. NPPB and ACAN) and
the total rescue of the heart defects and its tissue-specific rescue in
limbs when SHOX was expressed in the Shox2KI/KI mice [28], we
argue for the existence of functional redundancy between SHOX
and SHOX2 in a tissue-specific manner during human embryonic
development. An interesting argument for this redundancy is
shown by the LWD phenotype. In these patients, the skeletal
deformities, i.e. the characteristic Madelung deformity, is more
pronounced in the distal region of the upper limb, where it has
been suggested that there is no SHOX-SHOX2 coexpression [17],
and thus SHOX2 cannot rescue the SHOX haploinsuficiency.
However, in the more proximal region of the radius and ulna,
SHOX and SHOXZ2 appear to be coexpressed [17], thus, SHOX?2
may be able to rescue the phenotype. But, in the case of LMD,
SHOX2 is unable to rescue the phenotype caused by the complete
absence of SHOX, thus, this rescue mechanism may have a
limiting threshold. Further studies will be required to support this
hypothesis.

As we have shown that SHOX2 shares cofactors and
transcription factors implicated in skeletal growth, we screened
for SHOX?2 alterations in a cohort of 83 patients with LWD or
possible LWD with no known PARI1 defect. No pathogenic

Negative
Control

Figure 5. SHOX2 is coexpressed with SHOX, SOX5, SOX6 and SOX9 in the 18-week human fetal growth plate. Inmunohistochemistry
performed on 18-week human fetal tibia growth plates using antibodies against SHOX2, SHOX, SOX5, SOX6, SOX9 and the negative control (PBS).
Specific staining can be observed in the reserve (R), proliferative (P) and hypertrophic (H) zones of the growth plate for all analysed proteins. Images
performed at 20 x magnification.

doi:10.1371/journal.pone.0083104.g005
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alteration was detected. Analyses of the Decipher database
(http://decipher.sanger.ac.uk/) entries revealed the presence of
eight patients with copy number variants (CNVs) of SHOX2. The
majority of these patients had multiple CNVs located throughout
the genome and no common clinical phenotype was observed.
Only two patients presented with one large CNV at the SHOX?
locus, but again no common phenotype was described. As
SHOX2 appears to have a broad expression pattern [17] and
the Shox2—/— mouse has heart, palate and skeletal defects [20],
we postulate that individuals with SHOX2 defects may present with
a more severe phenotype: limb shortening, heart anomalies and/
or cleft palate.

In summary, we have demonstrated that SHOX2, like SHOX,
activates NPPB directly whilst activation of ACAN is through the
cooperation with the SOX trio, adding further support to the
theory that there is functional redundancy between SHOX and
SHOX2 during human embryonic development in a tissue-
specific manner.

Supporting Information

File S1 File includes Figures S1-S4 and Tables S1-S5.
Fig. S1: Specificity of the different antibodies employed. A)
Immunohistochemical controls performed in 38-wk fetal growth
plates and adult normal colon sections: PBS - primary antibody
replaced by PBS, Isotype - rabbit polyclonal IgG isotype control
antibody, SHOX2 — SHOX2 antibody incubated with sections
from adult normal colon where this protein is not expected to be
expressed. Note the negative staining for the majority of the cells.
Images performed at 20 X magnification. B) Immunoblots showing
the specificity of the SHOX2 antibody. Nuclear extracts of
HEK293 cells overexpressing SHOX, SHOX2, SOX5, SOX6
and SOX9 were separated on SDS polyacrylamide gels and
probed with anti-SHOX2. Anti-GAPDH was used as loading
control. Fig. S2: SHOX2 cooperates with SOX5 and SOX9 to
activate the Acan enhancer. Luciferase reporter activity of U20S
cells transfected with a reporter plasmid containing the Acan
enhancer, renilla luciferase control plasmid and different combi-
nations of SHOX, SHOX2 WT, SHOX2(p.L155V),
SHOX2(p.Q234X), SOX5 and SOX9 expression plasmid as
indicated. Fold-increase values were obtained by normalizing the
relative luciferase units of each sample with the relative luciferase
units of the sample transfected only with the reporter plasmid. All
values represent the mean and standard deviation of three
independent samples, with each sample assayed in triplicate.
Significant p-values <0.001 obtained comparing different inde-
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