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Abstract

Biochemical systems involving a high number of components with intricate interactions often lead to complex models
containing a large number of parameters. Although a large model could describe in detail the mechanisms that underlie the
system, its very large size may hinder us in understanding the key elements of the system. Also in terms of parameter
identification, large models are often problematic. Therefore, a reduced model may be preferred to represent the system.
Yet, in order to efficaciously replace the large model, the reduced model should have the same ability as the large model to
produce reliable predictions for a broad set of testable experimental conditions. We present a novel method to extract an
‘‘optimal’’ reduced model from a large model to represent biochemical systems by combining a reduction method and a
model discrimination method. The former assures that the reduced model contains only those components that are
important to produce the dynamics observed in given experiments, whereas the latter ensures that the reduced model
gives a good prediction for any feasible experimental conditions that are relevant to answer questions at hand. These two
techniques are applied iteratively. The method reveals the biological core of a model mathematically, indicating the
processes that are likely to be responsible for certain behavior. We demonstrate the algorithm on two realistic model
examples. We show that in both cases the core is substantially smaller than the full model.
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Introduction

Biochemical networks are often very complex. The complexity

may arise from the large number of components involved in the

network and/or from their intricate interactions. When such

systems are modeled by differential equations, we obtain a large

non-linear differential equation system with many parameters.

There are some advantages for having a large model, e.g., it may

capture in detail the mechanisms of the system and therefore

might give accurate predictions. On the other hand, model

complexity also gives rise to severe problems, e.g., hard

understanding of system behavior under varying conditions; long

computing times, especially in case of stiff models; and parameter

identification problems, especially in the case of limited data

availability. To overcome these issues, reduced models that still

capture the essential features of the system are highly desirable.

Several methods for model reduction are already available, e.g.,

time-scale separation [1–4], sensitivity analysis [5–7], and lumping

[8,9]. These methods typically require prior knowledge of the

parameter values of the model before they can be applied.

Therefore, only the first two above-mentioned problems might be

remedied in this way, whereas the problem of parameter

identification, which is often the most problematic issue in systems

biology, remains. In addition, some of these methods may lead to

reduced models that are structurally different from the original

one. This is because a component in the new reduced model may

be a combination of several components in the original model, or a

component in the original model could be contained in several

components of the reduced model. This usually obstructs the

biological interpretation of the reduced model.

In previous work we developed a reduction method to simplify

biochemical models in systems biology [10]. This method is based

on the so-called ‘‘admissible region’’ concept, i.e., the set of

parameters for which the mathematical model yields some

required output. This concept reflects the parameter uncertainty

that commonly occurs in systems biology models. In contrast to

the methods mentioned above, our method does not require prior

knowledge of the parameter values. It also does not require a

transformation, so that the reduction result is directly interpret-

able. However, our procedure to construct a reliable reduced

model was not yet complete. The method only makes use of data

which were obtained from experiments under specific conditions.

The behavior of the system under conditions that are different

from these experiments, might not be well predicted.

In this paper we repair this shortcoming by presenting a novel

approach to extract a reliable reduced model from a full model

under a large variety of experimental conditions. The proposed

approach combines a reduction method and a model discrimina-

tion method. By combining these two methods, we arrive at a

simpler model that still has powerful prediction capabilities. This

in turn will help us in understanding the behavior of the complex
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system, since such a reduced model apparently contains the core of

the mechanisms underlying the system dynamics.

Materials and Methods

Consider a biochemical network for which the dynamics of its n
components is modeled by a system of ordinary differential

equations (ODEs)

dx

dt
~f(x,k,e)

y ~g(x)

ð1Þ

with initial values

x(t~0)~x0: ð2Þ

Here, x [ Rn represents the concentration of the species in the

network, k [ Rm is the parameter set in the model, y [ Rq stands

for the model output with 1ƒqƒn, and e [ Rp represents the

experimental conditions under which the model output y is

measured. Throughout this paper, the components of y are

referred to as ‘‘the target components’’ of the system. The

measured data for y are denoted by ŷy.

In practice, a common approach to estimate the parameter set

k~(k1,k2, . . . ,km) is by fitting model (1)–(2) to an initial dataset ŷy.

In this stage, the dataset that we have is usually very poor and thus

the parameters that are found are not yet well identified, i.e., their

values are yet rather sloppy. Therefore, a new experiment, based

on optimal experimental design, is then carried out to obtain a

new dataset and the parameter estimation is repeated. These steps

are applied iteratively until all parameters can be hopefully

identified, as depicted in Figure 1A. Unfortunately, in most cases,

it is very difficult to identify all of them. This especially happens if

the number of parameters is large. In those cases, it is convenient

to work with a simpler model with less parameters so that

parameter identification can be carried out efficaciously.

Although a reduced model contains less components and/or

parameters than the original model, it is important that it should

still be able to reliably predict the behavior of the system for any

feasible experimental conditions that are considered relevant to

answer questions at hand. Only in this case, the reduced model

can replace the full model and fully represent the system. Thus, for

example, if the initial condition of a particular biochemical species

xi in the experiment can be in the range of aƒxi(0)ƒb, then the

behavior of the system should be well predicted by the reduced

model for any initial condition xi(0) [ ½a,b�. Also, if a particular

perturbation can be applied in an experiment, e.g., deletion and/

or knock-out of some genes, the behavior of the perturbed system

should still be well predicted. In this paper, the set of all feasible

experimental conditions is denoted by E. A reduced model that

does not contain redundant component and/or parameter and

can reliably predict the dynamics of the target components for any

e [ E is referred to as ‘‘an optimal model’’.

To extract an optimal model, we combine our reduction

method [10] with a model discrimination method. The procedure

is sketched in Figure 1B. The essence of this scheme is that for the

obtained reduced model, it is investigated whether an experimen-

tal condition can be found for which the reduced model yields an

outcome that is significantly different from what the full model

would predict. If this is the case, the reduced model is not accepted

as being ‘‘optimal’’.

Notice that parameter estimation is frequently used in our

procedure. For this aspect a vast body of separate literature exists,

e.g., [11–16]. In our calculation, we made use of the nonlinear

least square solver from MATLAB which is a local optimization

algorithm.

Figure 1. Approaches to estimate parameter in Systems Biology. (A) Common approach, (B) Proposed approach to yield optimal model with
fewer parameters.
doi:10.1371/journal.pone.0083664.g001
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Model reduction
After having obtained a parameter estimate k for the full model,

the first step to obtain an optimal model is to reduce the model

complexity by removing redundant components and/or param-

eters that do not contribute to the dynamics of the target

components. For this purpose, we have developed a reduction

method in [10] that utilizes the concept of admissible region. In

this method, the parameters that are removed are those that are

badly identified. The method does not necessarily require prior

biological knowledge. However, the method can easily be tuned to

incorporate prior knowledge, if this is available. The main features

of our reduction method are summarized below.

Admissible region. Suppose that M time-series data of the

target components ŷyl(ti,e
l) are obtained from experiments, which

were conducted under M different experimental conditions el ,

with i~1, . . . ,N, and l~1, . . . ,M. We measure the distance of

the model output (target components) to the time-series data using

the following function

S(y(t,k,e),ŷy(t,e))~
1

M:q:N

XM
l~1

Xq

j~1

XN

i~1

yl
j(ti,k,el){ŷyl

j(ti,e
l)

ŷyl
j(ti,el)

 !2

: ð3Þ

Notice that S is the least squares measure that can be interpreted

as the average squared deviation between the model prediction

and the data.

Let us introduce a tolerance e2 which indicates how much

difference we accept as discrepancy between the data and the

model prediction. In many cases, the variance of the noise from

the experimental data can be used as a guidance to choose a

suitable value for e. Then, any parameter vector k such that

S(y(t,k,e),ŷy(t,e))ve2 ð4Þ

is acceptable to represent the parameters of the system, since it is

capable of producing the dynamics within the required accuracy.

We say that all parameter vectors k that satisfy (4) constitute the

so-called ‘‘admissible region’’ (AR). Thus,

AR~ k [ Rm DS y(t,k,e),ŷy(t,e)ð Þve2
� �

: ð5Þ

Notice that the region AR reflects the parameter sloppiness in the

model, i.e., different parameter sets may yields the same model

dynamics [17]. Additionally, the broad admissible region implies

that the model encounters a practical identifiability problem [18].

Reduction method. Since all parameter vectors in the

admissible region yield an acceptable dynamical behavior of the

system, the shape of the AR may suggest whether reduction is

possible. For example, if the admissible region includes a part of a

parameter axis, then this parameter can apparently be set to zero

and could thus be excluded from the model. If the region extends

to infinity in a certain parameter direction, then some terms or

state-variables in the ODEs might be lumped. This analysis may

thus lead to a simpler representation of the dynamics of the

biochemical system.

Describing the admissible region and deducing the possible

reductions is relatively easy for a small system, as shown in [10].

However, applying such analysis to a model with many

parameters, which is typically the case in systems biology, can

be very complicated. Fortunately, we notice that in practice it is

not necessary to construct the admissible region completely. If one

(or several) parameter(s) can be set to zero (or infinity) and the

others can be re-optimized such that the resulting parameters

kr [ Rm are still in the admissible region, then the model can be

simplified. This reduction procedure can be carried out in a

systematic way by applying first node reduction, then parameter

reduction, and finally node lumping, as we will shortly discuss

below.

Node reduction. First, we try to remove redundant nodes,

one at a time. Here, e.g., node x1 can be removed from the system

if it can be eliminated in all equations and the parameters can be

re-optimized such that (4) is satisfied. This procedure is repeated

for x2, . . . ,xn. If one or more nodes have been removed, we cycle

again through the remaining nodes and repeat the procedure until

no further nodes can be removed.

Parameter reduction. To see whether a parameter, k1 say,

can be removed, we simply set k1~0 and re-estimate the other

parameters. If (4) is satisfied, then indeed k1 can be removed from

the model. Next, this procedure is repeated for k2, . . . ,km. If one

or more parameters have been removed, we cycle again through

the remaining parameters and repeat the procedure until no

further parameters can be removed.

Since the approach is heuristic, the result of the reduction might

depend on the parameter ordering and might be not unique. In

principle, all reduced models obtained this way are acceptable.

However, for reasons of parsimony, the strongest reduction is

preferable. For this purpose, we order the parameters based on the

sensitivities

Cj~
kj

S

LS

Lkj

: ð6Þ

Although these parameters sensitivities are local quantities, we

found that in general they give a very good reduction rate, see

[10].

Lumping. If a parameter that represents the strength of a

reaction can be set at a very large value and the others can be

adjusted to satisfy (4), it may indicate that the corresponding

reaction can be considered as instantaneous. This implies that the

two corresponding nodes that are connected by the reaction can

be lumped, and hence may be replaced by one node. The

procedure for lumping essentially follows the same steps as

mentioned under parameter reduction.

Model discrimination
Suppose that from the model reduction procedure above, we

obtain a reduced model

dxr

dt
~fr(xr,kr,e)

yr~g(xr,kr,e)

ð7Þ

where xr,fr [ RR with Rvn, and yr [ Rq denotes the dynamics of

the target components of the reduced model. Thus, we now have

two different models to describe the measured target components,

i.e., the full model and the reduced model. The next step is to

investigate whether the reduced model will generate the same

prediction as that of the full model for any feasible experimental

conditions that are considered relevant to answer questions at

hand. Only if all these predictions agree sufficiently, then we

conclude that the full model can be replaced by the reduced

model.

To check the predictive power of both models, an optimal

experimental design approach to discrimate the models is utilized

[19–22]. Here, we look for an experimental condition e on E and

time sampling t that maximize the distance between the full and

Identifying Optimal Models
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reduced models in terms of the distance function S in (3).

Mathematically, this can be written as

argmax
e[E

½S(y(t,k,e),yr(t,kr,e))�: ð8Þ

We say that a reduced model cannot be distinguished from the

full model if their distance satisfies

S(y(t,k,e),yr(t,kr,e))vd2, for any e [ E: ð9Þ

with d a value that denotes the tolerance criterion. The value for d
must be chosen by the modeller. Since d represents the worst

deviation between the predictions of the reduced and the full

models, the smaller the value of d is, the more powerful the

reduced model will be. However, d should be chosen larger than e,

because otherwise we might end up with modeling noise.

Model reduction and model discrimination applied
iteratively

Here, we discuss the essential features of our algorithm to obtain

an optimal model. For illustrational purposes we sketch in Figure 2

the parameter space of a system with only two parameters. The

admissible region shown in Figure 2 contains the parameter

vectors for which the full model produces the required result,

within the specified tolerance. Note that the candidates for the

parameter set of the reduced model are those that lie on the

parameter axes within the admissible region.

To find the optimal model, we could in principle compare each

parameter set candidate of the reduced model in AR to the full

model under all feasible experimental conditions. In practice, this

is impossible. Therefore we apply an iterative algorithm. We first

apply the reduction method in [10] and obtain a reduced model

that at least for the measured target components shows the same

behavior as the full model. Next, we compare this particular

reduced model with the full model under all feasible conditions

and select the condition for which the difference is biggest by

applying hybrid optimization (a combination of global and local

optimization). This optimization is carried out many times to make

sure that the condition that we find is close to the global

maximum. This is called ‘‘discrimination’’.

Normally, this difference is still huge in this first step. Then, we

add the data according to this new experimental condition to our

dataset. In the second step this extended dataset is used as starting

point. This second step starts with calculation of updated

parameters k for the full model. Then, the reduction method

from [10] is applied leading to a new reduced model. If this second

reduced model is compared to the full model under all feasible

conditions, one usually finds that the difference in model

predictions becomes smaller than in the first step of the algorithm.

The procedure is repeated until this difference between reduced

model and full model is smaller than the threshold for all feasible

experimental conditions. When the optimization procedure only

yields conditions that make the deviation always less than our

tolerance in (9), we accept that the reduced model approximates

the full model everywhere on E. This resulting model for which

this holds is called ‘‘optimal’’.

Algorithm
In summary, the method that we propose consists of the

following steps:

1. Obtain data from experiment.

2. Estimate the parameters of the full model.

3. Apply reduction to the full model.

4. Try to discriminate the resulting reduced model obtained in

step 3) from the full model obtained in step 2).

5. If there indeed exists an experimental condition that can

discriminate them, add the data according to this condition to

the dataset and repeat step 2)–4). Otherwise, an optimal model

has been obtained.

Results

In our view, model reduction and model discrimination should

be an integral part of the modelling-experimental cycle. When

model discrimination identifies an experimental condition to

separate the reduced model from the full model, then the

corresponding experiment should be carried out in the lab.

However, in order to show how the proposed approach may work

out in practice, here we use a different approach. The method is

applied to two established models from literature: a flowering

model that describes the genetic interactions underlying flower

development, and an EGFR network model of a signaling

transduction network. Both models have been published with a

full parameter set, and in this sections we adopt the outcome of

these models (with some additional noise) as experimental result.

Note that we do not use these published parameters in our own

fitting/reduction/discrimination algorithm. For simplicity, here

we used the same sampling times t for all experiments. In practice,

one might have different sampling times for each experiment. In

this way, the choice of sampling times could be part of the

experimental setup.

Flowering network model
The dynamic model from [23] describes the genetic interactions

of five types of MADS genes underlying flower development. The

expression patterns of these genes are associated with floral organ

identity via the so-called ABCDE model [24]. Of the four floral

organ types in Arabidopsis, sepals are linked to high expression of

the A gene, petals with A and B, stamens with B and C, and

carpels (including ovules) with C and D. All organs require high

expression of the E gene. The genes that represent the five

ABCDE functions in this model, are AP1 (A), AP3 (B), PI (B), AG

Figure 2. Illustration of an admissible region for a system with
two parameters. Initially, the admissible region of the system is AR1 .
In this situation, a reduced model can be obtained either by setting
k1~0 or k2~0. When a new dataset from a new experiment is
incorporated, the admissible region shrinks to AR2 . Thus, AR25AR1 .
Now, a reduced model can only be obtained when k2~0.
doi:10.1371/journal.pone.0083664.g002
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(C), SHP1 (D) and SEP (E). Gene expression is modeled as protein

concentration, and the genes interact in this model via pairs of two

proteins (dimers) that regulate each other’s genetic transcription

rate, see Figure 3. The network dynamics differentiates between

the floral whorls via location-specific trigger mechanisms.

The model consists of 6 state variables (representing proteins

and dimers), and 37 parameters representing the rates of the

biochemical interactions (see supplements for details). The model

is able to generate realistic predictions for the following

experimental conditions

E~ fe1~wildtype, 2~knock{out AP3, 3~knock{out PI,

e4~knock{out AG, 5~ectopic expression of AP3,

e6~ectopic expression of AGg:
ð10Þ

For knock-out experiments, the initial and production terms of the

corresponding genes are set to zero. For ectopic expression, we

assume that the initial concentrations of the corresponding genes

are available abundantly; therefore they are set to a high level. In

this case, AP3(t~0)~103 whereas AG(t~0)~5|103. Thus,

there are only six feasible experiments: wild-type experiments;

setting initial and production term of AP, PI, and AG to zero; and

setting initial concentration of AP3 and AG to a specific high

value. These feasible experiments are taken from [23].

To show how our proposed method can be applied to a real

biological system, we assume that the parameters in the model are

unknown and have to be estimated from the experimental data.

The six measured gene expressions are regarded as our target

components in this example. We further assume that the

measurements can be conducted at the conditions in (10). Then

we investigate whether the structure of the proposed full model

contains redundancy and hence, whether the dynamics can be

described by a simpler model.

As experimental outcome, we generate the data of the target

components using the full model and the parameters in [23],

adding relative normal random noise of 20%. The measurements

are assumed to be performed at t~0,1,2,3,4,5 days.

For the initial dataset, the wild-type measurement is carried out.

The results are shown in Figure 4, denoted by ‘*’. If we set e~20%
we found that the dataset can be well represented by the model

with many possible parameter sets, one of them is k~k1
f . When

reduction is applied, it turns out that 7 out of 37 parameters can be

removed from the model and yet the reduced model can still fit the

dataset as shown by the dashed lines in Figure 4. This parameter

set is denoted by k~k1
r .

Thus, we have two possible models to represent the behavior of

the wildtype, i.e., the full model and the reduced model. Following

the algorithm described in the Methods section, model discrim-

ination is applied to find which experiments from (10) can

discriminate the two models. Setting the tolerance criterion in the

model discrimination equal to d~40%, we find that experimental

condition

e4~knock out AG ð11Þ

distinguishes the reduced model from the full model, as shown in

Figure 5. In this case, the distance between the reduced and the

full models is S(y(t,k1
f ,e4),yry(t,k1

r ,e4)&9:6|106. Therefore, this

experiment is then carried out to confirm this difference, and we

obtain the dataset denoted by ‘*’ in Figure 5.

From the new experiment, we found that the predictions from

both the reduced and the full model cannot represent the behavior

of the mutant. Therefore, the parameters in the full model should

be re-estimated to fit both the wild-type and the mutant AG

dataset and the reduction should also be repeated. Then, we

obtain a new parameter set k~k2
f for the full model and a reduced

parameter set k~k2
r . In this new reduced model, 6 parameters can

be reduced.

Given the list of possible experiments in (10) and the threshold

value d~40% for model discrimination, we found that the new

reduced model now cannot be discriminated anymore from the

full model. Thus, we may claim that the reduced model can

replace the full model to represent all system behavior that we are

interested in. This is underpinned by the fact that all datasets that

are obtained for all conditions in (10) can be predicted very well by

the reduced model, as shown in Figure S1. The parameter values

for the full and optimal models are shown in Table 1.

The reduction allows for an interesting conclusion: all

interactions that originate from dimer [AP1,SEP] are not needed

to explain the behavior of the system under the conditions in (10).

Thanks to reduction, we found that these interactions can be

replaced by a constant production term. We conclude that the

reduced model in Figure 3B is the core network that is responsible

for the dynamics under conditions (10).

EGFR model
Next, we apply our method to the epidermal growth factor

receptor (EGFR) model from [25], of which the network is shown

in Figure 6A. This model describes the cellular response to an

epidermal growth factor (EGF) stimulation. The model consists of

23 biochemical components with 25 chemical reactions, described

by ordinary differential equations (ODEs). This results in an ODE

system with 23 state variables and 50 parameters. Since the kinetic

scheme contains several cycles, the kinetic parameters involved in

Figure 3. Graphical representation of the genes interactions of flowering in Arabidopsis. (A) The full model, (B) The reduced model.
doi:10.1371/journal.pone.0083664.g003
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the cycles satisfy the so-called ‘‘detailed balance’’ relationships

given by

k9
:k10

:k11
:k12

k{9
:k{10

:k{11
:k{12

~1 ð12Þ

k15
:k21

:k{17
:k{18

k{15
:k{21

:k17
:k18

~1 ð13Þ

k18
:k22

:k{19
:k{20

k{18
:k{22

:k19
:k20

~1 ð14Þ

k12
:k22

:k21
:k23

k{12
:k{22

:k{21
:k{23

~1 ð15Þ

k15
:k{20

:k{23
:k{24

k{15
:k20

:k23
:k24

~1: ð16Þ

The parameter values of the full model are given in Table 2 in

[25].

To validate their model, the system was stimulated with different

EGF stimulations (20 nM, 2 nM, and 0.2 nM) and the resulted

transient response of several proteins were measured. These are the

concentrations of phosphorylated EGFR, phosphorylated Shc,

phosphorylated PLCc, Grb2 bound in Shc, and Grb2 bound in

EGFR, which are composed of several species in the model:

Total phosphorylated EGFR~2(½RP�z½R{PL�z

½R{PLP�z½R{G�z½R{G{S�z½R{Sh�
ð17Þ

z½R{ShP�z½R{Sh{G�z½R{Sh{G{S�)

Total phosphorylated PLCc~½R{PLP�z½R{PLCcP� ð18Þ

Total phosphorylated Shc~½R{ShP�z½R{Sh{G�z

½R{Sh{G{S�z½ShP�z½Sh{G�z½Sh{G{S�
ð19Þ

Total Grb2 bound to EGFR~½R{G�z

½R{G{S�z½R{Sh{G�z½R{Sh{G{S�
ð20Þ

Total Grb2 bound to Shc~½R{Sh{G�z

½Sh{G�z½R{Sh{G{S�z½Sh{G{S�:
ð21Þ

The model was then used to predict the dependency of the

transient responses on the relative abundance of some signaling

Figure 4. The concentration dynamics of the proteins. These proteins are part of dimer complexes in each of the four organ initiation sites for
the wildtype dataset. The solid and dashed lines show that the dataset can be fitted by the full model with k~k1

f as well as by the reduced model

with k~k1
r .

doi:10.1371/journal.pone.0083664.g004
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proteins, that is when the initial concentration of Shc was

decreased by a factor of 4, the initial concentration of Grb2 was

increased by a factor of 4, and when the initial concentration of

EGFR was increased by a factor of 4.

To show how our method can be applied to this biological

system, we assume that the parameters in the model are unknown

and should be estimated from experimental data. The measured

responses are regarded as our target components in this example.

Since the target components were measured and predicted for

different EGF stimulations and different initial conditions of

EGFR, Shc, and Grb2, we assume that the relevant feasible

experiments are to vary the stimulations and initial conditions of

these species. Thus,

E ~f(EGFstimulation, EGFR , Grb2 , Shc )0 0 0 D
0ƒEGFstimulationƒ20nM, 0ƒEGFR0ƒ400nM,

0ƒGrb20ƒ340nM, 0ƒShc0ƒ150nMg,
ð22Þ

where EGFR0, Grb20, and Shc0 are the initial concentrations

(concentrations at t~0) of ½EGFR�, ½Grb2�, and ½Shc� respec-

tively. Notice that the space of feasible experimental conditions is

very large. In model discrimination procedure, for this example,

we utilize a hybrid optimization tool (combination of genetic

algorithm and local optimization) in Matlab to obtain experimen-

tal conditions that maximizes the difference between the reduced

and the full models.

As experimental outcome, we generate the data of the target

components using the full model and the parameters in ([25]),

adding a relative normal random noise of 5%. The measurements

are assumed to be performed at t~0, 15, 30, 45, 60, 120 seconds.

Figure 5. Model discrimination applied to the first full model and reduced model. Model discrimination finds that knocking out AG will
distinguish the reduced model with k~k1

r from the full model with k~k1
f . When an experiment is conducted for this mutant, we obtain the dataset

that is denoted by ‘*’.
doi:10.1371/journal.pone.0083664.g005

Table 1. Parameter values of the full and optimal models in
the flowering model.

Parameter k2
f k2

r Parameter k2
f k2

r

b1,1 6:6e4 6:6e4 b4,1 1:4e4 1:7e4

Km1,1 5 0 Km4,1 7 13

Km1,2 3:8e2 2:7e2 b4,2 1:3e4 1:4e4

dc1 71 70 Km4,2 81 0

b2,1 3:3e4 3:3e4 Km4,3 6:9e2 4:3e2

Km2,1 6:2e2 6:2e2 dc4 5:1e2 6:1e2

b2,2 76 88 P4 4:4e3 5:5e3

Km2,2 4e2 0 b5,1 4:2e2 4:2e2

b2,3 49 49 Km5,1 1e3 1e3

Km2,3 50 0 Km5,2 10 10

dc2 3 4 dc5 4 4

P2 4:5e4 4:5e4 b6,1 2:3e3 2:3e3

b3,1 1:5e3 1:5e3 Km6,1 4:8e2 4:8e2

Km3,1 3:2e2 3:2e2 b6,2 53 53

b3,2 72 75 Km6,2 9 0

Km3,2 5:4e2 5:6e2 b6,3 6:1e3 6:1e3

b3,3 38 38 Km6,3 48 48

Km3,3 70 0 dc6 16 17

dc3 47 48

doi:10.1371/journal.pone.0083664.t001
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For the initial dataset, we assume that it is obtained from

experiments which are carried out at two different EGF

stimulations, [EGF] = 20 nM and [EGF] = 2 nM. The other three

initial conditions are set to [EGFR]0 = 100 nM, [Grb2]0 = 85 nM,

and [Shc]0 = 150 nM. Thus, the initial dataset is obtained from

the experiments with conditions

e1a~ (EGFstimulation~20nM,  EGFR0~100nM,

Shc0~150nM,Grb20~85nM),

e1b~ (EGFstimulation~2nM,  EGFR0~100nM,

Shc0~150nM,  Grb20~85nM):

ð23Þ

The dynamics of the target components are shown in Figure 7,

denoted by ‘+’ and ‘x’. If e in (4) is set to e~5% and parameter

estimation is applied, we find that the dataset can be well

represented by the model with many different parameter sets; one

of them is k~k1
f . When reduction is applied, it turns out that 33

out of 50 parameters can be removed from the model. This

parameter set is denoted by k~k1
r . The reduced model can fit the

dataset quite well, as shown in Figure 7.

Applying model discrimination, we find that with the experi-

mental conditions

e2~ (EGFstimulation~15:3824nM,  EGFR0~141nM,

Shc0~0nM,  Grb20~340nM),
ð24Þ

the reduced model can be clearly distinguished from the full

model, as can be seen in Figure S3. Their distance in this case is

S(y(t,k1
f ,e2),yr(t,k

1
r ,e2))&3:1|106.

To obtain an optimal model, we follow the procedure outlined in

Section of Algorithm. First, experiment e2 is performed to obtain a

new dataset. So, the new dataset now consists of the combined

dataset obtained with the experimental conditions e1a, 1b and e2.

Parameter estimation and model reduction are now carried out to

the combined dataset. This procedure yields k~k2
f for the

parameter set of the full model and k~k2
r for the parameter set

of the reduced model. The number of parameters that can be

reduced turns out to be 31. Re-performing the model discrimina-

tion, we found that the experimental condition that maximizes the

distance between the full model and the reduced model is now e~e3

with distance S(y(t,k2
f ,e3),yr(t,k

2
r ,e3))~23:5362. Setting the

threshold value for model discrimination at d~25%, we find that

after including four additional experimental conditions the reduced

model with k~k6
r cannot be distinguished anymore from the full

model with k~k6
f . The network of the optimal model is shown in

Figure 6B and the iterative process to obtain the optimal model is

shown in Figure S4.

In the optimal model in Figure 6B, 24 parameters can be set to

zero while one parameter, namely k{14, can be set to a very large

value. The latter implies that the phosphorylation of [R-Sh] occurs

very fast, and therefore, the components R-Sh and R-ShP can be

lumped into one biochemical component in the optimal model.

Thus, we end up with a model that consists of 17 biochemical

components with 25 kinetic parameters. This result shows that we

may remove six redundant components and 25 redundant

parameters from the original model. The prediction for the five

target components from the reduced model would then deviate at

most 25% from that of the full model for any experimental

condition in (22).

Figure 6. The EGFR biochemical network. A solid arrow represents a reaction with two kinetic parameters and a dashed arrow represents a
reaction with one kinetic parameter. (A) The full network from [25], (B) The optimal network to produce the dynamics of the five target components
for any experimental condition e[E in (22).
doi:10.1371/journal.pone.0083664.g006
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As a validation, a number of experiments are performed with

different random experimental conditions and the dynamics of the

target components are predicted by the reduced model, as shown

in Figure 8. The results show that the predictions of the reduced

model are in very good agreement with the dynamics obtained

from the experiments. Only in the first experiment, the prediction

for Grb2 bound to Shc slightly deviates from the measurement.

However, the deviation is still acceptable. We, therefore, conclude

that the reduced model in Figure 6 B with parameter set k~k6
r is

an optimal model to produce the dynamics of the five target

components, given the threshold value of d~25%. The param-

eters of the full and optimal models and the list of experimental

conditions used to obtain the optimal model are shown in Table

S1 and Table S2.

Ras pathway. The reduction results for the EGFR network

allow for some nice conclusion. For example, a number of

chemical reactions that lead to the activation of Ras protein via

SOS are not longer preserved in the optimal model. Mathemat-

ically speaking, this implies that the parameters that are related to

these reactions cannot be identified by only measuring the five

target components above. From a biological point of view, deleting

this branch is rather pointless since the function of EGFR is to

activate the RasRRafRMekRERK cascade [26]. To preserve

this chemical pathway in the optimal model, one should think

carefully which complex protein(s) should be treated as additional

target component(s), or alternatively, which constraint in the

reduction should be taken into account. In other words, prior

knowledge should help us to prevent undesired results. Fortunate-

ly, our method can easily be tuned to incorporate prior knowledge.

In this specific case this could be done as follows.

We observe from the network in Figure 6A that one possibility

to maintain the pathway to the Ras protein is by preventing one of

the incoming reactions to R-Sh-G-S or R-G-S from elimination.

In practice, this can be established by preserving one of the

following parameters from being zero, namely k10,k{11,k19,k{20

or k24. If we use this condition as our constraint in the reduction,

we obtain the optimal model that is depicted in Figure S2C. Here,

the activation of Ras protein can be achieved via R-Sh-G-S.

Also in this optimal model, parameter k{14 can be set to a very

large value and thus R-ShP and R-Sh can be lumped into one

biochemical component. The model contains 28 kinetic param-

eters, so about 44% of the kinetic parameters in the original model

are redundant to represent the dynamics of the five target

components. The iterative process to obtain this model is shown in

Figure S5. As can be seen, the optimal model is now obtained after

six new experiments have been performed. The parameters of the

full and optimal models and the list of experiments to obtain the

optimal model are shown in Table S1 and Table S3. Notice that in

this reduced model, the parameters in the branch that was

preserved by using prior knowledge are not identified very well

from these experimental data.

Discussion

In Systems Biology, we often face the problem of non-

uniqueness: several models can describe measured data equally

well. In such a situation one may sometimes choose between a

Figure 7. Dynamics of the target components for the start up dataset. The solid and dashed lines show that the dataset can be fitted by the
full model with k~k1

f as well as by the reduced model with k~k1
r .

doi:10.1371/journal.pone.0083664.g007
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model that includes a lot of details of the underlying mechanisms

but is complex, very time consuming, and might be over-

parameterized, or a reduced version that is much more convenient

to handle, but might have less predictive power. When modelling a

system that is a part of a large intricate environment, one should

be careful in identifying components/interactions can give

meaningful contributions to answer ones questions. It is tempting

to add components, and thus parameters, to the model that are

actually not required in governing the dynamics of the observed

components. This may result in difficulty in identifying the

parameter values, while at the same time the understanding of the

key functionality may be obscured by superfluous details.

Therefore, for the sake of understanding the system, speeding up

the computation, and parameter identification, a simpler model is

usually more favorable. However, since a simpler model contain

less detailed mechanisms, its predictive power might be less

reliable. Therefore, model reduction requires a careful approach.

At least two conditions must be satisfied by a reduced model to

replace the full model. First, it should be able to fit the observed

data; and second, it should have the same power as the full model

to reliably predict the behavior of the system under different

feasible experimental conditions that are considered important to

answer questions at hand. The reduction technique in our

approach assures the first requirement and the discrimination

method ensures the last requirement. The model discrimination in

our method can also be viewed as a way to verify whether the

omitted components, reactions, and/or parameters in the reduced

model give a meaningful contribution to the model prediction. If

they do, the dataset from a new experimental condition will

confirm this so that in the next reduction, the method cannot

remove the corresponding components and/or parameters. The

resulting model is a trade-off between reliability and simplicity: it

does not contain redundant components, but has enough

predictive power to reliably predict the behavior of the system.

Thus, with the proposed method, the redundant components can

be easily detected and removed so that at the end, our model only

contains components and parameters that are essential in

generating the required predictions of the system. Obviously, the

optimal model contains the core mechanisms that underlie the

behavior of the biological system.

Note that when we apply parameter estimation of the full model

and model reduction for the first time, the initial data set may

come from several experiments. Our example on EGFR model

shows this (equation (23)) where the initial data were obtained

from two experiments with different EGF stimulations. Obviously,

one should make sure that the initial data set contains sufficiently

rich information for parameter inference, but this is beyond the

scope of our paper. After discrimination procedure, however, we

do recommend to carry out only one single new experiment in

every iteration, as it will be enough to falsify the result of the

previous full model or reduced model. Furthermore, doing one

experiment at a time will avoid doing experiments that are likely to

be superfluous.

Identifying parameters with high accuracy is difficult. There-

fore, in [17] it is suggested to focus on model prediction rather

than on parameter identification. In line with this, our approach

minimizes the discrepancy between the model prediction from the

reduced model and that of the full model. The remaining

parameters in the reduced model might still have large uncertain-

ties, but the correspondence between the model prediction from

Figure 8. Validation of the optimal model with k~k6
r . The data, marked with ‘‘*’’, ‘‘+’’, and ‘‘x’’, are obtained from random experimental

conditions er1~(538:48, 204:59, 143:78, 137:12), er2~(231:86, 55:45, 127:53, 74:43), and er3~(97:31, 8:1, 0:80, 13:28) respectively. Predictions

doi:10.1371/journal.pone.0083664.g008
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the reduced model and that of the full model is very good. If

required, additional parameter identification could be carried out

on the remaining parameters in the reduced model. As the model

contains less parameters, parameter identification can be carried

out more efficaciously. Note that the parameters that are removed

by our method are those that are badly identified, since their

absence does not have significant effect on the prediction of the

system.

Eventually, we would like to stress that it is always crucial to

keep in mind which functionality one wants to preserve in the

reduced model. Otherwise, one may arrive at a reduced model

that does not serve one’s purposes. Therefore, although our

reduction method does not require prior biological knowledge, if

there is any, that knowledge should always be taken into account.

Supporting Information

Text S1 Description of the flower network model in
Arabidopsis.
(PDF)

Figure S1 The dynamics of the proteins in each four
organs. Measured dynamics are denoted by ‘*’ whereas the

dynamics from the reduced model with k~k2
r are denoted by the

dashed lines. Parameter fitting is applied to dataset of wildtype (a)

and knock-out AG (b). The resulted reduced model have a very

good prediction for mutants knock-out AP3 (c), knock-out PI (d),

ectopically expression of AP3 (e), and ectopically expression of AG

(f).

(EPS)

Figure S2 The EGFR biochemical network. A solid arrow

represents a reaction with two kinetic parameters and a dashed

arrow represents a reaction with one kinetic parameter. (A) The

full network from [25], (B) The optimal network to produce the

dynamics of the five target components for any experimental

condition e[E in (27), (C) The optimal network as in (B) but with

an additional constraint to maintain the activation pathway to Ras

protein.

(EPS)

Figure S3 Model discrimination to distinguish the

reduced model with k~k1
r from the full model with

k~k1
f . In this case, e2~fEGFstimulation~15:3824nM,EGFR0

~141nM,Shc0~0nM,Grb20~340nMg. The new dataset ob-

tained from an experiment based on the setting e~e2 is indicated

by ‘*’. The dashed curve in the upper left corner shows that the

reduced model cannot fit this dataset.

(EPS)

Figure S4 Result of iterative process to obtain the
optimal model for EGFR model. The threshold value of

s~25% is indicated by the dashed line. For the first dataset, the

reduction procedure can remove 33 out of 50 parameters.

However, the distance between the reduced and the full models

in the first discrimination is still huge, namely

S(y(t,k1
f ,e2),yr(t,k

1
r ,e2))&3:1|106. When a new experiment

based on experimental condition e~e2 is carried out and the

obtained dataset is combined with the first dataset, the number of

reduced parameter in the second reduction decreases to 31.

Finally, after performing four additional experiments, the distance

Svs2, which means that there is no experimental condition that

can distinguish the reduced model with k~k6
r from the full model

with k~k6
f . At this stage, the reduced model contains 25

parameters. Since the distance is already smaller than the

tolerance, we conclude that the reduced model with k~k6
r is an

optimal model.

(EPS)

Figure S5 Result of iterative process to obtain the
optimal model for EGFR model with a constraint to
maintain the Ras pathway activation.

(EPS)

Table S1 Parameter values of the full and optimal
models in the last iteration. Here the average deviation at

each point between the optimal and the full model is less than

25%. Model 1 refers to EGFR model without constraint to prevent

the pathway to Ras protein whereas Model 2 refers to EGFR

model with the constraint.

(PDF)

Table S2 List of experiments to obtain optimal model in
Model 1.

(PDF)

Table S3 List of experiments to obtain optimal model in
Model 2.

(PDF)
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