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Abstract

Circulating tumor cell (CTC) enumeration promises to be an important predictor of clinical outcome for a range of cancers.
Established CTC enumeration methods primarily rely on affinity capture of cell surface antigens, and have been criticized for
underestimation of CTC numbers due to antigenic bias. Emerging CTC capture strategies typically distinguish these cells
based on their assumed biomechanical characteristics, which are often validated using cultured cancer cells. In this study,
we developed a software tool to investigate the morphological properties of CTCs from patients with castrate resistant
prostate cancer and cultured prostate cancer cells in order to establish whether the latter is an appropriate model for the
former. We isolated both CTCs and cultured cancer cells from whole blood using the CellSearchH system and examined
various cytomorphological characteristics. In contrast with cultured cancer cells, CTCs enriched by CellSearchH system were
found to have significantly smaller size, larger nuclear-cytoplasmic ratio, and more elongated shape. These CTCs were also
found to exhibit significantly more variability than cultured cancer cells in nuclear-cytoplasmic ratio and shape profile.
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Introduction

Circulating tumor cells (CTCs) have been implicated as

potential seeds of cancer metastasis and are therefore of great

importance in research, disease management, and drug develop-

ment [1–3]. Established methods for capturing these cells, such as

the Veridex CellSearchH system (Raritan, NJ, USA), rely on

affinity capture of the epithelial cell surface antigen, EpCAM,

followed by fluorescence labeling of intracellular cytokeratin (CK)

[4–6]. While CTC identification and enumeration, based on

epithelial biomarker expression, can be used to predict poor

clinical outcome [7–10] this strategy may be prone to underes-

timation of CTC number because of epithelial-to-mesenchymal

transition [11–14], poor expression of these factors in some tumor

types [14], or changes in expression of these factors following

chemotherapy [15]. These limitations may be particularly

relevant, given that the appearance of mesenchymal CTCs is

associated with disease progression [16] and the inclusion of

additional criteria CTC identification may be a valuable

supplement to conventional CellSearchH CTC enumeration.

In addition to their expression of tumor antigens, it is broadly

accepted that CTCs have distinct biomechanical characteristics,

including larger size than leukocytes, greater nuclear to cytoplas-

mic (N:C) ratio, as well as distinct nuclear morphology [17].

Numerous strategies have been developed to enrich for CTCs

based on these characteristics [18]. CTCs have been isolated using

density gradient centrifugation [19] or by size, using micropore

filtration [20–22]. Recently, microfluidic technologies have

achieved superior CTC capture efficiency and enrichment using

approaches such as hydrodynamic chromatography [23–28],

microfluidic filtration [29–31], and dielectrophoresis [32–35].

The development of these technologies typically used cultured

cancer cells as a morphological model for clinical CTCs. However,

while cancer cells and some CTCs have common biophysical

features [17], CTCs may exhibit distinct morphological charac-

teristics, depending on the type of originating tumor [36]. An

alternative strategy would be to incorporate biomechanical

characterization with the more established antigen-based Cell-

SearchH CTC enumeration strategy.

We developed a software tool to analyze the cytomorphological

properties of cancer cells. We employed this tool to examine both

patient CTC and model cancer cell line morphology, following

CellSearchH enrichment. These results will provide important data

to aid in CTC identification based on combined antigen and

biomechanical criteria [36] as well as in choosing appropriate

models for optimization of biomechanical CTC enrichment.
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Materials and Methods

Blood Sample Collection
Blood samples from healthy donors and patients with metastatic

castrate resistant prostate cancer (CRPC) were obtained with

written informed consent and collected using protocols approved

by the UBC Clinical Ethics Review board (http://research.ubc.

ca/ethics/clinical-research-ethics-board). The CRPC patients

included in this study ranged in age, from 53–83 years, and

PSA levels, from 21.1-2200 mg/L (Table S1). Blood samples in

both cases are collected and stored in CellSaveH Vacutainer tubes

(Becton Dickinson, Raritan, NJ).

Isolation and Enumeration of CTCs by CellSearch
CTCs isolation and enumeration were performed using the

CellSearchH system as previously described [4,5,37]. Briefly, blood

samples were drawn into 10 ml CellSave Vacutainer tubes (Becton

Dickinson) containing proprietary anticoagulant and preservative.

Samples were maintained at room temperature and processed

within 48 hours after collection. The CellSearchH system captures

EpCAM expressing cells using antibody-coated magnetic beads

and then labels these cells with fluorescent dyes, such as DAPI,

CD45, and cytokeratins, in order to distinguish potential CTCs

from leukocytes. After immunomagnetic capture and fluorescence

staining, images of candidate CTCs are obtained in brightfield and

three fluorescence channels (DAPI, CD45, and cytokeratins). The

captured images are segmented into multiple smaller images each

containing a single cell and reassembled in a panel in software.

Finally, a certified technician positively identifies the CTCs by

reviewing the size, shape, and fluorescence intensity of each

candidate cell.

Cell Culture and Processing
Human prostate cancer cell lines including LNCaP (ATCC:

CRL-1740), DU145 (ATCC: HTB-81), and C4-2 (ATCC: CRL-

1595) were propagated in culture using RPMI-1640 medium

(HyClone, Logan, UT) with 10% fetal bovine serum at 37uC with

5% CO2. PC3 (ATCC: CRL-1435) cells was cultured similarly,

but using DMEM (HyClone, Logan, UT) medium instead.

Cultured cancer cells were spiked into 7.5 ml of blood from a

healthy donor into CellSaveH Vacutainer tubes and processed

within 48 hours identically as the patient specimen.

Image Processing
To study the morphology of CTCs and cultured cancer cells, we

exported images of individual cells from the CellSearchH system

and analyzed them using a software program we developed using

LabView (Figure S1; National Instruments, Austin, TX). The

images were square matrices with sizes ranging from 80 to 200

pixels and formatted as portable network graphics (PNG) files as 8

bit mono or 24 bit color composites (Figure S1). To calculated

area in pixels, the images were initially processed using cluster

thresholding to detect bright objects to match the auto-exposure

performed by the CellSearchH system (Figure 1A). Particles with

pixels in contact with the edge of the image frame were removed

using a border rejection particle filter to eliminate cells incom-

Figure 1. Image data processing using LabView software.
Labview software performs the series of operations on large varying
mages datasets provided by the CellSearchH system. Two parallel
filtering and measurements, such as calculating area in pixels (A) and
estimating the best-fit ellipse (B) are performed for optimal perfor-
mance and results.
doi:10.1371/journal.pone.0085264.g001

Figure 2. Diameters of CTCs from prostate cancer patients (pre-
treatment) and cultured prostate cancer cells. The average
diameter of CTCs (7.97 mm) was significantly smaller than cultured
cancer cells (13.38 mm) (p,0.001).
doi:10.1371/journal.pone.0085264.g002

Morphology of CTC versus Cultured Cancer Cells
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pletely bounded by the images (Figure S1). Multi-particle images

were also eliminated using watershed segmentation. Debris

particles were removed using two-iterations of a 363 erosion

particle filter. Cell and nuclear size was determined by counting

the number of above-threshold pixels in the cytokeratin and

DAPI channel respectively. Results for the cell and nuclear size

calculation were filtered to remove cells with improbable

nuclear sizes, which we define as the nuclear area exceeding

95% of the cell area. These processing steps rejected 209 out

of 732 images, or 28.5% of the total. The majority of the

rejected images contained cell fragments or poor quality images

(Figure S2).

Eccentricity of Cell Shape Measurement
To analyse the eccentricity of cell shape, an ellipse was fitted to

the outline of the cell. The overview of estimating the best-fit

ellipse using LabView software is shown in Figure 1B. To enhance

detection of the cell outline, the images were contrast-enhanced

before auto-thresholding. Three-iterations of a 363 erosion filter,

as well as a single dilate filter were performed to smooth the edges

of the particles. Fitting was performed on a binary image using the

contour tracing method to search for the longest ellipse perimeter

within the image (Figure S1). After fitting the ellipse the results

were visually confirmed by the operator. To quantify eccentricity

of the cell shape, we calculated the elongation factor (EF), defined

as the ratio between the major and minor axes of the best-fit

ellipse.

Size Measurement Calibration
To calibrate size measurements from the CellSearchH images,

we separately measured the size of the cultured prostate cancer

cells in suspension using the CEDEX XS imaged-based cell

analyzer (Roche, Germany). Grown cultured cancer cells are

trypsinized and re-suspended in the culture medium. Cell counts

were evaluated using a 1:1 dilution of cell suspension in trypan

blue (Gibco, Grand Island, NY). A 10 ml of cell suspension is

loaded on the Smart Slide (Roche, Germany), and then read to

measure the cell diameter. The conversion factor from pixels to

micrometers can be determined using the following equation,

Conversion Factor~
ACEDEX

ACellSearch

The size of CTCs from patient samples was estimated by

products of the conversion factor and area of CTCs measured

from CellSearchH images.

Nuclear Cytoplasmic Ratio Measurement
The nuclear cytoplasmic ratio is defined as the ratio of nuclear

area (AN) to cytoplasmic (AC) area, where AC is considered as the

area of the cell excluding AN.

N=C Ratio~
AN

AC

Sample Selection
CTCs analyzed in this study were obtained from baseline blood

samples of consenting patients diagnosed with metastatic castra-

tion resistant prostate cancer that were chemotherapy-naı̈ve and

enrolled onto a randomized phase II clinical trial of a novel agent

[38]. We collected all of the images showing DAPI+CK+CD45-

events that were identified by CellSearchH for the 83 subjects

enrolled in the trial. Based on the likelihood that a small fraction of

these events represented legitimate CTCs we restricted our

analysis to 19 patients who had .40 DAPI+CK+CD45- events.

Three of these patients were further excluded because of low

quality of images. CTC enumeration was independently deter-

mined for the remaining 16 patients by a CellSearchH-qualified

technician and the counts ranged from 11 to 106 CTCs/7.5 ml,

with a median value of 41.5 CTCs/7.5 ml. After excluding

unsuitable images (Figure S2), because they could not be

Figure 3. Example images of cultured prostate cancer cell (A–D) and CTCs from prostate cancer patients (E–L) captured using the
CellSearchH system. CTCs were noticeably smaller than cultured cancer cells (A–D). Cultured cancer cells were mostly round with regular cell and
nuclear shapes. The nucleus was typically centered and surrounded by cytokeratin (E–L). CTCs exhibited highly variable shapes, including round (E),
oval (F), elongated (G–J), and clusters (L). Non-round and multi-nucleate cells were sometimes observed (G–K). The yellow scale bar is 5 mm in length.
doi:10.1371/journal.pone.0085264.g003

Morphology of CTC versus Cultured Cancer Cells
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interpreted by our software, a total of 523 CTCs from prostate

cancer patients were analyzed along with 800 cultured cancer cells

from the four prostate cancer cell lines.

Results and Discussion

Cell Size
Analyzing images of cells processed using the CellSearchH

system and calibrated against standard microscopy, we found

significant size differences between prostate cancer CTCs and

cultured prostate cancer cells (Figure 2). Specifically, the average

diameter of CTCs captured by CellSearchH, among our 16

patients, is just over half that of the cultured cancer cells, with

7.9761.81 mm for CTCs and 13.3862.54 mm for cultured cancer

cells (p,0.001) respectively. While Coumans and colleagues [21]

employed a micropore filtration strategy for the enrichment of

both cancer cell lines and patient-derived CTCs, they character-

ized the biomechanical properties of the same Ep-

CAM+CK+CD452 CTC population presented in this study.

Their analysis reported that prostate CTCs were smaller than

those of breast or colorectal cancers, however, they estimated that

prostate cancer CTCs were ,25% larger than our current report.

While this discrepancy may represent cell stress imposed in sample

processing by immunocapture, in the current study, and micro-

pore filtration, in the former, this difference may also have arisen

from the different strategies employed to measure cell size.

Coumans used a Coulter pipette for size calibration, which was

less precise than image analysis for small length scale (,10 mm)

size estimates. Furthermore, our estimate of cell diameter is

consistent with the small mean cell volume reported by Ligthart

and colleagues [36], as well as another recent study showing

LNCaP total cell area is 1.6-fold greater than that of

EpCAM+CK+CD452 prostate cancer CTCs [39]. It is also

interesting to note that the optimal pore size used in previous

studies for filtration based capture of CTCs was 8 mm, which

coincides with our estimated cell diameter of 7.97 mm

[21,22,29,40]. Micropore filtration strategies have reported as

high as 90% CTC recovery [40] but have relatively poor sample

purity [41].The similarity in size between CRPC CTCs examined

in this study and leukocytes, this may represent a fundamental

limitation of filtration-based strategies. This limitation can be

potentially overcome by enrichment strategies that combine CTC

enrichment based on a combination of cell size and deformability

[29–31].

We also considered the possibility of our patient selection

criteria (CTC count .40) may have biased for a greater number

of smaller CTCs. While the selected patients were chemotherapy-

negative, they would have participated in a range of therapeutic

Figure 4. Elongation Factor and Nuclear Cytoplasmic Ratios. A:
Elongation factor (EF) of CTCs from prostate cancer patients compared
with cultured prostate cancer cells. The median EF of CTCs was
generally greater with significant inter- and intra-patient variability. B:
Nuclear cytoplasmic (N/C) ratios of CTCs from prostate cancer patients
compared with cultured prostate cancer cells. Median with upper and
lower quartiles is shown for each sample. The median N/C ratio for CTCs
was generally greater with significant inter- and intra-patient variability.
doi:10.1371/journal.pone.0085264.g004

Figure 5. Changes in cell and nucleus after two days of storage in the CellSave tubes. A: The diameter of cultured prostate cancer cells
decreased ,6% on average. B: The nuclear diameter of cultured prostate cancer cells decreased ,10% on average.
doi:10.1371/journal.pone.0085264.g005

Morphology of CTC versus Cultured Cancer Cells
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interventions and would represent patients in the late stages of the

disease. Due to these or other unique physiological burdens within

our patient cohort, caution should be exercised in generalizing

these results to all CRPC CTCs. However, we observed no

correlation between CTC cell size and cell count (Table S1 and

Figure S3) that would otherwise suggest that disease severity affects

cell size. Interestingly, while other studies have reported a high

degree of heterogeneity in CTC cell size [21,36,42,43], our size

estimation based on microscopic analysis demonstrated that the

inter-patient variation of the mean cell size was quite small, ranging

from 7.05 mm to 8.94 mm with a median of 8.04 mm. Furthermore,

the currently accepted criterion used by the CellSearchH system to

validate CTCs is that their size must be larger than neighbouring

leukocytes [17]. However, this size definition was largely deter-

mined based on CTCs derived from breast cancer [44–47] that

have a median cell diameter of 13.1 mm [21]. Our observation that

CTCs from patients with CRPC are significantly smaller in size

(,8 mm) suggests that these conventional criteria for CTC

identification may underestimate the true CTC count.

Similarly, our observation that prostate cancer EpCAM+ CTCs

are consistently smaller than cultured cancer cells is potentially

important for emerging label-free CTC enrichment strategies.

Firstly, enrichment of CTCs based on size alone may have limited

efficacy for the capture of the smaller CTCs found in CRPC

patients because they will not be as clearly discriminable from

patient leukocytes. While larger cancer cells are typically used to

demonstrate the efficacy of these techniques, such as HELA

(.20 mm), LNCaP (18 mm), MCF-7 (.15 mm), MDA-231

(15 mm) [21,48,49], cultured cancer cells, such as L1210 mouse

lymphoma cells (10 mm), with smaller diameter may represent

better models for CTC enrichment [31,50,51]. Secondly, the

contribution of the nucleoplasm to cell stiffness is 10-fold greater

than the cytoplasm [52]; CTC enrichment strategies that capture

CTCs based on size and deformability may prove to be superior to

those that sort based on size alone.

Cell Shape
The use of cultured cancer cells spiked into blood from healthy

donors may model the separation of these cells from hematological

cells that differ in cell size but the common pre-treatment of these

cells with trypsin, to dissociate them from tissue culture flasks, or

sample processing using the CellSearch affinity capture strategy

may also dramatically influence the cell shape. Through compar-

ison of trypsinized cultured cells and CRPC CTCs, following

CellSearchH CTC enrichment, we evaluated whether these

cultured cells are appropriate models for patient-derived CTCs.

In contrast to cultured cells, that were generally round in shape,

CTCs exhibited significant shape variability with many cells

having a more elongated shaped (Figure 3). We quantified the

eccentricity of the cell shape using the elongation factor (EF),

defined as the ratio between the major and minor axes of the best-

fit ellipse. As shown in Figure 4A, CTCs were significantly more

elongated than cultured cancer cells with an average median EF of

1.27 compared 1.17 for cultured cancer cells (p,0.05). This

observation is consistent with other studies that report significant

pleomorhpism among CTCs [21,36,42,43]. One possible cause for

the diversity in cell morphology are apoptotic events associated

with CTC dissemination [53]. However, the cytomorphological

changes observed in CTCs may represent functional changes

associated with interactions between CTC and endothelium or

cellular elongation associated with vascular transport [54,55].

Interestingly, cytomorphological abnormality of CTCs has been

correlated to poor clinical outcome in metastatic breast, colorectal,

and prostate cancer. [36].

Nuclear Cytoplasmic Ratio
The nuclear cytoplasmic ratio (N/C) is defined as the ratio of

the apparent nuclear area and the apparent cell area with the

nucleus subtracted. Compared to cultured cancer cells, CTCs are

expected to have larger N/C because of their smaller cell size and

likely larger nuclear size due to possible chromosomal abnormal-

ities. We found the median N/C for all cultured cancer cells to be

1.12 while average median N/C ratio from the CTC of patients,

enriched by CellSearchH system to be 1.43. This observation

further underscores the potential efficacy of deformability-based

CTC enrichment, as the nucleoplasm contributes 10-fold more to

cell stiffness than does the cytoplasm [52]. Furthermore, as shown

in Figure 4B, CTCs showed significantly greater N/C variability

than cultured cancer cells. Considering that the N/C ratio of

CTCs correlates to poor disease outcome [36], it may be

speculated that, within this heterogeneous population, there are

cell subpopulations with greater metastatic potential. If so, then

perhaps a more relevant measure of disease status is the count of a

certain subpopulation of CTCs rather than the count of all CTCs

as used currently [9,56].

Cell Shrinkage
One concern associated with measuring cell size using the

CellSearchH system is whether storing cell samples in the CellSaveH
tubes modifies the size of the cell and nucleus. To investigate, we

compared cultured cancer cells spiked into blood from healthy

donors processed immediately with the same cells processed after

48 hours of storage. The cell diameter was found to decrease by

,6%, while the nuclear diameter was found to decrease by ,10%

from 0 to 48 hours (Figure 5). This result gives an estimate of the

variability of the measured cell morphology parameters resulting

from sample storage time, but cannot explain the significant

differences in the morphology of CTCs and cultured cancer cells,

or the variability found within each CTC sample.

Conclusion

In conclusion, CTCs isolated from castrate resistant prostate

cancer patients, using the CellSearchH system, were smaller in size,

more elongated in shape, and had greater N/C when compared to

cultured cancer cells. CTCs also showed significantly greater

variability in shape and N/C. While the system only captures

EpCAM-high cells, CTC images from CellSearchH enumeration

are widely available and this analytical strategy could be applied to

identify characteristic morphological features of CellSearchH-

enriched CTCs. The morphological differences between cultured

cell lines and CTC need to be considered in the design and testing

of devices that isolate CTC in a label-free fashion based on

cytomorphological criteria.

Supporting Information

Figure S1 Screen-shot of the LabViewH program developed to

analyze images obtained from the CellSearchH system. The

program acquires the images for each CTC candidate. A selected

image (highlighted in yellow) is analyzed to measure the area in

pixels. An ellipse is fitted to this image and overlaid on top of the

original image for checking. Parameters for intermediate image

processing steps, as well as statistics for the whole collection are

also displayed.

(DOCX)

Figure S2 Rejected images of cell fragments from CTC

identification. These images of cell fragments commonly appeared

during image analysis and were not included in the CTC count or

Morphology of CTC versus Cultured Cancer Cells
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cell size measurements. Typical CTC fragments include a nucleus

partly covered by cytokeratin, or a nucleus completely separated

from cytokeratin. These fragments likely originated from CTCs

undergoing apoptosis.

(DOCX)

Figure S3 Cell size versus CTC count. There appeared to be no

correlation between CTC cell size and cell count for CTCs

identified by CellSearch from patients with metastatic castrate

resistant prostate cancer. The cell size ranged from 6.9 mm to

8.95 mm; while the CTC count varied from 11 to 106.

(DOCX)

Table S1 Patient information summary. All patients were

diagnosed with metastatic castration resistant prostate cancer

(mCRPC). There was no significant correlation between PSA level

and size of CTCs.

(DOCX)
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