Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Jul;71(7):2892–2894. doi: 10.1073/pnas.71.7.2892

Alkaline Isomerization of Ferricytochrome c: Identification of the Lysine Ligand

Harvey Wilgus 1, Earle Stellwagen 1
PMCID: PMC388578  PMID: 4368392

Abstract

Changes in the visible absorbance spectra of complexes of horse heart cytochrome c hemopeptide 1-65, peptide 66-104, and their guanidinated counterparts are compared with those characteristic of native and fully guanidinated ferricytochrome c over the pH range 7 to 11. Upon raising the pH, the methionine ligand in the guanidinated hemopeptide 1-65·peptide 66-104 complex is replaced by a strong field ligand. By contrast, the methionine ligand in the hemopeptide 1-65·guanidinated peptide 66-104 is replaced by a weak field ligand. These results demonstrate that lysine 13 does not ligate with the heme iron upon isomerization of ferricytochrome c and that the ligand in the horse heart protein is one of the eight lysine residues in the 66-104 segment of the polypeptide, most likely lysine 79.

Keywords: heme protein, peptide reconstitution, guanidination

Full text

PDF
2892

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando K., Matsubara H., Okunuki K. Alkylation of cytochromes c. I. Properties of alkylated beef cytochrome c. Biochim Biophys Acta. 1966 May 5;118(2):240–255. doi: 10.1016/s0926-6593(66)80033-4. [DOI] [PubMed] [Google Scholar]
  2. Brandt K. G., Parks P. C., Czerlinski G. H., Hess G. P. On the elucidation of the pH dependence of the oxidation-reduction potential of cytochrome c at alkaline pH. J Biol Chem. 1966 Sep 25;241(18):4180–4185. [PubMed] [Google Scholar]
  3. Corradin G., Harbury H. A. Reconstitution of horse heart cytochrome c: interaction of the components obtained upon cleavage of the peptide bond following methionine residue 65. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3036–3039. doi: 10.1073/pnas.68.12.3036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dickerson R. E., Takano T., Eisenberg D., Kallai O. B., Samson L., Cooper A., Margoliash E. Ferricytochrome c. I. General features of the horse and bonito proteins at 2.8 A resolution. J Biol Chem. 1971 Mar 10;246(5):1511–1535. [PubMed] [Google Scholar]
  5. Gupta R. K., Koenig S. H. Some aspects of pH and temperature dependence of the NMR spectra of cytochrome C. Biochem Biophys Res Commun. 1971 Dec 3;45(5):1134–1143. doi: 10.1016/0006-291x(71)90137-9. [DOI] [PubMed] [Google Scholar]
  6. HARBURY H. A., LOACH P. A. Oxidation-linked proton functions in heme octa- and undecapeptides from mammalian cytochrome c. J Biol Chem. 1960 Dec;235:3640–3645. [PubMed] [Google Scholar]
  7. HETTINGER T. P., HARBURY H. A. GUANIDINATED CYTOCHROME C. Proc Natl Acad Sci U S A. 1964 Dec;52:1469–1476. doi: 10.1073/pnas.52.6.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lambeth D. O., Campbell K. L., Zand R., Palmer G. The appearance of transient species of cytochrome c upon rapid oxidation or reduction at alkaline pH. J Biol Chem. 1973 Dec 10;248(23):8130–8136. [PubMed] [Google Scholar]
  9. Lin D. M., Niece R. L., Fitch W. M. The properties and amino-acid sequence of cytochrome c from Euglena gracilis. Nature. 1973 Feb 23;241(5391):533–535. doi: 10.1038/241533a0. [DOI] [PubMed] [Google Scholar]
  10. MURRAY K., RASMUSSEN P. S., NEUSTAEDTER J., LUCK J. M. THE HYDROLYSIS OF ARGININE. J Biol Chem. 1965 Feb;240:705–709. [PubMed] [Google Scholar]
  11. Morton R. A. The electron paramagnetic resonance spectrum of ferricytochrome c and lysine-modified derivatives at alkaline pH. Can J Biochem. 1973 Apr;51(4):465–471. doi: 10.1139/o73-054. [DOI] [PubMed] [Google Scholar]
  12. STELLWAGEN E. THE SPECTROPHOTOMETRIC TITRATION OF THE PHENOLIC GROUPS OF HORSE HEART CYTOCHROME C. Biochemistry. 1964 Jul;3:919–923. doi: 10.1021/bi00895a011. [DOI] [PubMed] [Google Scholar]
  13. Salemme F. R., Kraut J., Kamen M. D. Structural bases for function in cytochromes c. An interpretation of comparative x-ray and biochemical data. J Biol Chem. 1973 Nov 25;248(22):7701–7716. [PubMed] [Google Scholar]
  14. Schejter A., Aviram I. The effects of alkylation of methionyl residues on the properties of horse cytochrome c. J Biol Chem. 1970 Apr 10;245(7):1552–1557. [PubMed] [Google Scholar]
  15. Stellwagen E. Carboxymethylation of horse heart ferricytochrome c and cyanferricytochrome c. Biochemistry. 1968 Jul;7(7):2496–2501. doi: 10.1021/bi00847a008. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES