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Abstract
Inflammatory bowel disease (IBD) results from a com-
plex series of interactions between susceptibility genes, 
the environment, and the immune system. The host 
microbiome, as well as viruses and fungi, play impor-
tant roles in the development of IBD either by causing 
inflammation directly or indirectly through an altered 
immune system. New technologies have allowed re-
searchers to be able to quantify the various compo-
nents of the microbiome, which will allow for future 
developments in the etiology of IBD. Various compo-
nents of the mucosal immune system are implicated in 
the pathogenesis of IBD and include intestinal epithelial 
cells, innate lymphoid cells, cells of the innate (mac-
rophages/monocytes, neutrophils, and dendritic cells) 
and adaptive (T-cells and B-cells) immune system, and 
their secreted mediators (cytokines and chemokines). 
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Either a mucosal susceptibility or defect in sampling of 
gut luminal antigen, possibly through the process of au-
tophagy, leads to activation of innate immune response 
that may be mediated by enhanced toll-like receptor 
activity. The antigen presenting cells then mediate the 
differentiation of naïve T-cells into effector T helper (Th) 
cells, including Th1, Th2, and Th17, which alter gut ho-
meostasis and lead to IBD. In this review, the effects of 
these components in the immunopathogenesis of IBD 
will be discussed.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Inflammatory bowel disease (IBD) results 
from the complex interactions between susceptibility 
genes, the environment, the immune system, and the 
host’s microbiome. It is thought that either a mucosal 
susceptibility or a defect in sampling of gut luminal an-
tigen leads to activation of the innate immune system 
that then recruits cells of the adaptive immune system 
leading to inflammation. This review will detail the in-
teraction of these components in the immunopathogen-
esis of IBD.
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INTRODUCTION
Inflammatory bowel disease (IBD) is a chronic inflam-



matory disorder that is comprised of  both Crohn’s dis-
ease (CD) and ulcerative colitis (UC), and is characterized 
by alternating phases of  clinical relapse and remission. 
CD can affect any part of  the gastrointestinal tract and 
classically presents with fatigue, prolonged diarrhea with 
or without gross bleeding, abdominal pain, weight loss, 
and fever. UC characteristically involves the colon and 
presents with symptoms that usually rectal bleeding, 
frequent stools, mucus discharge from the rectum, tenes-
mus, and lower abdominal pain. IBD is thought to be the 
result of  a dysregulated immune system in the context 
of  a genetically susceptible individual. Currently, IBD 
affects 1.4 million Americans and at a prevalence rate of  
396 per hundred thousand individuals worldwide[1]. The 
incidence of  CD in the United States is estimated to be 
5 per hundred thousand persons and is characterized by 
focal and transmural inflammation that can occur any-
where along the length of  the gastrointestinal system, 
that may include B2 stricturing (gut luminal narrowing), 
B3 penetrating (bowel perforation, fistula, inflammatory 
mass/abscess), and with possible perianal disease[2,3]. UC 
affects 8-12 per hundred thousand individuals and is 
characterized by colonic mucosal inflammation along the 
entire colon and involving the rectum[3,4]. Also, patients 
with IBD have an increased risk of  developing other 
chronic inflammatory disorders, such as psoriasis and 
primary sclerosing cholangitis[5,6].

The exact cause of  IBD is still unknown, but is 
thought to be due to a combination of  a patient’s genet-
ics, microbiome, immune response, and the environment 
that result in an excessive and abnormal immune re-
sponse against commensal flora in genetically susceptible 
individuals. Epidemiological data suggest an association 
between IBD and a number of  environmental factors, 
such as antibiotic use, microbial exposure both early and 
late in life, and possibly diet[5,7-9]. The genetics of  IBD 
are complex and thought to be polygenic. Genome-wide 
association studies (GWAS) suggest that dysregulation in 
innate and adaptive immunity contribute to the develop-
ment of  IBD. Susceptibility variants have been reported 
in genes associated with autophagy (ATG16L1), the 
interleukin (IL)-23/Th17 pathway (IL-12B), TGF-beta 
pathway (SMAD3), T-cell activation (TAGAP), among 
other immune system genes[10-13].

The identification of  these and other loci is only part 
of  a larger picture that aims to understand how polymor-
phisms in these genes can lead to an increased risk of  de-
veloping IBD. Here we review the available evidence sup-
porting the role of  the microbiome and the innate and 
adaptive immune responses and their crosstalk in IBD.

THE MICROBIOME
Overview
Th interaction of  the host with its abundant microbiota 
is complex. The luminal surface of  the small and large 
intestine, approximately 300-400 m2, is a unique environ-
ment where an enormous population of  bacteria exists 

in close proximity to the immune system of  the gut 
mucosa. This roughly translates to the interactions of  
1012 microorganisms per gram of  feces with 106 immune 
cells per gram of  enteric tissue[14]. A complex network 
of  interactions exists between gut epithelial cells, im-
mune cells, and foreign bodies that transition along the 
gut. Functionally, the gut-associated lymphoid tissues 
generates either an immune response for rejection of  
pathogens or a clinical immune response of  tolerance 
for dietary and microbial antigens[15]. Data supports the 
hypothesis that IBD results from a dysregulated immune 
response to the microbiota. It was found that in CD 
patients, diversion of  feces induces inflammatory remis-
sion and mucosal healing in the downstream intestinal 
segment and infusion of  feces reactivates the disease[16]. 
Furthermore, in UC patients with active disease, treat-
ment with broad-spectrum antibiotics reduced mucosal 
inflammation[17]. These data support the concept that 
luminal bacteria provide the stimulus for an inflamma-
tory response leading to mucosal injury. Two main hy-
potheses have been suggested that might contribute to 
the loss of  tolerance towards the indigenous microbiota 
in patients with IBD. First, genetic susceptibility leads to 
a dysregulation of  the mucosal immune system that re-
sult in excessive immunologic responses to normal flora. 
Second, an imbalance exists in the composition of  the 
microbiota that elicits a pathologic response from the 
normal mucosal immune system[18]. In all likelihood, it 
probably is a combination of  both hypotheses.

Advancements in genetic technology, such as 16S 
ribosomal RNA (rRNA) gene and metagenomic sequenc-
ing have allowed researchers to determine the composi-
tion of  the microbiome[19]. Recently, a number of  studies 
have profiled the “normal” human gut microbiota. Brief-
ly, it is thought that greater than 90% of  all phylotypes 
belong to two divisions, Bacteroidetes and Firmicutes[20]. 
Other divisions that have consistently been recovered 
from “normal” individuals include Proteobacteria, Actino-
bacteria, Fusobacteria, and Verrucomicrobia. It is believed that 
the composition of  fecal microbiota remains relatively 
constant over time, termed resilience, with temporary 
changes occurring after exposure to food, medicine, and 
physical environment[21]. In 2010, whole-genome shotgun 
sequencing revealed 3.3 million nonredundant microbial 
genes in fecal samples from an adult European cohort[22]. 
It was found that up to 98% of  the genes were bacterial 
with the rest belonging to archaea, yeasts, viruses, and 
protists. The three most abundant genera in the fecal 
samples were Bacteroides, Faecalibacterium, and Bifidobacte-
rium, however the percent composition was found to be 
highly variable between individuals[23]. Three main entero-
types (independent of  gender, age, race, body mass in-
dex, or country and continent of  residence) were created 
that are classified based upon the prominent genera rep-
resented: enterotype 1-Bacteriodes; enterotype 2-Prevotella; 
enterotype 3-Ruminococcus[23].

Individuals with IBD have been shown to have chang-
es in the bacterial composition of  feces with less bacterial 
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diversity, having fewer numbers of  non-redundant bacte-
rial genes, as compared to healthy controls[24,25]. Adding to 
the complexity, the bacterial profile also differs between 
individuals with UC and CD. In a twin study, twins with 
UC were found to have less Bacteroides and more Actino-
bacteria and Proteobacteria than their healthy twin counter-
parts. The decrease in Bacteroides was made up for by an 
increase in the Prevotellaceae family[26]. Also, it has been 
found that Escherichia coli (E. coli) is to be increased in fe-
cal samples from individuals with UC, with some isolates 
expressing virulence factors and invading properties[27,28]. 
Dysbiosis also exists in CD. Many studies have shown a 
decrease in the abundance of  several bacterial species of  
the phylum Firmicutes in patients with CD[29,30]. Also, the 
microbiome of  individuals with CD predominantly in the 
ileum was found to differ from those whose disease was 
found predominantly in the colon. Those with ileal CD 
had decreased Faecalibacterium and Roseburia and increased 
amounts of  Enterobacteriaceae and Ruminococcus gnavus[31]. 
Consistent with what is seen in UC patients, E. coli also 
has been observed in patients with CD[27].

Recently a new pathogenic group called adherent-
invasive E. coli (AIEC) has been isolated from the ileum 
of  CD patients[30,32]. Darfeuille-Michaud[33] have accumu-
lated a large body of  data showing that AIEC is able to 
invade epithelial cells and to survive and replicate within 
macrophages and is associated with ileal mucosal CD 
pathogenesis. They found that AIEC was present in the 
inflamed ileum of  22% of  chronic CD patients, as com-
pared to only 6% of  control patients, as well as 36% of  
the newly formed terminal ilea of  postsurgical CD pa-
tients[34]. However, AIEC was found in only a small per-
centage of  affected colons of  CD patients and in zero 
percent of  UC patients, suggesting that AIEC strains are 
associated specifically with ileal mucosa in CD[34]. AIEC 
facilitate binding and invasion into epithelial cells via 
type 1 pili and flagella[35]. This interaction is dependent 
upon epithelial expresseion of  CEACAM6, which is a 
carcinoembryonic antigen upregulated by inflammatory 
cytokines and possibly by AIEC itself[36]. Furthermore, 
transgenic mice overexpressing CEACAM6 in epithelial 
cells are colonized by AIEC and manifest gut inflamma-
tion with marked neutrophil infiltration and ulceration[37]. 
In the lamina propria, AIEC is taken up by macrophages 
and can survive and proliferate within macrophage 
vacuoles, which suggest that the bacteria is not readily 
cleared from the site and may represent a defect in au-
tophagy[38,39].

Also, recently an important role of  fungi in gut ho-
meostasis has been found. Besides the massive amount 
of  bacteria known to make up the intestinal microflora, 
the mammalian gut also contains a rich fungal commu-
nity that interacts with the immune system via Dectin-1, 
which is a pattern-recognition receptor expressed by in-
nate immune cells, such as: macrophages, dendritic cells 
(DCs), and neutrophils[40]. It was found that mice defi-
cient in Dectin-1 exhibited increased susceptibility to dex-
tran sulfate sodium (DSS) colitis that was the result of  an 

altered response to the host’s fungi[41]. Furthermore, poly-
morphisms in the gene for Dectin-1 have been shown to 
be strongly linked to a severe form of  UC[41]. This data 
suggests that the interactions between fungi and the in-
nate immune system are important in the development 
of  IBD. Viral infections also impact the gut microflora. 
In mice, virus-plus-susceptibility gene interactions have 
been shown to induce colitis that mimics CD. When mice 
with a specific mutation in a CD susceptibility gene for 
autophagy (ATG16L1) were infected with murine noro-
virus they displayed abnormal Paneth cell structure and 
granule packaging similar to those seen in CD patients 
homozygous for the risk allele of  ATG16L1[42]. These 
changes were not seen in control mice nor in CD patients 
homozygous for the nonrisk allele of  ATG16L1. Fur-
thermore, when these mice were treated with DSS they 
displayed worse colitis than control animals[42]. These 
results demonstrate how a genetic factor and an environ-
mental agent can contribute to the pathogenesis of  CD. 
Also, HIV infection of  humans and simian immunodefi-
ciency virus (SIV) infection of  rhesus monkeys is known 
to cause systemic immune activation and associated with 
damage to the intestinal epithelium and translocation of  
antigens into the blood[43-45]. Pathogenic SIV infection has 
been associated with significant expansion of  the enteric 
virome, including adenovirus and parvovirus, that can 
lead to enteritis without changes in the microbiome[46]. 
This data suggests that the enteric virome might con-
tribute to AIDS pathogenesis by damaging the intestinal 
epithelium to allow translocation of  microbes and viral 
antigens into the circulation.

The consequences of  these shifts in microbiota are 
unclear, particularly whether it is cause or effect. Regard-
less of  the inciting cause of  IBD, it is apparent that the 
host-microbiome interaction plays a large part in disease 
pathogenesis.

Host-microbial interactions
Host-microbe interactions are crucial in the development 
and modulation of  the immune system and protection 
from pathogenic bacterial invasion. The first line of  de-
fense to pathogenic organisms is the innate immune sys-
tem, which in the gut consists of  mucin, the epithelium, 
and cells of  the innate immune system [i.e., neutrophils, 
DCs, monocytes/macrophages, and innate lymphoid cells 
(ILCs)]. Interestingly, mice lacking an adaptive immune 
system, but that have an intact innate immune system, 
such as recombinase activation gene deficient (RAG-/-) 
and severe combined immunodeficient (SCID) mice, do 
not develop spontaneous colitis and co-exist with the mi-
crobiota. However, these mice can develop colitis when 
induced by DSS, anti-CD40 antibody, and Heliobacter 
hepaticus infection[47-49]. These data suggest that in the ab-
sence of  an adaptive immune system, the innate immune 
system is sufficient for the development of  IBD. How-
ever, the adaptive immune system is still thought to play 
an important role in the development of  IBD, as RAG 
deficiency can prevent the development of  spontaneous 
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secretors. Twenty percent of  the population are non-
secretors, which has been associated with a variety of  
illnesses including recurrent norovirus and encapsulated 
bacterial infections, duodenal ulcerations, and susceptibil-
ity to CD[53-59]. The inability to secrete H1 into the mu-
cosa is thought to affect how commensal and pathogenic 
flora interact with the epithelial layer and may interfere 
with the ability of  the commensal flora to adhere, which 
could result in increased susceptibility to infection, inva-
sion, and activation of  the immune system.

The epithelium
The epithelium of  the intestine has many functions, in-
cluding absorption, secretion, and digestion. There are 
four main types of  epithelial cells: one, absorptive entero-
cytes; two, mucus producing goblet cells; three, hormone 
producing enteroendocrine cells; and four, antimicrobial 
and growth factor producing Paneth cells (Figure 1). The 
epithelium forms a mucosal barrier with tight junctions 
between enterocytes that can exclude the entry of  most 
substances. The epithelial layer is renewed every 2-3 d 
with a balance of  proliferation of  epithelial cells in the 
crypts and migration down the villi in the small intestine 
or onto the surface of  the colon and apoptosis and shed-
ding of  the enterocytes. Disruption of  this process im-

colitis that are seen with certain mutant mouse strains[50].

INNATE BARRIERS OF PROTECTION
Mucus
The surface of  the intestine is protected by a layer of  
mucus that is generated by goblet cells in the epithelium 
(Figure 1). The inner mucus layer is approximately 100 
μm thick, firmly adherent, rich in antimicrobials and 
mucin, and has a low bacterial density. The outer layer 
of  mucus is comprised of  mucin, diluted antimicrobials, 
and some bacteria. A variant in the Muc2 gene, which is 
the major intestinal secretory mucin, confers susceptibil-
ity in humans to IBD and Muc2 deficient mice develop 
spontaneous colitis[51]. Furthermore, some patients with 
CD have been found to have goblet cell depletion and 
an impaired mucus layer, which allows bacteria to adhere 
directly to epithelial cells, and may contribute to disease 
progression[52]. It is believed that the ability of  commen-
sal bacteria to adhere to the epithelial layer via oligosac-
charides helps deter invasion by displacing pathogenic 
bacteria. FUT2 is a gene that encodes a type alpha (1, 2) 
fucosyltransferase, which regulates the secretion of  the 
H1 antigen of  the ABO antigens into the mucosa. People 
are either associated as H1 antigen secretors or non-
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Figure 1  Innate immune system responses in the gut. The intestinal epithelial barrier is equipped with several layers of defense mechanisms to limit luminal an-
tigen translocation. Goblet cells, Paneth cells, and enterocytes secrete mucins and antimicrobial peptides that assemble into a mucus layer. Innate immune system 
cells, such as macrophages and dendritic cells, can sense invading bacteria through extracellular and intracellular pattern recognition receptors (Toll-like receptors-
TRLs and NOD-like receptors-NLRs) and initiate rapid inflammatory reponses mediated by the secretion of cytokines and chemokines. Innate lymphoid cells (ILCs) 
are also found in the lamina propria where they contribute to cytokine production and inflammatory cell recruitment.
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pairs the epithelial integrity and can result in chronic in-
flammation. Defects in epithelial integrity may contribute 
to IBD pathogenesis by allowing free passage of  organ-
isms across the epithelial layer where they can incite an 
immune response. For example, mutations in the organic 
cation transporter (OCTN) gene, which is involved in the 
transport of  cationic proteins, such as amino acids and 
nutrients, lead to an increased susceptibility to CD[60]. The 
susceptibility is thought to result from impaired fatty acid 
oxidation, which can cause colitis in experimental models 
in the setting of  bacterial antigen exposure[61].

The epithelium lies between the immune cells in the 
lamina propria and the microbiota in the gut lumen and 
functions to communicate with both. For example, the 
microbiota signals enterocytes as well as innate cells in the 
lamina propria via pattern recognition molecules signal 
receptors, such as toll like receptors (TLRs) and cytosolic 
NOD-like receptors (NLRs) (Figure 1). These signals 
have been shown to be necessary for normal homeostasis 
and resistance to injury[62]. Cytokines, such as interferon 
(IFN)-γ, interleukin (IL)-17, and IL-22, pathogens, and 
commensal bacteria have substantial effects on the epi-
thelium by regulating barrier integrity and function[63-66]. 
Expression of  pattern recognition receptors is highly reg-
ulated to prevent an inappropriate immune response, but 
still allow for constant surveillance. Mutations in genes 
coding for these receptors have been found to be IBD 
susceptibility genes. Haplotypes of  the TLR8 gene can 
confer protection (H1) or risk (H4) to the development 
of  IBD[67]. Agonists of  TLR8 have been shown to cause 
downstream activation of  proinflammatory cytokines 
such as IFN-γ, IL-12, and tumor necrosis factor (TNF)-α 
in peripheral blood mononuclear cells[68]. The TLR9 gene 
is also a CD and UC susceptibility gene[69]. It has been 
shown that mice infected with Campylobacter jejuni (C. 
jejuni) or TLR9 agonists have increased susceptibility to 
mild DSS colitis via a mechanism involving secretion of  
CXCL8[70].

Defects in the intestinal barrier can lead to persistent 
immune activation and has been suggested to play a role 
in IBD[71]. Normally, translocation allows small amounts 
of  luminal antigens to pass transcellularly across the epi-
thelium either through receptor-mediated endocytosis or 

non-selective endocytosis. A small amount of  bacteria 
is normally allowed to translocate and allows for physi-
ologic sampling of  luminal content by the host’s immune 
system[72]. Animal models that lack components of  a 
healthy epithelial barrier have been shown to develop 
IBD. Expression of  dominant-negative N-cadherin in 
mouse intestinal epithelium has been shown to lead to 
CD like symptoms[73]. NOD2 is a protein that acts as an 
intracellular pattern recognition receptor for muramyl 
dipeptide (MDP), a component of  the bacterial wall 
peptidoglycans. Mice lacking intracellular pattern recogni-
tion receptors, NOD1 and NOD2, were shown to have 
decreased E-cadherin expression with increased epithelial 
permeability and decreased antimicrobial production[74]. 
NOD2 was one of  the first CD susceptibility genes, with 
homozygous mutations found in 15% of  patients with 
CD[75]. Mutations in NOD2, as well as other pattern 
recognition receptors, might impair the ability of  the mu-
cosal immune system to sense organisms thereby leading 
to defective microbial clearance and persistent antigenic 
stimulation. This in turn may result in mucosal inflamma-
tion and loss of  regulatory control over proinflammatory 
pathways, which could possibly lead to the development 
of  IBD.

AUTOPHAGY
The term autophagy, or “self-eating,” results in the lyso-
somal degradation of  organelles, unfolded proteins, or 
foreign extracellular material (Figure 2). It is a key pro-
cess required for maintaining cellular homeostasis after 
infection, mitochondrial damage, or ER stress. Defects 
in autophagy have been shown to result in pathologi-
cal inflammation and GWAS have linked two key genes 
in autophagy, ATG16L1 and IRGM, to CD[13,76]. An 
ATG16L1 hypomorphic mouse line that expresses about 
1% of  the normal level of  ATG16L1 was shown to have 
Paneth cell granule abnormalities that are similar to those 
found in ileal resections in patients with CD that also 
carry the ATG16L1 gene variant[77]. While these hypo-
morphic ATG16L1 mice do not develop spontaneous 
colitis, they were found to have an increased susceptibil-
ity to DSS colitis[42]. However, when rederived virus free, 
these mice lost the Paneth cell pathology and ability to 
develop DSS induced colitis, which could be reversed by 
norovirus infection[42]. A recent study has reported that 
the ATG16L1 and NOD2 pathways may be interrelat-
ed[78]. In 2010, Cooney et al[78] demonstrated that NOD2 
stimulation is capable of  initiating autophagy in DCs and 
that for effective autophagy to occur, both intact NOD2 
and ATG16L1 functions are required. IRGM belongs to 
a family of  interferon-inducible immunity related GT-
Pases (IRGs) that encodes a protein involved in multiple 
autophagocytic pathways including intracellular clearance 
of  pathogens[79]. IRGM has been shown to play a role in 
autophagy during both Salmonella typhimurium and Mycobac-
terium bovis infections[79,80]. Another study in CD patients 
has demonstrated that autophagy is also important in 
the clearance of  AIEC and that IRGM and ATG16L1 

Antigen presenting cell

Isolation of 
membrane

Autophagosome Autolysosome

Lysosome

Figure 2  Autophagy. A small volume of cytoplasm is enclosed by the autopha-
gic isolation membrane, which forms the autophagosome. The outer membrane 
of the autophagosome then fuses with the lysosome where the cytoplasm de-
rived materials are degraded.
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deficient cells had increased AIEC replication, suggest-
ing that these genes play a significant role in clearance of  
this organism and intestinal inflammation[39]. These stud-
ies implicate that autophagy plays an important role in 
human inflammatory disorders by direct elimination of  
intracellular bacteria and activation of  pattern recognition 
receptor signaling which is involved in gut homeostasis 
and CD pathogenesis.

INNATE AND ADAPTIVE IMMUNITY
Overview
The immune system has evolved as protection against a 
wide range of  infectious agents. In vertebrates, the im-
mune system is broadly divided into two effector classes, 
the innate and adaptive immune responses. The innate 
immune system is the first line of  defense and provides 
an immediate protective response against infections and 
also helps to initiate the adaptive immune response (Fig-
ure 1). The innate immune system is non-specific and 
does not confer lasting immunity (memory). The innate 
immune system is comprised of  the epithelial barrier, 
macrophages, monocytes, neutrophils, DCs, and natural 
killer cells (NK cells), eosinophils, and basophils. These 
cells act together to initiate inflammation by secreting cy-
tokines, chemokines, and antimicrobial agents. This leads 
to phagocytosis of  infected cells and microorganisms, 
antigen presentation, and activation of  the adaptive im-
mune system.

The adaptive immune response is comprised of  lym-

phocytes (T and B cells) that when activated generate 
effector responses (cytokines and antibodies). In contrast 
to the innate immune system, the adaptive immune sys-
tem is highly specific and confers long lasting immunity 
(memory). It is generally thought that the adaptive im-
mune system is the main contributor to disease patho-
genesis in IBD, either through increased proinflamma-
tory cytokines driven by the T-helper (Th) subsets or by 
ineffective anti-inflammatory regulatory T-cells (Tregs). 
Naïve T-cells (Th0) cells after activation are able to dif-
ferentiate into Th1, Th2, or Th17 cells (Figure 3). In 
particular, Th1 responses have been thought to drive the 
pathogenesis of  CD, while UC is thought to be driven by 
Th2 responses. Recent advancements suggest that other 
cells, such as ILCs and Th17 cells, have emerged as im-
portant contributors to IBD pathogenesis.

Role of innate lymphoid cells in IBD
Until recently NK cells were thought to be the only in-
nate cell derived from a lymphoid progenitor. However, 
recent developments have classified NK cells as a subset 
of  a new family of  hematopoietic effector cells called 
ILCs. ILCs are an emerging and diverse group of  im-
mune cells and are part of  the new frontier of  immunol-
ogy research. All ILCs derive from an Id2 expressing 
progenitor and are defined by three main features: One, 
they are of  lymphoid morphology; two, they are cell lin-
eage negative (CD3-, B220-, GR1-, CD11b-, Ter119-); and 
three, they lack RAG-dependent antigen receptors (Figure 
4)[81]. Recently, a unifying ILC classification system has 
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tissue degredation. Th2 cells produce interleukin (IL)-13 that can increase intestinal permeability and induce epithelial apoptosis. Th17 cells release IL-17A, which 
plays a role in recruiting neutrophils to sites of active inflammation, and IL-21 that also induces MMP production that contributes to extracellular matrix degredation.
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based upon phenotypic and functional characteristics has 
been proposed (Table 1)[82]. ILCs can be classified into 
three groups: Group 1 ILCs, which are T-box expressed 
in T-cells (Tbet) dependent and are comprised of  ILC1 
and NK cells; group 2 ILCs, which are GATA-binding 
protein 3 (GATA3) and retinoic acid receptor-related 
orphan receptor (ROR) dependent, and comprised of  
ILC2s; and group 3 ILCs, which are RORt dependent 
and are comprised of  ILC3s and lymphoid tissue-inducer 
(LTi) cells[82].

The key cytokines secreted by ILCs tend to mirror 
those secreted by the T-helper cells of  the adaptive im-
mune system and therefore ILCs have been thought of  
as the innate counterparts of  T-helper lymphocytes (Table 
1). Group 1 ILCs are defined by their ability to produce 
Th1 cell associated cytokines, in particular IFN-γ. Al-
though under debate, the prototypical cell is the NK cell. 
Group 2 ILCs are defined by their ability to produce Th2 
cytokines, in particular IL-5 and IL-13 and the prototypi-
cal cells are the IH2 cells or nuocytes[83-86]. These cells 
have been shown to play a major role in defense against 
parasites and in allergy and asthma[87,88]. Group 3 ILCs 
are defined by their ability to secrete Th17 like cytokines 

such as IL-17 and IL-22 and the prototypical cells are LTi 
cells[89]. Group 3 ILCs have been shown to play a major 
role in autoimmune disease and have been shown to me-
diate colitis in a mouse model of  IBD[47].

Since ILCs have been shown to be important in mu-
cosal immunity it was only logical to examine the role 
of  these cells in IBD. Recent data has implicated ILCs, 
in particular group 3 ILCs in the development of  IBD. 
While most research into IBD has focused on the role of  
the adaptive immune system, in particular Th1 and Th17 
subsets, as well as ineffective regulatory T-cells, new 
evidence suggests that IBD can be triggered in RAG-/- 
mice, which lack all components of  the adaptive immune 
system in an IL-23 dependent manner. Buonocore et al[47] 
demonstrated that group 3 ILCs, and not NK cells (group 
1 ILCs), were increased and produced large amounts of  
IL-17A and IFN-γ after Hepaticus infection in RAG-/- 
mice were required for colitogenesis. Accumulating evi-
dence suggests that group 3 ILCs induce colitis via an IL-
23R-IL-22 dependent mechanism[47,90,91]. RAG-/- mice can 
also develop colitis after injection of  CD40L. Vonarbourg 
et al[92] demonstrated that CD40L induced colitis requires 
the presence of  innate lymphocytes because CD40L 

Figure 4  Development and classification of innate lymphoid cells[82]. Innate lymphoid cells (ILCs) all derive from an ID2 positive progenitor cell. Group 1 ILCs 
make interferon (IFN)-γ. Group 2 ILCs produce IL-5 and interleukin (IL)-13. Group 3 ILCs produce IL-17, IL-22, and IFN-γ. NK require IL-15, whereas all other ILCs 
require IL-7 for development. Group 2 ILCs depend on transcription factors GATA3 and ROR for development. Group 3 ILCs require RORt for development. Also, 
subsets of group 3 ILCs require additional transcription factors, such as aryl hydrocarbon receptor (AHR) for development. NK cells, which are group 1 ILCs, require 
both T-bet and eomesodermin (EOMES). The mechanisms of ILC1 development are not fully elucidated, however are known to require transcription factor T-bet for 
development.
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injection into RAG2-/--IL-2Rg-/- mice, which lack both 
adaptive immune cells and ILCs, did not develop colitis. 
Furthermore, group 3 ILC involvement in IBD has been 
further supported by the observation that RORt-/- mice 
do not develop CD40L induced colitis[47]. In an elegant 
set of  experiments, it was found that LTi cells were the 
subset of  group 3 ILCs that were colitogenic and re-
quired for disease onset, suggesting an important role 
for these cells in IBD pathogenesis[47]. In individuals with 
CD, a population of  innate lymphocytes that were RORt+ 
and represent human ILCs were found to be increased in 
the lamina propria compared to controls and this increase 
was IL-23 dependent[93,94]. Although a young field, data 
suggests that group 3 ILCs are an important cell type to 
study for answering questions about the pathogenesis of  
IBD as well as possible future therapies.

Th1 and Th2 cells
Th1 cells are induced by IL-12 and characteristically 
secrete copious amounts of  IFN-γ, TNF-α, and IL-12, 
whereas the signature cytokines secreted from Th2 cells 
are IL-4, IL-5, and IL-13[95]. CD is thought to be a Th1 
mediated disease, while UC is believed to be mediated by 
Th2 responses[96]. Mucosal T-cells from CD patients have 
been shown to secrete higher amounts of  IFN-γ and 
IL-2 than from T-cells from UC patients[97,98]. Further-
more, it has been demonstrated that UC patients produce 
increased amounts of  IL-5 and have atypical natural killer 
T (NKT)-cells that secrete higher amounts of  IL-13 as 
compared to CD patients[99-101]. However, recent data has 
suggested that the CD-Th1 and UC-Th2 paradigms are 
not so straight forward. Biopsies from both CD and UC 
patients have demonstrated high ex vivo levels of  IFN-γ 
and lower levels of  IL-13 have been found in UC patients 
as compared to CD patients[102,103]. Furthermore, data 
suggests that Th17 cell production of  IL-17 and IL-23 
play important roles in the pathogenesis of  IBD, with 
DCs isolated from CD patients producing more IL-23 
than UC patients[104]. Understanding the complicated in-
teractions underlying the dysregulated adaptive immune 
response in IBD will ultimately identify novel therapeutic 

targets.

Th17 cells: Friend or foe
Th17 cells are a subset of  helper T-cells that are induced 
by IL-6 and TGF-B, expanded by IL-23, and character-
ized by the secretion of  copious amounts of  IL-17A, IL-
17F, IL-21, and IL-22[105-107]. RORt has been identified 
as the master transcription factor of  Th17 differentia-
tion[108,109]. The IL-17 cytokine family includes six mem-
bers: IL-17A-F[110]. IL-17A and IL-17F are 50% similar in 
their amino acid structure, while IL-17B, IL-17C, and IL-
17D have less homology[111]. IL-17A and IL-17F signal 
through the same receptor, the IL-17 receptor A (IL-
17RA) and act through activation of  the NF-κB and 
MAPK pathways[112,113]. The major proinflammatory ef-
fects of  IL-17A and IL-17F are the activation of  various 
cellular targets, including the epithelium, endothelium, 
monocytes/macrophages, fibroblasts, and neutrophils 
that cause the induction of  TNF-α, IL-1B, chemokines 
(CXCL8, CXCL9, CXCL10), GM-CSF, G-CSF, IL-6, and 
metaloproteases[114-117]. There are two major subsets of  
Th17 cells: Th17 cells producing IL-17 and Th1/Th17 
cells producing both IFN-γ and IL-17[104,118-122]. IL-17 has 
been implicated in various immune mediated diseases, 
including rheumatoid arthritis (RA), asthma, IBD, and 
experimental autoimmune encephalitis (EAE)[123,124].

Th17 cells and signature cytokines have been ex-
tensively studied in IBD. GWAS have identified several 
genes involved in Th17 differentiation and expansion, 
including IL-23R, IL-12B, JAK2, STAT3, CCR6 and 
TNFSF15, as CD susceptibility genes with some overlap 
in UC[12,58]. As compared to normal, CD and UC patients 
have increased levels of  IL-17A gut mucosal transcripts 
and the lamina propria contains increased numbers of  
Th17 and Th1/Th17 cells[102,123,125]. RORt is found to be 
expressed at higher levels in lamina propria T-cells from 
CD patients[126].

Th17 pathobiology is complicated by the fact that 
in different experimental models, Th17 subsets can be 
distinguished by their function as either “pathogenic” 
or “nonpathogenic”. Pathogenic Th17 cells are thought 

Table 1  Innate lymphoid cell subsets

ILCs Lineage Mouse Human Cytokines Function Disease

Group 1 ILC1s Lin-Thy1+Sca1+Tbet+ Lin-CD56+NKp46+NKp30+NKp44+

IL-7R-
IFN-γ Inflammation IBD?

NK cells NKp46+NK1.1+CD122+

NKG2D+CD161+CD16+
CD122+NKG2D+CD161+KIR+ IFN-, TNF-α, 

cytotoxic 
effectors

Immunity to viruses and intracellular 
pathogens, tumor surveillance

Inflammatory 
conditions, IBD

Group 2 ILC2s Lin-ICOS+Thy1+Sca1+

IL-7R+GATA3+
Lin-IL-7R+CD45hiCD161+ CRTH2+ IL-5, IL-9, IL-13 Immunity to helminthes, wound 

healing
Allergy, asthma

Group 3 ILC3s Lin-Thy1+Sca1+RORt+

NKp46+IL-7R+CCR6-
Lin-CD56-NKp46+NKp30+NKp44+

IL-7R+
IL-22 Lymphoid tissue development, 

intestinal homeostatsis, immunity to 
extracellular bacteria

IBD

LTi cells Lin-Thy1+Sca1+RORt+

NKp46-IL-7R+CCR6+
Lin-IL-7R+CD45+RORt+ IL-17A, IL-17F, 

IL-22
Homeostasis of epithelia, immunity 

to extracellular bacteria
IBD

Lin-: Lineage marker negative (mouse negative for CD3, CD19, B220, CD11b, CD11c, GR1, Ter11; human negative for CD1a, CD3, CD11c, CD34, CD123, TCR, 
TCR, CD19, CD14, CD16); IBD: Inflammatory bowel disease; ILC: Innate lymphoid cell; IFN: interferon; TNF: Tumor necrosis factor; NK: Natural killer.
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to be characterized by their production of  IFN-γ and 
by the expression of  specific surface markers, includ-
ing IL-18R1 and CXCR3[127]. IL-17A deficient mice or 
those treated with neutralizing antibodies to IL-17A or 
IL-17RA are resistant to the development of  RA and 
EAE[128,129]. Furthermore, in a trinitrobenzene sulfonic 
acid (TNBS) mouse model of  colitis IL-17RA deficient 
animals were protected from the development of  acute 
mucosal inflammation[130]. However, in a DSS model of  
colitis, mucosal inflammation was ameliorated by IL-
17F deficiency, but exacerbated by IL-17A deficiency, 
suggesting an important role for IL-17F and perhaps an 
alternative role for IL-17A[131-133]. Furthermore, support-
ing a protective role for IL-17A, it has been shown that 
IL-17A directly inhibits Th1 cells and suppresses devel-
opment of  inflammation[134]. Additionally, anti-IL-17A 
monoclonal antibody treatment was shown to exacerbate 
DSS induced colitis[135]. These studies suggest that IL-
17A may protect against the development of  mucosal 
inflammation whereas IL-17F may drive it.

As demonstrated by the data above, the biology of  
IL-17 deficiency has been complicated, with some stud-
ies showing a pathogenic role, while others suggesting 
a protective role. However, there has been a significant 
amount of  data suggesting that IL-17A has played a 
pathogenic role in IBD. Therefore, a double-blind, ran-
domized, placebo-controlled study tested whether the 
anti-IL-17A monoclonal antibody, secukinumab, would 
be beneficial in CD patients[136]. Surprisingly, the study 
found that blockade of  IL-17A was ineffective and 
caused a higher rate of  adverse advents as compared 
to placebo, suggesting a protective role of  IL-17A[136]. 
Although the study was halted prematurely, exploratory 
analysis of  CD candidate genetic polymorphisms found 
that a subset of  patients with a minor allele of  TL1A 
actually had an improved clinical score over the course 
of  the treatment[136]. These data suggest that in the right 
genetic context, secukinumab therapy may be beneficial 
to some patients, which further supports the concept of  
treating each individual with IBD based upon their own 
genetic composition.

TL1A: CONNECTING THE INNATE AND 
ADAPTIVE IMMUNE SYSTEM
Tumor necrosis factor super family 15 (TNSF15) encodes 
the protein TL1A, a member of  the TNF superfamily, is 
expressed either membrane bound or secreted by mono-
cytes, macrophages, DCs, fibroblasts, and endothelial 
cells in response to stimulation by cytokines and microor-
ganisms[137-140]. It binds to death domain receptor 3 (DR3), 
mainly expressed on T-cells, to initiate a number of  im-
mune responses, such as activation of  T-cells resulting in 
the secretion of  proinflammatory mediators[141]. TL1A 
has been implicated in the pathogenesis of  many autoim-
mune diseases, including asthma, rheumatoid arthritis, 
and IBD[96,140,142-144]. Numerous studies have supported 
the concept that TL1A is a major regulator of  mucosal 

inflammation at the interface between the innate and 
adaptive immune system[145-147].

In 2005, in a study of  Japanese CD patients, polymor-
phisms in the TNFSF15 gene was identified as having a 
strong association with CD[148]. This association has been 
reproduced in other studies, including European and 
Jewish CD and UC patients, and has been demonstrated 
to be the dominant gene in East-Asians with IBD[12,149-153]. 
Haplotypes within the gene confer either risk or protec-
tion, which is dependent upon the ethnicity of  the indi-
vidual. In non-Jewish CD patients, haplotype A is a risk 
allele, while haplotype B is protective[148-150,153]. However, 
in Jewish CD patients, haplotype B has a trend towards 
risk, as these patients had worsened disease as manifested 
by higher incidents of  surgery and increased responses to 
E. coli outer membrane porin C (OMPC)[154,155]. Further-
more, monocytes isolated from Jewish patients that were 
haplotype B secreted increased amounts of  TL1A than 
haplotype A carriers after stimulation[156].

Given the information generated from the human 
GWAS studies, transgenic mice have been created that 
overexpress TL1A. In 2011, Meylan et al[146] and Taraban 
et al[147] found that murine colitis driven by TL1A overex-
pression in T-cells and DCs was found to be dominated 
by a Th2 response over Th1, with elevation in IL-13 
and unchanged levels of  IFN-γ. Also, in both models, 
spontaneous intestinal inflammation developed, with 
disease severity being greatest in the terminal ileum and 
correlating to transgene expression level. This observa-
tion was abolished with anti-IL-13 treatment. Shih et al[143] 
reported similar observations in another model of  TL1A 
overexpression. However, they also found that these mice 
had increased levels of  IFN-γ and intestinal fibrosis. The 
differences in these mouse models may be secondary to 
differences in the generation of  the mice and/or differ-
ent gut microflora between animal facilities. Regardless, 
all models demonstrated intestinal inflammation and this 
supports evidence of  TL1A polymorphisms being asso-
ciated with IBD. Given this information, studies utilizing 
anti-TL1A antibodies were undertaken. In models of  
TNBS and DSS colitis anti-TL1A neutralizing antibody 
treatment was shown to ameliorate weight loss and intes-
tinal inflammation[146,157]. These studies suggest a role for 
using blocking antibodies to TL1A to ameliorate patho-
logical T-cell responses in IBD.

CONCLUSION
In current immunology there are new Th cell subsets, 
such as IL-9 producing Th9 cells, IL-22 producing Th22 
cells, follicular helper T-cells, and emerging types of  
Treg cells that are now also all being implicated in the 
pathogenesis of  IBD[158-161]. Furthermore, historically it 
was thought that terminally differentiated Th cells sel-
dom re-differentiate to other Th subsets, however now 
the plasticity between Th cells is now extensively under 
investigation[162].

It has been well documented that the adaptive im-
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mune system plays an important role in the development 
and perpetuation of  the inflammatory cascade in IBD. In 
particular, T-cells have been shown to be key players in 
driving intestinal inflammation. However, a number of  
unresolved issues exist that need to be addressed in order 
to develop successful and appropriate therapeutic strate-
gies. Recent advances have clarified the importance of  
the innate immune system in IBD pathobiology. Further-
more, besides anti-TNF agents, molecules targeting spe-
cific T-cell derived molecules have largely failed. This is 
likely due to the complexities and redundancies of  cyto-
kine networks and highlights how different each individ-
ual’s immune system is in the context of  their own genet-
ics. The studies of  the interactions between the different 
components of  the innate and adaptive immune system, 
as well as the interactions with the intestinal microbiota, 
and how these interactions relate in the overwhelming 
context of  an individual’s genetics are areas that will open 
new horizons in the knowledge of  mechanisms of  gut 
inflammation.
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