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ABSTRACT

Objectives: Cancer is likely caused by alterations in gene structure or expression. Recently, next generation sequencing 
has documented mutations in 106 head and neck squamous cell cancer genomes, suggesting several new candidate genes. 
However, it remains difficult to determine which mutations directly contributed to cancer. Here, summarize the animal models 
which have already validated and may test cancer causing mutations identified by next generation sequencing approaches.
Material and Methods: We reviewed the existing literature on genetically engineered mouse models and next generation 
sequencing (NGS), as it relates to animal models of squamous cell cancers of the head and neck (HNSCC) in PubMed. 
Results: NSG has identified an average of 19 to 130 distinct mutations per HNSCC specimen. While many mutations likely 
had biological significance, it remains unclear which mutations were essential to, or “drive,” carcinogenesis. In contrast, 
“passenger” mutations also exist that provide no selection advantage. The genes identified by NGS included p53, RAS, Human 
Papillomavirus oncogenes, as well as novel genes such as NOTCH1, DICER and SYNE1,2. Animal models of HNSCC have 
already validated some of these common gene mutations identified by NGS.
Conclusions: The advent of next generation sequencing will provide new leads to the genetic changes occurring in squamous 
cell cancers of the head and neck. Animal models will enable us to validate these new leads in order to better elucidate the 
biology of squamous cell cancers of the head and neck.
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INTRODUCTION

While our armamentarium used to treat squamous cell 
cancers of the head and neck (HNSCC) has greatly 
expanded with the addition of chemoradiation [1], 
intensity modulated radiation therapy (IMRT) [2], and 
biological agents [3], the progression free survival rates 
have increased only slightly while the overall survival 
(OS) rates have stagnated [4]. Cancers afflicting the oral 
cavity (OCC) are especially prone to locoregional failure 
even after aggressive surgery followed by radiation 
and/or chemotherapy [5,6]. Aside from platinum-based 
chemotherapies, there has been little development of 
new systemic agents equipped to eradicate microscopic 
OCC disease. For example, a major randomized 
trial investigating the use of an epidermal growth 
factor receptor (EGFR) antagonist concurrent with 
radiotherapy in patients with HNSCC did not include 
those with OCC [3]. This lack of targeted therapies, 
coupled with the aggressive nature of OCC, highlights 
the need to identify genes that drive this malignancy in 
order to identify new targets.
In contrast to OCC, oropharyngeal cancers (OPC) 
behave more favourably and also frequently demonstrate 
a distinct gene expression signature. In general, cure 
rates using standard therapeutic regimens are 10% 
higher for OPC than for OCC [4]. This difference may 
partially be explained by the impact of the Human 
Papillomavirus (HPV), which has been responsible 
for an OPC epidemic [7]. Those with HPV-positive 
OPC have a 5-year OS of 70 - 90%, while those with 
HPV-negative OPC have a 5-year OS of less than 
50% [8]. Furthermore, HPV-negative HNSCCs often 
have mutations in p53, a major tumour suppressor 
protein controlling genomic integrity, and a 
correspondingly worse prognosis [9]. Given the more 
favourable outcomes of patients with HPV-positive 
OPC, there is a push to de-escalate their treatment [10]. 
In addition, the unique molecular signature of HPV may 
enable better ways to target this disease specifically. 
Therefore, in contrast to OCCs, understanding the 
distinct mutational landscapes in OPCs may enable us 
to identify new molecular targets and, therefore, to de-
escalate the toxicities associated with the current, non-
targeted cytotoxic chemotherapies.
Much of our previous knowledge regarding the 
molecular characteristics of HNSCC was derived from 
expression microarrays or other assays quantifying gene 
expression [11-15]. With half of the studied cancers 
derived from the oral cavity or oropharynx, these studies 
demonstrated at least four unique expression patterns 
in HNSCC, including: an EGFR, a mesenchymal, an 
epithelial, and an anti-oxidant expression pattern [11]. 

Most tumours with the EGFR expression pattern 
recurred within 2 years, while the majority with the 
epithelial or anti-oxidant pattern never recurred. 
Furthermore, these expression signatures could 
differentiate between HPV-positive and HPV-negative 
cancers, as well as prognosticate responses to therapy 
[13,15,16]. Nevertheless, these microarray expression 
patterns could only implicate a large set of genes 
involved in HNSCC and have difficulty pinpointing the 
exact genes driving this disease.
In addition, others have used cytogenetic approaches 
to identify structural changes in chromosomes [16-
20]. These studies support the model whereby HNSCC 
carcinogenesis begins through two distinct pathways: 
one caused by chemical carcinogens and the other 
by HPV oncogenes [20]. Later, these pathways share 
common chromosomal alterations during progression to 
invasive cancer. However, because these chromosomal 
changes are only detected on a megabase-pair level, 
the changes affecting the exact genes that drive the 
development of HNSCCs remain largely unknown. 
Therefore, much of our knowledge of genes that 
drive HNSCC remains limited to p53 mutations, HPV 
oncogenes, and the EGFR pathway. There may exist 
additional undiscovered driving mutations that may one 
day serve as new targets for novel therapies.
The goal of this article is to review recent trends in 
identifying HNSCC “driver” mutations, especially 
those occurring in OCCs and OPCs. We define “driver” 
mutations as mutations in genes that confer a selective 
advantage to a clone enabling it to better survive or 
proliferate. This contrasts with “passenger” mutations 
that have little if any advantageous effect. We will first 
discuss the use of next generation sequencing (NGS) to 
catalogue point mutations prevalent in HNSCC. Next, 
we will review how some of these mutant genes have 
already been validated in genetically engineered mouse 
models (GEMM). Finally, we will discuss how GEMMs 
may complement NGS by testing novel mutations 
identified by NGS as well as identify pathways observed 
in NGS analysis. Thus, this review will examine recent 
trends in the identification and validation of novel 
targets, which may revolutionize our understanding 
of HNSCC biology and usher in innovative treatment 
strategies.

MATERIAL AND METHODS
Literature Search

In the present article, the authors discuss ways to identify 
genetically engineered mouse models that supported 
the recent identification of mutant genes which likely 
acted as “driver” mutations in HNSCCs. We searched  

http://www.ejomr.org/JOMR/archives/2013/1/e1/v4n1e1ht.htm


http://www.ejomr.org/JOMR/archives/2013/1/e1/v4n1e1ht.htm	 J Oral Maxillofac Res 2013 (Jan-Mar) | vol. 4 | No 1 | e1 | p.3
(page number not for citation purposes)

JOURNAL OF ORAL & MAXILLOFACIAL RESEARCH                                                                 Spiotto et al. 

relevant articles on PubMed (www.ncbi.nlm.nih.gov) 
regarding next generation sequencing and genetically 
engineered mouse models for head and neck cancer 
from 1990 to present. First, to identify mutant genes 
identified by NGS in HNSCC samples we performed 
two searches. We queried (1) “genome sequencing” 
head and neck cancer and (2) “exome sequencing” 
head and neck cancer which returned 10 and 4 results, 
respectively. We selected two articles that specifically 
described NGS (specifically whole exome sequencing) 
in HNSCC [21,22]. From these articles, we compiled a 
list of commonly mutated genes and searched whether 
each gene has been described in an autochthonous 
head and neck cancer model using the query terms 
“transgenic mice head and neck cancer.” The specific 
genes searched and the resulting citations are: TP53, 
55 citations; TP63, 7 citations; SYNE1,2, 0 citations; 
NOTCH, 4 citations; HPV, 21 citations; PI3KCA, 0 
citations, PTEN, 11 citations; RAS, 53 citations; pRB, 
13 citations; FBXW7, 0 citations, RIPK4, 0 citations; 
DICER, 0 citations. In order to identify additional 
GEMMs for oral cavity/oropharynx cancer, we also 
searched all citations using the terms “transgenic mice 
head and neck cancer” that resulted in 392 total articles. 
We reviewed all article abstracts and selected articles 
describing GEMMs targeting genes subsequently 
identified in NGS of HNSCCs. We also selected articles 
describing GEMMs of genes not identified by NGS 
to discuss pathways important in cancer but possibly 
missed by this approach. Given the breadth of genomic 
analysis in HNSCCs, we regret any omissions of 
GEMMs for oral cavity/oropharynx cancer.

RESULTS
Next generation sequencing (NGS) for oral cavity 
and oropharynx cancers (OCCs and OPCs)

Conventional or “low throughput” DNA sequencing 
provides one sequence read per DNA sample. With this 
technique, the DNA sample requires a homogeneous 
DNA template to decipher a maximum sequence of 
approximately 1000 base-pairs (bp) long. Given that the 
human genome contains 3.5 billion bp encoding 10 to 
30,000 genes, it is not surprising that a single genome 
once required approximately 13 years and three billion 
dollars to sequence [23]. NGS can complete the same task 
in days, at a cost of approaching a few thousand dollars. 
Its efficiency has revolutionized the sequencing of entire 
genomes or, more commonly, “exomes” (genomic 
libraries limited to a cell’s expressed sequences) [24]. 
This has allowed investigators to catalogue mutations 
in over twenty malignancies, including brain, breast, 
and prostate cancers (The Cancer Genome Atlas: 

 
http://cancergenome.nih.gov/). 
NGS is essentially multiple “low throughput” DNA 
sequencing reactions run in parallel in a single sample. 
First, DNA or mRNA is isolated from a tumour or 
tissue. Since the genomic or exomic sequences can 
be very long, the DNA or cDNA is cut or sheared by 
mechanical means to generate many smaller fragments. 
Each individual DNA molecule is then amplified in 
order to enhance subsequent DNA sequencing detection. 
These amplified DNA clones are then sequenced in a 
massively-parralled fashion to generate multiple short 
DNA sequences or “reads”. These shorter reads are then 
aligned using computer software in order to determine 
the longer genomic or exomic sequence.
In regards to HNSCC, the Cancer Genome Atlas 
contains 312 separately sequenced HNSCC genomes 
at the writing of this article. Furthermore, two recent 
publications by Agrawal et al. [21] and Stransky 
et al. [22] have also detailed common mutations in 
106 HNSCC samples. Here, the authors performed 
whole exome sequencing that can identify coding as 
well as splice-site mutations. However, this approach 
is limited because cancer causing mutations can occur 
in non-protein coding regions that affect the regulation 
of gene expression, and may cause altered expression 
of a normal gene in a tissue/cell type or at a temporal 
point in time that is different than in normal cells. 
Of note, in the study by Stransky et al. [22], 50 of 
77 samples were of OCC or OPC. Both publications 
compared sequences from tumour specimens and 
those of autologous tissue controls, and samples were 
micro-dissected to minimize contamination by adjacent 
stroma. The authors called mutations in tumours if the 
genetic changes were detected in the tumour but not the 
autologous control tissues. Subsequently, many of these 
mutations were further validated in separate cohorts 
or by additional sequencing and mass spectrometric 
genotyping analysis. Interestingly, the average number 
of mutations differed by almost ten-fold (19 [21] vs. 130 
[22]) with each group reporting a variety of mutations 
per tumour. This variation in mutations may reflect 
technical differences, such as differences in sample size 
(32 samples vs. 74 samples), as well as the degree of  
equence coverage for each study (44 to 77-fold vs. 
150-fold) which can affect sequence accuracy. In 
addition, Agrawal et al. [21] analyzed tumours 
harvested prior to chemotherapy or radiation, which 
can select for additional mutational events [25,26] and 
also account for the lower average number of mutations 
in their study. Finally, these differences may reflect 
differences in the accumulation of mutations due to 
cancer progression, additional DNA damage or different 
stages of cancer. Nevertheless, it remains unclear which 
mutations were driving carcinogenesis.
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NGS has generated unexpected insights. While the 
finding that tumours arising from smokers had more 
mutations than those of non-smokers was expected, two 
tumours from non-smokers had the highest number of 
mutations in one study, suggesting genomic instability 
in HNSCC may not be entirely tobacco dependent [22]. 
Certain germline genetic conditions, such as Fanconi 
Anemia, can affect DNA repair pathways and predispose 
individuals to HNSCC. Therefore, these instances of 
increased mutations and genomic instability may be due 
to various Mendelian cancer syndromes in addition to 
carcinogen exposure. 
Consistent with epidemiologic studies suggestive of 
biological differences based on HPV status, HPV positive 
tumours contained approximately half the number 
of mutations as HPV negative tumours, independent 
of smoking status. In addition, TP53 mutations were 
inversely correlated with HPV positivity and found in up 
to 78% of HPV-negative tumours [21]. In fact, Westra et 
al. [27] has shown an inverse relationship between p53 
mutations and HPV positivity in HNSCC. Compared to 
25% of HPV-positive tumours, 52% of HPV-negative 
tumours had p53 mutations. Furthermore, only HPV-
negative tumours had mutations that disrupted p53 
function suggesting that most p53 mutations resulting 
in a functional significance were exclusive of HPV.  
Therefore, NGS will continue to identify potential 
genes that are advantageous for HNSCCs and further 
elucidate those already known such as HPV oncogenes 
or mutations in p53.
Overall, genes previously implicated in HNSCC and 
confirmed by whole-exome sequencing include TP53, 
CDKN2A, HRAS, PTEN, PI3KCA and RB. In multiple 
studies, the most commonly dysregulated gene by far 
was TP53 [21,22]. In addition, NGS has identified 
new mutations in genes that regulate epithelial 
differentiation in up to 30% of tumours. This includes 
newly discovered mutations in NOTCH1, IRF6, TP63 
and FBXW7. Inactivating point mutations in NOTCH1 
are particularly noteworthy; in one study, point 
mutations affecting this gene occurred in 11% of the 
HNSCC tumours and focal deletions were seen in two 
additional tumours [22]. Importantly, the identification 
of Notch genes and others may represent the first new 
targets implicated in the genesis, as well as treatment, 
of HNSCC.
While advancements in sequencing may further 
pinpoint the structural changes causing head and neck 
cancer, these techniques, like previous technologies, 
fail to separate those changes that drive HNSCC and 
those passenger mutations that provide no selection 
advantage. Validation of driver mutations requires 
additional in vivo and in vitro models to confirm and 
to understand their importance in the biology of this 
disease. 

Validation of next generation sequencing (NGS) 
with existing genetically engineered mouse models 
(GEMMs)

Using information gleaned from NGS, we may better 
understand the physiological significance and molecular 
mechanisms of several candidate genes driving the 
development of HNSCCs. Previous mouse models 
of HNSCC relied mainly on chemical carcinogens 
such as coal tar, cigarette smoke, 9,10-dimethyl-1,2-
benzanthracene (DMBA), and 4-nitroquinoline 1-oxide 
(4NQO) [28,29]. Over the last 20 years, GEMM have 
been developed to study how changes in the structure 
or expression of specific genes impact HNSCC 
development in vivo. These mice have been further 
engineered to express these altered genes in a tissue-
specific and temporal manner. Below, we will describe 
some of these previously known mutations identified 
in NGS that also cause HNSCCs in GEMMs. These 
observations indicate that GEMMs can be used to test 
whether novel mutations identified by NGS “drive” 
HNSCCs.

Oncogene P53

TP53 is one of the most frequently mutated genes 
in human cancers, including OCC [9]. Loss of 
TP53 function may be nearly universal event in 
the development of HNSCC by mutation, deletion, 
amplification of MDM2, deletion of CDKN2A or 
expression of HPV oncogenes [30]. In addition to p53 
deletion, the more common way of inactivating p53 
in OCC is by mutation, which induces both dominant 
negative, as well as lesser understood gain-of-function 
mutations [31]. With gain-of-function mutations, the 
tumour suppressive activities of p53 are inhibited, 
while other potentially progrowth functions of p53 are 
maintained. In fact, these gain-of-function mutations in 
p53 predict for worse outcome in HNSCCs [9].
The loss of p53 has been shown to be an initiating event 
in mouse models, where its deletion predisposed de 
novo tumour formation and greatly sensitized mice to 
chemical carcinogens [32-34]. However, the majority 
of mice with p53 deletion or mutations in all tissues 
died rapidly due to lymphoma or other cancers before 
the impact of their p53 defects caused development of 
HNSCC or squamous cell carcinomas (SCC) at other 
cutaneous sites. In murine models where p53 defects 
successfully led to HNSCC development, mice with 
mutations or loss of p53 were treated with carcinogens 
or bred to mice with additional genetic abnormalities. 
HNSCCs developed in mice which possessed p53 
defects in the germline or when p53 was conditionally 
disrupted in the basal epithelial layer of the oral cavity  
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and skin. To conditionally delete p53, mice expressing 
Cre recombinase expressed under the Keratin 5 [35]  
or Keratin 14 [36] promoter which is active in the 
basal keratinocyte layer of the epithelium were bred to 
knock-in mice possessing floxed p53 alleles. Since Cre 
recombinase was expressing in the basal keratinocyte 
layer, the mice possessed disrupted p53 pathways in the 
epithelium of their skin and upper aerodigestive tract. 
Transgenic mice expressing dominant negative p53 
or mice with p53 haploinsufficiency in the germline 
experienced accelerated HNSCCs after 4-NQO 
treatment compared to wild type mice [37,38]. In 
addition, mice that lost p53 expression or had p53 gain-
of-function mutations in the basal keratinocytes of the 
oral cavity developed invasive HNSCC when tumours 
also expressed a mutant KRAS gene [35,36]. These 
results confirmed the clinical observations where loss 
or mutation in p53 was an important event in at least 
50% of HNSCCs.
Loss of TP53 and HPV-positivity appear to be exclusive 
events. In one study using whole-exome sequencing, 
TP53 mutations were not identified in any of the HPV 
associated tumours but were found in 78% of the HPV-
negative tumours [21,22]. As such, investigation of 
HPV oncogenes will likely provide future insights into 
a distinct subset of tumours and will be described below.

Human Papillomavirus (HPV)

HPV-associated cancers likely arise due to the 
expression of the viral oncoproteins E6 and E7 [39,40]. 
E7 binds to and inhibits the retinoblastoma protein (Rb) 
enabling cells to progress through the cell cycle and to 
divide [41,42]. However, abnormal cell division usually 
activates p53, which induces cell apoptosis. HPV 
relies on E6 to bind p53 and to degrade it, enabling 
HPV infected cells to escape this safeguard [43]. Mice 
expressing high risk HPV16 oncogenes, E6 and E7, 
from the promoter of the bovine keratin 6 gene develop 
focal epithelial hyperplasia on the tongue by 27 weeks 
of age [44]. However, no tumours develop in these mice 
suggesting E6 and E7 alone were insufficient to drive 
tumourigenesis. Furthermore, epithelial cells derived 
from HPV16 transgenic or from HPV18 immortalized 
cells cannot form independent colonies in soft agar 
or tumours in syngeneic or immuno-compromised 
mice unless they are extensively cultivated in vitro 
[45]. Other available HPV transgenic mice that target 
expression via the αA crystallin and keratin 14 promoter 
have a low incidence of epithelial malignancies that 
develop after 15 months in only 5 - 10% of mice [46]. 
However, tumour development in the oral cavity has 
not been noted [47-50]. Taken together, these studies 
indicate oncogenes E6 and E7 from high-risk HPV  

can immortalize epithelial cells but additional genetic 
events are required for transformation. 
While E6 and E7 alone are not sufficient to drive 
tumour formation, mice that co-express mutant RAS 
or those exposed to chemical carcinogens are highly 
susceptible to the development of tumours of the 
oral cavity. Schreiber et al. [51] demonstrated strong 
synergy between the mutant HRAS and HPV16 E6/
E7. In this model, mice expressing HRAS driven by 
the zeta-globin promoter, were crossed with transgenic 
mice that express HPV16-E6/E7 in epithelial tissues 
using a keratin 14 promoter driven. Double transgenic 
mice developed dysplastic squamous papillomas of the 
transitional epithelium that involved the mouth, eye and 
ear beginning around 3 months of age. Furthermore, 
K14-HPV-E6/E7 mice treated with 4NQO, a chemical 
carcinogen, developed oral SCC [52]. Importantly, 
these E6/E7 driven tumours resembled the molecular 
characteristics of human HPV-positive OCC, including 
overexpression of p16, a surrogate for HPV infection. 
In addition, minichromosome maintenance protein 7 
(MCM7) was overexpressed in this model of HNSCC, 
verifying a previous study on human cervical cancer 
[53]. Although E7 may play a more prominent role 
than E6 with regard to long term carcinogenesis [54], 
the development of HNSCCs in mice likely required 
a synergy between E6 and E7 [55]. It is believed 
that E7 may be the predominant initiating oncogene 
whereas E6 is thought to play a more important role 
in the progression to malignancy. In addition, E7 likely 
targeted multiple RB family members to cause HNSCC 
as deletion of both p107 and Rb recapitulates many 
features of HPV-16 E7 mice after 4NQO treatment [56]. 
Therefore, the development of HPV-positive HNSCCs 
require both the inhibition of p53 pathways and RB 
family members by HPV E6 and E7 respectively as well 
as additional mutagenic events. 
To study the contribution of other genes to the 
development of HPV-associated cancers, several 
reports have studied mice that express HPV oncogenes 
and that harbour additional defects in other cellular 
genes. Compared to the general population, Fanconi 
Anemia (FA) patients who reach 50 years of age are 
more likely to develop a solid tumour [57-60] where 
the majority of these tumours are squamous cell cancers 
(SCCs) involving the head and neck [59]. In a study by 
Kutler et al. [61], 84% of SCCs in FA patients, of which 
the majority had HNSCCs, tested positive for HPV and 
none of these SCCs had p53 mutations. By contrast, 
van Zeeberg et al. [62] did not detect HPV signatures 
in HNSCCs but did demonstrate that two-thirds of 
anogenital cancers contained HPV DNA. Although the 
aetiology of HNSCCs in FA patients remains a hotly 
debated topic, it is likely that HPV plays an important  
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role in this process. This relationship was demonstrated 
by Park et al. [63] who showed that mice expressing 
HPV16-E7 and deficient in the FA gene FANCD2 
developed SCCs of the tongue and oesophagus at a 
higher frequency than that observed in control mice. 
Here, the HPV oncogenes were driven by a K14 
promoter and expressed in the basal epithelium of the 
oral cavity and skin. Therefore, HPV oncogenes may 
cooperate with other cellular genes to cause HNSCC 
and other cancers. 

Mutant RAS oncogene

Although mutations in RAS are present in only 4 - 5% 
of HNSCC [21,22], alterations of in RAS signalling 
occurs frequently in cancer. This often includes 
amplification of chromosome 7p11, the locus for EGFR 
and a downstream mediator of RAS [64]. In addition, 
promoter methylation of RASSF1A, a negative regulator 
or Ras, is frequently observed in OCC [65,66]. Parallel 
to these observations, mice expressing a G12D mutation 
in KRAS developed benign squamous papillomas of the 
oral mucosa, tongue and palate by 16 - 24 weeks [67]. 
Although highly proliferative, these papillomas never 
progressed to malignancy suggesting a role for KRAS 
in the initiation, but not progression to SCC. In another 
study, mice expressing mutant KRAS in the basal 
epithelium developed papillomas exclusively located 
within the oral mucosa [36]. Again, these papillomas 
failed to progress to carcinoma. However, mice 
possessing KRAS and mutant p53 did progress to invasive 
SCCs. This indicates that RAS requires other factors to 
increase genomic instability and that this ultimately 
can lead to the development of frank malignancy. 
Several groups have used these models to study novel 
therapies for HNSCCs. For example, rapamycin 
prevented tumour progression of benign or malignant 
tumours in mice possessing mutant KRAS, with or 
without loss of p53, respectively [36]. This preclinical 
model parallels recent finding using this small molecule 
inhibitor in HNSCC patients [68]. Similarly, Samuel 
et al. [69] showed that deletion of RAC1 prevented 
oral papilloma development in mutant KRAS mice, 
providing another possible therapeutic target for mutant 
KRAS mice. Studies such as these with mutant KRAS 
mice demonstrate that genetically engineered mice 
can be used to identify novel targets and therapeutic 
regimens for HNSCCs.

Using genetically engineered mouse models 
(GEMMs) to test for “Driver” mutations identified 
by next generation sequencing (NGS)

The significant amount of next NGS data provides 

a starting point to develop novel in vivo models for 
HNSCC in order to better understand the biology 
and treatment of this disease. Table 1 compares the 
genes involved in HNSCC identified with NGS and/
or GEMMs. As mentioned above, NGS identified 
inactivating mutations in the NOTCH gene family in 
22% of the samples. Originally described in Drosophila, 
NOTCH family members are transmembrane 
proteins that regulate cell-cell communication and 
differentiation. NOTCH mutations consistently mapped 
to the transactivating C-terminal ankyrin repeat domain. 
The predicted effect of this mutation is a truncation 
resulting in a loss-of-function mutant [21,22]. Additional 
mutations occurred in the extracellular ligand binding 
domain and splice junctions that were also likely 
inactivating in nature. These mutations are similar to 
those recently described for myeloid leukaemia [70] 
but contrast sharply with NOTCH activating mutations 
observed in other lymphocytic leukaemia’s and 
lymphomas [71,72]. These results suggest that NOTCH 
mutations may be context dependent whereby NOTCH 
inhibition may promote some cancers while inhibiting 
others.
Along these lines, a clinical trial using a NOTCH 
inhibitor was stopped due to an unanticipated 
consequence of increased cutaneous cancers [73]. 
Similarly, mice with a tissue specific deletion of 
NOTCH1 in the skin resulted in corneal hyperplasia 
and skin tumours as early as 8 months post inactivation 
[74]. Furthermore, DMBA treatment accelerated 
tumour formation and frequency. This group suggested 
that loss of NOTCH1 drove skin cancers by elevating 
β-catenin possibly resulting in de-differentiation of 
epithelial cells. As no respective GEMMs exist for 
Notch driven OCC, the precise role of the NOTCH gene 
family remains unclear in HNSCC and may be context-
dependent.
Using NGS approaches, Stransky et al. [22] confirmed 
previous observations that Cyclin D1 was also amplified 
in 22% of HNSCC samples. The Cyclin D family 
promotes cellular proliferation by enabling cells to 
enter the S phase of the cell cycle in order to synthesize 
DNA and prepare for cell division. Amplifications 
or overexpression of Cyclin D1 frequently occurs in 
SCC leading to dysregulation of the cell cycle [75]. In 
transgenic mice, expression of Cyclin D1 was directed 
to the oral-oesophageal squamous epithelium using 
part of the Epstein-Barr virus ED-L2 promoter (L2-
CD1). Expression of Cyclin D1 caused hyperplasia 
of the basal and suprabasal epithelia of the tongue, 
oesophagus and forestomach [76,77]. These mice were 
treated with 20 to 50 ppm of 4NQO for 8 weeks and 
then observed for an additional 16 weeks.  Half of the 
L2-CD1 mice treated with 50 ppm of 4NQO, exhibited 
SCC of the tongue and oesophagus by 16 weeks. 
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Table 1. Non-chemically induced transgenic mice models of oral cavity cancers (OCC)

Pathway/
Gene family Gene Function Freq. in 

NGS
Epithelial mouse 
model genotype Tumour type Reference

p53 family
TP53

Tumour suppressor involved in apoptosis, 
activates DNA repair proteins, cell cycle 
regulation at G1/S checkpoint

50 - 78%

p53-/- or mutant p53 
mice with chemical 

carcinogens or mutant 
KRAS

Various HNSCC Acin, Raimondi 
[35,36]

TP63 Involved in development and regulation of 
apoptosis 8% Not described - n/a

Nesprins SYNE1,2 Found in the outer nuclear membrane and 
bind to actin filaments 24% Not described - n/a

Notch NOTCH1,2,3

Transmembrane proteins that are involved 
in development by controlling cell fate 
decisions by regulating interactions 
between adjacent cells.

22% NOTCH1-/- Basel Cell 
Carcinoma

Nicolas [74],
Agrawal [21]

HPV 
Oncogenes

E6 Degrades p53 through ubiquitination
15%

HPV-E6/E7 with 
chemical carcinogens 

or mutant Hras
Papillomas of the lip Schreiber [51]E7 Binds pRb to free the transcription factor 

E2F

PI3K/AKT/
mTOR

PIK3CA Oncogene 8% Not described - n/a

PTEN Tumor suppressor that regulates AKT 8% myrAKT
PTEN-/-

Dysplastic lesions in 
the palate, cheeks, 
and lips

Bian, Moral 
[80,82]

TGF-β 
pathway

TGF-β
Regulates proliferation and differentiation, 
angiogenesis, and serves as an immune 
modulator

Not 
described TGFBR1-/- OCC, ears, 

periorbital, perianal Bian [81]

SMAD4 Downstream transcription factor that 
activates apoptosis

Not 
described SMAD4-/- OCC, lymph node 

mets Bornstein [83]

TGFB2

Encodes transmembrane Ser/Thr protein 
kinase that is activated by TGF-β, amongst 
other signalling molecules

Not 
described Not described - Lu [82]

RAS/RAF/
MEK/MAPK

RASSF1A
Tumour suppressor involved in DNA 
repair and cell cycle arrest; negative 
regulator of RAS

Not 
described G12D mutant KRAS

Benign squamous 
papillomas of oral 
mucosa, tongue and 
palate

Caulin [67]

EGFR Epidermal growth factor receptor; 
downstream mediator of RAS

Not 
described Not described - n/a

Cyclins Cyclin D1
Promotes cellular proliferation by enabling 
cells to enter S phase and synthesize DNA 
in preparation for cell division

Not 
described L2-CyclinD1 Hyperplasia of 

tongue, oesophagus
Mueller [76], 

Nakagawa [77]

Pocket 
protein 
family

RB1
Tumour suppressor that inhibits cell 
cycle (G1/S) and is involved in chromatin 
remodelling

3%

pRb/p107-deficient
pRB/p130-deficient

Head and neck 
Squamous cell 
carcinomas

Shin [56]

RBL1 Gene product p107 is a tumour suppressor 
involved in cell cycle regulation pRb/p107-deficient

Head and neck 
Squamous cell 
carcinomas

Shin [56]

NOLC1 Gene product is p130, unclear function pRb/p130-deficient
Head and neck 
Squamous cell 
carcinomas

Shin [56]

Interferon 
regulator 

transcription 
factor family

IRF6 Involved in the formation of connective 
tissues

Not 
described Not described - n/a

F-box protein 
family

FBXW7
Binds to cyclin E and targets it for 
ubiquitination to prevent progression from 
G1 to S phase

Not 
described Not described - n/a

RIPK4
Serine/threonine protein kinase that 
interacts with PKC-δ and can also activate 
NFkappaB.

3% Not described - n/a

DICER1

RNA helicase that functions as a 
ribonuclease in RNA interference and 
microRNA pathways to repress gene 
expression

3% Not described - n/a

NGS = next generation sequencing.
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By contrast, wild-type mice failed to develop SCC 
[78]. Furthermore, when mice both overexpressed 
CCND1 and were haploinsufficient for p53, invasive 
SCC occurred by 12 months of age [79]. Cancers were 
evident in the buccal mucosa (12%), tongue (25%) 
and upper and lower oesophagus (11 - 12%) with 25% 
containing metastasis to lymph nodes. 
Finally, these NGS approaches showed deletion or 
inactivating mutations in the phosphatase and tensin 
homolog (PTEN) gene. PTEN functions as a tumour 
suppressor by regulating AKT which promotes cell 
survival and metabolism. Mice expressing a myrisolated, 
and hence, constitutively active, AKT (myrAKT) under 
control of a bovine Keratin 5 promoter, developed 
dysplastic lesions in the palate, cheeks and lips [80]. 
When the epithelial cells expressed myrAKT and also 
lost p53 expression, mice developed malignant tumours 
in the oral cavity, palate, tongue and lips with local 
metastasis to regional lymph nodes. Therefore, as shown 
with NOTCH1, CCND1, and PTEN, mouse models 
complimented and were able to confirm candidate genes 
that drive HNSCC as initially identified by NGS.
However, one notable gene important in HNSCCs 
but not covered with NGS involves the Transforming 
Growth Factor (TGF-β) signalling pathway. TGF-β 
regulates cellular proliferation and differentiation as 
well as angiogenesis and immune suppression. This 
pathway is often mutated in cancer cells so that these 
cells become resistant to the anti-proliferative effects 
of TGF-β but still benefit from its pro-angiogenic and 
immunosuppressive functions. Although mutations in 
TGF-β  signalling were not found by whole-genome 
sequencing [21,22], tumours of the head and neck have 
frequent loss of chromosome 18q, which contains the 
SMAD2, SMAD3, SMAD4 and TBR2 genes [17,81]. In 
addition, TGF-β is well known to cause differentiation 
of epithelial cells and whole-exome sequencing 
identified up to 30% mutations in genes that play a role 
in terminal differentiation [21,22]. Therefore, future 
studies still require vigilance to examine candidate 
genes not identified by massive sequencing efforts or 
other high-throughput technologies.
To this end, several mouse models have shown that loss 
of the TGF-β signalling pathway in cancer cells resulted 
in HNSCCs. After chemical carcinogen treatment, mice 
possessing deletion of TGFBR1 in their epithelium 
developed SCCs of the oral cavity. These mice also 
developed regional and distant metastasis within one 
year after treatment. Furthermore, tumours exhibited 
enhanced proliferation, reduced apoptosis and the 
tumour stroma appeared highly inflamed with high 
levels of TGF-β. Furthermore, the TGF-β signalling 
pathway may also cooperate with the AKT pathway 
to cause HNSCCs; mice that had lost both TGFBR1 

and the AKT inhibitor PTEN in their epithelia 
developed oral SCCs within ten weeks [82]. In 
addition, mice that lost other proteins involved in the 
TGF-β signalling pathway such as TGFBR2 [83] or 
the downstream effector molecules SMAD4 [84] also 
developed HNSCCs mainly affecting the oral cavity and 
regional lymphatics. Consistent with previous studies 
[85], tumours and stroma from mutant Smad4 mice had 
high levels of TGFB1 and inflammation. Thus, these 
mouse models may provide additional insight into genes 
mediating HNSCCs that were not observed using NGS 
and other powerful high throughput techniques.

CONCLUSIONS

As with other high throughput technologies such as 
expression microarrays and comparative genomic 
hybridization, recent advances in NGS can identify 
both new candidates and novel structural information 
regarding genes that drive HNSCCs. In addition to 
genes known to be involved in HNSCC such as HPV 
oncoproteins E6 and E7, p53 and RAS, these studies 
have also identified novel mutations in genes such at 
NOTCH1 and PTEN, among others. All of these genes 
have been show to accelerate the development of SCCs 
in genetically engineered mice. Furthermore, NGS along 
with other works have identified mutations in several 
novel pathways. For example, 22% of tumours contained 
mutations in spectrin repeat containing, nuclear envelope 
(SYNE1) which may regulate cytoskeletal regulation. In 
addition, these studies reported that 3% of cancers had 
mutations in the endoribonucelase DICER, an important 
player in miRNA genesis. Still, it remains unclear which 
candidates actually promotes SCC development as well 
as the mechanism by which this occurs.
GEMMs provide a novel platform to better understand 
and validate these novel mutations that have been 
identified by sequencing HNSCCs genomes. It has 
been shown that these GEMMs develop SCCs when 
mice possess mutated genes known to be involved in 
HNSCCs and continued study will allow the discovery 
and validation of novel “driver” mutations important in 
HNSCCs. Understanding how these novel mutations 
promote malignant transformation may enable us to 
target HNSCCs more rationally. Furthermore, these 
models will provide an in vivo platform to study the 
effectiveness of different strategies utilizing cytotoxic 
chemotherapy as well as other small molecule inhibitors. 
One caution with this approach centers on the extent to 
which regional differences in mutations contribute to 
tumour heterogeneity and possibly response to therapy. 
For example, Gerlinger et al. [86] showed that more 
that 60% of all somatic mutations differed among 
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tumour regions. Despite such heterogeneity, many 
subclonal populations exhibited convergent tumour 
evolution with distinct mutations affecting similar 
pathways. Furthermore, epigenetic alterations also 
occur in HNSCCs [87,88] and may promote tumour 
growth. These changes may be missed in NGS and may 
be difficult to study in GEMMs. Finally, mutations in 
mitochondrial DNA are associated increased HNSCC 
aggressiveness [89]. Such mutations can be studied 
with GEMMs but may be missed with NGS as these 
events turn off gene expression without causing 
mutations and lead to further tumour heterogeneity. 
Therefore, coupling NGS with GEMMs will also 

be essential to understand which mutations and pathways 
drive HNSCCs. Thus, coupling NGS approaches with 
GEMMs will provide important platforms to investigate 
the best ways to target individual candidate genes and, 
more generally, those pathways essential to HNSCC.
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