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The sequential deployment of gaze to regions of interest is an integral part of

human visual function. Owing to its central importance, decades of research

have focused on predicting gaze locations, but there has been relatively little

formal attempt to predict the temporal aspects of gaze deployment in natural

multi-tasking situations. We approach this problem by decomposing complex

visual behaviour into individual task modules that require independent

sources of visual information for control, in order to model human gaze

deployment on different task-relevant objects. We introduce a softmax barrier

model for gaze selection that uses two key elements: a priority parameter

that represents task importance per module, and noise estimates that allow

modules to represent uncertainty about the state of task-relevant visual infor-

mation. Comparisons with human gaze data gathered in a virtual driving

environment show that the model closely approximates human performance.
1. Introduction and background
Human vision interrogates complex, noisy, dynamic environments to accom-

plish tasks in the world. For example, while driving a car, a person navigates

to a desired destination (e.g. grocery store) while paying attention to different

types of objects in the environment (pedestrians, vehicles, etc.) and obeying

traffic laws (speed limit, stop signs, etc.). Humans manage these competing

demands for visual information via the deployment of a foveated visual

system, which must be actively moved to different targets to obtain high-

resolution image information. How is this done, apparently so effortlessly,

yet so reliably? What kind of a control structure is robust in the face of the vary-

ing nature of the visual world, and allows us to reliably arrive at our goals?

Despite over a century of research on eye movements, we have very little

knowledge of the way that the task demands of the visual world are handled

by the brain. Most of the effort to formally model how gaze is deployed has

focused on the properties of static images [1–3], but such models cannot

account for task-based behaviour because they do not incorporate information

about the goals and state of the agent whose vision is being modelled. None-

theless, modelling task-directed vision during interactive natural behaviour in

a three-dimensional world has been relatively unstudied, because it seems to

require elaborate models of tasks.

Humans and other animals exhibit a variety of basic orientation and avoid-

ance responses to visually salient stimuli, e.g. a looming stimulus can invoke

avoidance. Presumably such basic responses were passed on over generations

of animals that survived owing to the advantage provided. However, given

the complexity of the world and the variety of rewards and punishments pre-

sent, an attentional selection mechanism that is more elaborate than using

image properties in a fixed stimulus–response relationship could prove

useful. In particular, a learning mechanism that allows a mapping of the

relationship between visual stimuli and task relevance, and a selection mechan-

ism that can arbitrate between competing objectives that require visual

information, would allow much more flexibility in behaviour during the life

of an individual organism.

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2013.0044&domain=pdf&date_stamp=2014-01-06
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2. Modelling visual attention
The approach we take here is to consider vision as part of a con-

trol process where a human, or agent, actively chooses task-

relevant information from the environment to guide actions

and achieve goals [4–8]. Our visual task module approach is

inspired by human visual behaviour, in particular a foveated

visual system that can be highly specific in accessing particular

pieces of information over time. Others have also sugges-

ted similar control theoretic or top-down driven approaches

[5,9,10]. However, these models have not been applied to

modelling human eye movements in a naturalistic, interactive

three-dimensional setting. Our critical assumption is that com-

plex behaviour can be broken down into simpler sub-tasks

(which we refer to as modules), which operate independently

of each other. This approach is suggested by observations of

eye movements in natural behaviour, where subjects sequen-

tially query the visual image for highly specific task-relevant

information, and use that information selectively to accomplish

a particular sub-task [11–13]. The problem then reduces to one

of choosing which set of sub-tasks should receive new sensory

information at any moment. One hypothesis is that sub-tasks

are selected to be updated on the basis of a combination of

both the behavioural importance of a specific goal, and the

module’s uncertainty about task-relevant visual information.

This process can be formalized by using explicit representations

of reward and uncertainty. This type of uncertainty-weighted

reward decision framework was proposed by Sprague et al. [7].

They demonstrated a simulated agent that could successfully

select task-relevant visual information coordinated among

three competing tasks involved in navigation. However, this

model was not applied to directly predict human gaze behav-

iour. This paper demonstrates a similar model of human visual

processing and control where task-oriented modules repre-

senting reward and uncertainty are used to direct driving in a

dynamic, noisy environment. Additionally, the model generates

temporal variations in gaze deployment similar to those seen in

humans driving in a virtual environment.

Each task module depends on its own set of world-state

variables that are relevant to its specific task. In our model,

we attempt to replicate the conditions of Sullivan et al. [14],

and include modules for following a car, maintaining a con-

stant speed and staying in a lane. In our driving simulation,

relevant state variables for a car-following task module were

the agent car’s distance to a desired distance behind the

leader and the difference between the agent’s heading and

the angle of this goal. The relevant state variable for a constant

speed maintenance module was the absolute speed of the car.

Finally, the lane module uses the car’s angle to the nearest lane

centre. These task modules run concurrently. However, to

incorporate a foveation constraint, only one module at a time

actively gains new perceptual information. While the human

visual system is highly parallel, processing and attentional

focus are largely biased towards the fovea, meaning humans

typically get information in a serial fashion by foveating differ-

ent objects over time. We assume that a consequence of this

serial process is that when one visual task is accessing new

information all other tasks must rely on noisy memory esti-

mates. Based on averages from human data, fixation target

selection calculations are repeated every 300 ms. In our data

analysis, we accumulate multiple consecutive fixations onto

the same object into ‘looks’, replicating the methodology of

Sullivan et al. [14] (also discussed in [15]).
Figure 1 depicts important elements of Sullivan et al.’s
experiment relevant to our model. Subjects were instructed

to drive lawfully and to successfully balance the two compet-

ing tasks of following a leader car (by maintaining a constant

distance behind and staying in the same lane as the leader)

and maintaining a constant prespecified speed. Figure 1a,b
demonstrates examples of a human subject’s fixating the

leader car and speedometer, respectively. A photo of the simu-

lator set-up and a subject wearing a head mounted display

while driving is shown in figure 1c.

Sullivan et al.’s experimental conditions manipulated

reward/priority for these tasks and varied the presence or

the absence of noise in the speed maintenance task. This cre-

ated scenarios where subjects needed to choose the most

appropriate task to focus on at any given moment in time,

e.g. if the reward is high for maintaining a speed, then the

subject may select more information relevant to that task at

the expense of task-relevant information for following.

Figure 1d shows an example look duration histogram from

the human dataset, demonstrating that human drivers

devote unique amounts of time to the leader car and speed-

ometer in this environment. Sullivan et al. designed the

leader car’s speed and the desired speed in the speed main-

tenance task to be dissimilar and conflict, forcing a decision

on what visual information (leader car versus speedometer)

would need to be fixated at any given time. Subjects were

instructed to always perform both tasks, thus forcing the sub-

ject to make tradeoffs in selecting task-relevant objects for

fixation. The task modules for our model were designed

with the goal of mimicking these experimental conditions.
3. Driving simulation
The human subject’s three-dimensional virtual driving world

is simplified in the simulation as a two-dimensional plane.

The simulated world contains a single road with two lanes

similar to the one used by the human drivers. Our simulation

has the option to generate other traffic in the environment; for

reasons of simplicity, we did not include them in the work

discussed here. A single non-agent car was designated as

the leader car and followed a path with multiple lane

switches similar to the one used in the human experiments.

The basic simulation loop updates the state of the world at

a 60 Hz frequency using an elementary physics simulation,

to match conditions in Sullivan et al. Each module uses the

formalism of a proportional-integral-differentiator (PID) to

make a speed and and/or heading change that would

direct the car towards a desired set point in the module’s

state space. At each time step, each car in the world moves

ahead proportionally to the sum of the the combined

recommendations of its speed and heading direction control-

lers, which can then be executed in the next simulated time

step. Every time the simulator requests a control update,

the modules are also updated by propagating time varying

uncertainty estimates s(t) according to each module’s noise

parameter (see appendix A for details).

If the simulation performed only the above steps, the

agent’s performance would become increasingly erratic over

time, because the uncertainty estimates would drift further

away from zero. The resulting erroneous state value estimates

would produce poor PID controller outputs, and the resulting

actions chosen by the agent would further compound the
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Figure 1. The dual task driving environment asks a subject to follow a leader car while maintaining speed. The commanded speed is slower than that of the leader car
so the driver has to compromise, alternating checking between the speedometer reading and the position of the leader car. (a) A driver fixation on the leader car. (b) A
driver fixation on the speedometer. (c) The car simulator used in the experiments. (d ) A measured fixation duration histogram shows the distributions for the two tasks
are very different. The speedometer can be read quickly, but following the leader car can require increased monitoring. (Online version in colour.)
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uncertainty in the state estimates. In a human driver, this be-

haviour would be analogous to taking one look at the world

when getting into the car, and then driving with a blindfold

thereafter. Clearly, this is not what humans do when driving.

Instead, people continually and regularly reposition their

gaze towards objects in the environment as their driving

progresses. Thus, the final step in our model is to incorporate

a scheduler that uses task uncertainty and priority to select a

task module to receive new sensory information that can be

used by the PID controllers. Like several others [6,5,16,17],

we hypothesize that fixations serve to reduce uncertainty

about the state of relevant variables in the world, in this

case the distance and angle to the leader car, the agent car’s

current speed and lane position. To capture this behaviour,

the simulator periodically selects one of these three modules

for receiving updated state information through a perceptual

arbitration mechanism.
4. The soft barrier model
The perceptual arbitration process incorporates priority and

uncertainty in the following way. We first define, for each

module, a weighted uncertainty z(t) at time t as the difference

between the RMS uncertainty s(t) and the scalar priority r(i).

For module i,

zðiÞðtÞ ¼ sðiÞðtÞ � rðiÞ:

We also define a global variable f(t) to represent the index

of the module that gets updated at time t. We use a stochastic
softmax decision mechanism in our module selection. The

softmax principle [18] makes module selection probabilis-

tic, transforming z(t) via a nonlinear sigmoid function. This

increases the bias towards selecting high-priority modules

and not selecting low-priority ones. However, the probabilistic

nature of selection means that low-priority modules still have

a non-zero chance of selection, which allows some flexibility

in capturing the variability of human fixation behaviour. Diffu-

sion to barrier (or boundary) models are used in modelling

of decision-making in neural and human behaviour [19]. Our

model incorporates elements of this decision rule by incor-

porating a noisy decision signal that evolves over time and

uses a decision threshold. However, unlike those models, our

model’s threshold is probabilistic owing to the use of the softmax

principle. Given the hybrid nature of our approach, we call

it a soft barrier model. The soft barrier model [20] is defined

as the probability that module M(i) is selected for update at

time t, using a Boltzmann distribution over each of the

priority-weighted module uncertainties

PðfðtÞ ¼ ij zð1ÞðtÞ; . . . ; zðNÞðtÞÞ ¼ ez
ðiÞðtÞ

Z
;

where Z normalizes the discrete distribution (see appendix A).

This expression allows us to calculate the probability of the ith
module being updated with new sensory information given

our composite representation of priority and variance z across

modules. Intuitively, if the uncertainty in M(i) is currently

above the threshold for that module—that is, if s(i)(t) . r(i)—

then M(i) is much more likely to be selected for update than

another module, especially if none of the other modules have
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Figure 2. Evolution of state variable and uncertainty information for three single-variable modules. (a) Depiction of an update of the Follow module. Starting in the
initial state, the necessary variables are known, but noise causes them to drift. According to the model probabilities, the Follow module is selected for a gaze
induced update. This improves its state estimate while the other modules’ state estimates drift further. (b) Depiction of the state estimates for the three modules:
constant speed maintenance, leader following and lane following. In each, the line indicates a state estimate versus time for that module’s relevant variable, in
arbitrary units. Thus, for the speed module, the y-axis depicts the car’s velocity, for the follow module it depicts the distance to a set point behind the lead car, and
for the lane module it shows the angle to the closest lane centre. If estimates overlap into a single line, the module has low uncertainty in its estimate. If estimates
diverge, making a ‘cloud’, the module has high uncertainty. An actual update from the simulation for the Follow module can be seen at 10 s. The fixation, indicated
by pale shaded rectangle, lasts for 1.5 s. The figure shows how the individual state estimates drift between looks and how the state variables are updated during a
look. The coloured transparent region shows s(t)+ r(t) for each module. (Online version in colour.)
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uncertainties exceeding their thresholds. Note, in this form

when the value of r(i) is small, this translates into a high priority

for that particular module, i.e. a low threshold means the var-

iance for a module will contribute more to its chance of being

selected. Figure 2 shows a caricature of a typical heading

update as well as a typical segment of the performance of the

three modules’ boundary data and sensory update histories.
5. Model implementation and results
We implemented the model described above1 and ran several

simulations to assess its behaviour. Our simulated driving

environment was identical in layout to the virtual environ-

ment used by human subjects [14], in order to be able to

directly compare our results to human performance. The

implementation consisted of three modules: a ‘speed’

module M(s) that attempted to drive at a particular target

speed; a ‘follow’ module M(f ) that attempted to follow a

lead car, and a ‘lane’ module M(l) that attempted to steer so

as to follow the nearest lane on the road. All cars in the
simulation drove in a simulated two-dimensional world,

described above. Each time gaze was allocated to a new

module, we recorded the module that received the gaze, as

well as several behavioural measurements (e.g. distance to

leader car, current speed, etc.) to verify that the agent was

driving appropriately.

Sullivan et al. [14] instructed subjects driving in a virtual

environment to multi-task between the competing goals of

trying to follow a leader car (at a distance of one car length

and to follow any lane changes by the leader), and maintaining

a constant speed. The priority of the two tasks was varied such

that when one was high, the other was low, but but the subject

must always attempt to do both and not simply ignore one of

the tasks. Additionally, subjects drove in some conditions

where noise was added to the speed of the car, with the

intent of disrupting the maintenance of a constant speed.

These manipulations resulted in four conditions where either

following a leader or maintaining a constant speed was most

important, and velocity noise was either present or absent.

They found that task priority increased looks on task-related

objects. Additionally, an interaction between priority and
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driving data evaluated initially via ANOVA for main effects, with direct
comparisons evaluated via student’s t-test. (Online version in colour.)

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130044

5

uncertainty was found, whereby uncertainty alone did

not guarantee increased looks. Instead, only if a task-related

object had sufficiently high priority did the addition of uncer-

tainty further increase looks. Look duration histograms for this

experiment are replicated in the top row of figure 3.

We ran a set of simulations with our model attempting to

replicate this behaviour using parameters set to mimic the

original human driver conditions. The model was able to cap-

ture several important aspects of the human data, including a

sensitivity to both noise and priority, but also a gating effect

whereby noise in low-priority tasks had a smaller effect than

noise in high-priority tasks. Note, the methodology of Sullivan

et al. counted looks on the road and task-irrelevant objects

(i.e. looks that were not on cars or the speedometer) as a cat-

egory termed ‘other’. As the majority of their analysis only

addressed looks on the speedometer and on the leader car,

we focus our presentation of results on these two modules.

Our model’s results, shown under the row of human data

in figure 3, are qualitatively similar to the human performance

in a virtual driving environment. To compare these results

more quantitatively, we used the Kullback–Leibler (KL) diver-

gence [21], an information theoretic measure of the difference

between two probability distributions measured in nats

(the base e equivalent of bits). We calculated the individual

human subject’s divergence from the average human look dur-

ation distributions, and also calculated the divergence of

simulations results with the average human distributions.

The KL divergence values were averaged and found to be com-

parable: 1.06 for the human subjects versus 1.60 for the model.

In addition to our scheduling model, a noise-free fixation

scheduler was run in the simulation. This scheduler incorpor-

ated only the priority of each task in selecting modules for

update. Without the noise parameter, the KL divergence rose

to 4.43, clearly demonstrating its importance to the model.

To further emphasize the importance of task-based models,

we compared the proportion of fixations on task-related targets

using our model with two standard saliency measures, the Itti

& Koch [1] saliency model and a central bias model [22].

Figure 4 shows these results and demonstrates how well the

model fits the human data. By way of comparison, and as one
might expect, without access to the particulars of the task, the

observed data cannot be explained by the saliency or central

bias models. Keep in mind that the model surely does not

include all the aspects that the human is taking into account,

but still is a very good approximation to the observed data.
6. Conclusion
Overall, the modular, soft barrier approach for modelling eye

movements in human drivers provides an excellent account

of fixation dynamics and suggests that task priority and uncer-

tainty are primary controlling factors in allocating gaze in a

multi-task situation. The computation of fixation choices

depends only on these two parameters per module. Once

they have been chosen, the prediction of gaze distributions is
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straightforward. A key component of our model arises from its

compositional nature, which may scale to other, arbitrary

multi-tasking situations given the appropriate selection and

design of modules. Additionally, the softmax approach to

selecting modules for sensory update has the useful mathemat-

ical property of being invertible. This means that human eye

fixation data can be fed into the model and be used to provide

the most likely set of parameter settings to explain those data.

In our current simulations, we used a more simple approach to

find reasonable parameter settings, but we plan to develop this

inversion more fully and attempt to use this model to recover

task priorities and uncertainty levels for the current human

dataset as well as future experiments.
 rans.R.Soc.B
369:20130044
Appendix A. Simulation details
(a) Softmax selection
In definining f(t), Z normalizes the discrete distribution, i.e.

Z ¼
P

j[M ez
ð jÞðtÞ. Note, even if z(i)(t) . z( j )(t) for j = i, there

is some non-zero probability that i will not be selected for

update at time t. Additionally, because module updates are

always selected at frequency fp, by sampling from the above dis-

tribution at the appropriate time, a module might be selected

for update even if none of the agent’s task modules have

exceeded their uncertainty boundary (i.e. if z(i) , 0 for all i).
(b) State uncertainty estimates
To incorporate this state uncertainty into the model, each

module M(i) maintains an explicit estimate of the current

value of each of its state variables, ŝ(i)(t). (In the text for the

sake of brevity, we omit the module superscript except

where necessary to resolve ambiguities.) This estimate

could be designed to incorporate many sorts of prior infor-

mation about the dynamics of the world, but the model in

its current state simply treats state estimates as independent

and identically distributed samples drawn from a spherical

normal distribution

ŝðtÞ � N ðmðtÞ;s2ðtÞIÞ;

where m(t) ¼ [m1(t),. . .,mn(t)]T is a vector of the most recently

observed state values, and s(t) is the standard deviation for

the state variable estimates in the module.
(c) Uncertainty propagation
Uncertainty propagates over time within each module by

maintaining a small set of J ‘uncertainty particles’

E ¼ fb1ðtÞ; . . . ;bJðtÞg: Each particle represents one potential

path of deviation that the true state value might have taken

from the last-observed state value. At every time step in the

simulation, all uncertainty particles are displaced randomly

by a step drawn from N̂(0,1), thus defining a random walk

for each particle. The RMS value of the uncertainty particles

is then used to define the standard deviation

sðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

XJ

j¼1

b2
j ðtÞ

vuut ;

of state estimates for this module. Periodically, a module will

be updated with accurate state information from the world
(described below); when this happens, the magnitude of each

uncertainty particle for the module is reduced according to

bj(t þ 1) ¼ (1 2 a)bj(t). After an informal parameter search,

we set a ¼ 0.7 for all modules; with a ¼ 1, the model tends

to produce many short updates because uncertainty is instantly

reduced to 0, but with a , 1 the uncertainty increase due to

noise competes with the uncertainty reduction from the

updated state information.

The state estimation approach described here can be seen

as a sort of particle filter [23], using an uninformed proposal

distribution and equal weights for all particles. Interestingly,

the behaviour of the simulation was largely unaffected by the

choice of J; for our simulation, we used J ¼ 10.
(d) Priority
Modules can be prioritized by increasing their importance

relative to one another, to allow modular agents to perform

one task (for example, following a leader car) in preference

to another (like achieving a target speed). In a traditional

Markov decision process scenario [18], this is modelled by

controlling the ratio of reward values between two subsets

of world states. In this model, module priority is manipulated

through the r parameter: as r increases, the module’s relative

priority decreases. This relative priority value is incorporated

into the model as a soft bound on the diffusion of uncertainty

for each module.
(e) Simulation parameters
When searching for model parameters via grid search, owing

to possible scaling ambiguities (e.g. if all e (i) and r(i) are mul-

tiplied by 2, then the same qualitative behaviour will result)

we fixed r(f ) ¼ 1 and explored only settings for the other

parameters.
( f ) Categorizing looks
The gaze selection process in our model is Markovian, mean-

ing that each selected module is independent of the

previously selected modules; more formally, p(f(t)jf(t 2

n),.) ¼ p(f(t)j.) for all n . 0. Thus, it is possible that multiple

consecutive module updates are directed at the same module,

or f(t) ¼ f(t 2 n). Similar refixation behaviour exists in

human gaze during complex tasks; presumably observers

use the visual information across multiple fixations for a

continuous control signal for a single task. To make analysis

simpler and more consistent between simulation and human

results, we grouped multiple consecutive updates for a given

module into a single fixation.

Note, the data from Sullivan et al. presented in figure 4

omit data from the original including fixations on non-

leader cars. Our model does not have a module devoted to

gathering information from other cars, so these categories

were ignored for all models.
(g) Comparison with human results
We ran a set of simulations with our model attempting to repli-

cate the human behaviour by fitting parameters set to mimic

the orginal human driver conditions. Once we identified the
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parameter settings corresponding to the experimental con-

ditions, we evaluated our model by running it in each of

these conditions 10 times, with each simulation run for approxi-

mately 4000 steps. The sequence of module updates for each

simulation run was stored and labelled as looks as described

above, then normalized to form a probability distribution.

These results were compared with the distributions of look

durations from the human data. The model was able to capture

several important aspects of the human data, including a sensi-

tivity to both noise and priority, but also a gating effect whereby

noise in low-priority tasks had a smaller effect than noise in

high-priority tasks. In addition to our scheduling model, a base-

line fixation scheduler was run in the simulation. This scheduler

incorporated only the priority of each task in selecting modules

for update, but uncertainty was not incorporated.

In comparing the overall fixation histograms for the

different models, one-way ANOVA analyses were performed

for each look category across human and model data. The

proportion of speedometer looks was not significantly differ-

ent between humans and the models, F3,12 ¼ 2.4, p ¼ 0.12.

However, proportion of looks to the leader (F3,12 ¼ 24.7,
p , 1 � 1024) and other category (F3,12 ¼ 792, p , 1 � 1024)

were significantly different. For the leader and other category,

pairwise comparisons were made; unpaired two-tailed t-tests

were made comparing each model against human perform-

ance using Bonferonni correction for multiple comparisons.

All t-tests compared the average of the mean subject/simu-

lation performance across the four conditions for the leader

and other object categories. Human data compared to central

bias model were significantly different in both categories,

leader: t6 ¼ 8.6, p ¼ 1.3 � 1024, other: t6 ¼ 39.2, p ¼ 1.8 �
1028; human data compared to the saliency model were

significantly different in both categories, leader: t6 ¼ 8.1,

p ¼ 1.9 � 1024, other: t6 ¼ 43.8, p ¼ 9.4 � 1029; lastly, human

data compared to the barrier model only had a significant

difference in the proportion of looks to the other category,

leader: t6 ¼ 0.22, p ¼ 0.83, other: t6 ¼ 7.4, p ¼ 3 � 1024.
Endnote
1Source code at: http://github.com/lmjohns3/driving-simulator.
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