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Abstract
Measurement error problems can cause bias or inconsistency of statistical inferences. When
investigators are unable to obtain correct measurements of biological assays, special techniques to
quantify measurement errors (ME) need to be applied. The sampling based on repeated
measurements is a common strategy to allow for ME. This method has been well-addressed in the
literature under parametric assumptions. The approach with repeated measures data may not be
applicable when the replications are complicated due to cost and/or time concerns. Pooling
designs have been proposed as cost-efficient sampling procedures that can assist to provide correct
statistical operations based on data subject to ME. We demonstrate that a mixture of both pooled
and unpooled data (a hybrid pooled-unpooled design) can support very efficient estimation and
testing in the presence of ME. Nonparametric techniques have not been well investigated to
analyze repeated measures data or pooled data subject to ME. We propose and examine both the
parametric and empirical likelihood methodologies for data subject to ME. We conclude that the
likelihood methods based on the hybrid samples are very efficient and powerful. The results of an
extensive Monte Carlo study support our conclusions. Real data examples demonstrate the
efficiency of the proposed methods in practice.
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1. Introduction
Commonly, many biological and epidemiological studies deal with data subject to
measurement errors (ME) attributed to instrumentation inaccuracies, within-subject variation
resulting from random fluctuations over time, etc. Ignoring the presence of ME in data can
result in the bias or inconsistency of estimation or testing. The statistical literature proposed
different methods for ME bias correction (e.g., Carroll et al. [1-2]; Carroll and Wand [3];
Fuller [4]; Liu and Liang [5]; Schafer [6]; Stefanski [7]; Stefanski and Carroll [8-9]). Among
others, one of the common methods is to consider repeated measurements of biospecimens
collecting sufficient information for statistical inferences adjusted for ME effects (e.g.,
Hasabelnaby et al. [10]). In practice, measurement processes based on bioassays can be
costly and time-consuming and can restrict the number of replicates of each individual
available for analysis or the number of individual biospecimens that can be used. It can
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follow that investigators may not have enough observations to achieve the desired power or
efficiency in statistical inferences.

Dorfman [11], Faraggi et al. [12], Liu and Schisterman [13], Liu et al. [14], Mumford et al.
[15], Schisterman and Vexler et al. [16-17], Vexler et al. [18-21] addressed pooling
sampling strategies as an efficient approach to reduce the overall cost of epidemiological
studies. The basic idea of the pooling design is to pool together individual biological
samples (e.g., blood, plasma, serum or urine) and then measure the pooled samples instead
of each individual biospecimen. Since the pooling design reduces the number of
measurements without ignoring individual biospecimens, the cost of the measurement
process is reduced, but relevant information can still be derived. Recently, it has been found
that a hybrid design that takes a sample of both pooled and unpooled biospecimens can be
utilized to efficiently estimate unknown parameters, allowing for ME’s presence in the data
without requiring repeated measures (Schisterman and Vexler et al. [17]).

In the context of the hybrid strategy, Schisterman and Vexler et al. [17] evaluated data that
follow normal distribution functions. In this article, we consider general cases of parametric
and nonparametric assumptions, comparing efficiency of pooled-unpooled samples and data
consisting of repeated measures. It should be noted that the repeated measurement technique
proposes to collect a large amount of information regarding just nuisance parameters related
to distribution functions of ME, whereas the pooled-unpooled design provides observations
that are informative regarding target variables allowing for ME. Therefore, we show that the
pooled-unpooled sampling strategy is more efficient than the repeated measurement
sampling procedure. We construct parametric likelihoods based on both the sampling
methods. Additionally, in order to preserve efficiencies of both strategies without parametric
assumptions, we consider a nonparametric approach using the empirical likelihood (EL)
methodology (e.g., DiCicco et al. [22]; Owen [23-25]; Vexler et al. [26-27]; Vexler and
Gurevich [28]; Yu et al. [29]). We develop and apply novel EL ratio test statistics creating
the confidence interval estimation based on pooled-unpooled data and repeated measures
data. Despite the fact that many statistical inference procedures have been developed to
operate with data subject to ME, to our knowledge, relevant nonparametric likelihood
techniques and parametric likelihood methods have not been well addressed in the literature.

The paper is organized as follows. In Section 2, we present a general form of the likelihood
function based on repeated measures data and pooled-unpooled data. We propose the EL
methodology to make nonparametric inferences based on repeated measures data and
pooled-unpooled data in Section 3. We claim that the EL technique based on the hybrid
design provides a valuable technique to construct statistical tests and estimators of
parameters when MEs are present. To evaluate the proposed approaches, Monte Carlo
simulations are utilized in Section 4. An application to cholesterol biomarker data from a
study of coronary heart disease is presented in Section 5. In Section 6, we provide some
concluding remarks.

2. Parametric inferences
In this section, we derive general forms of the relevant likelihood functions. In each case, we
assume the total measurements of the biomarkers are fixed, say N, e.g., N is a total number
of measurements that a study budget allows us to execute.

2.1 Parametric likelihood functions
2.1.1. Parametric likelihood based on repeated measures data—Suppose that we
measure a biospecimen observing score Zij = Xi + εij, where true values of biomarker
measurements Xi are independent identically distributed (i.i.d.) and εij are i.i.d. values of
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ME, i = 1, …, t; j = 1, …, ni; . Thus, we assume that there is a subset of t
distinct biosassays and each of them is ni times repeatedly measured. In this case, the total
number of available individual bioassays can be defined to be T, T>t, when obtaining a large
number of individual biospecimens can be considered to have a low cost with respect to a
high cost of measurement processes. We assume that X and ε are independent. Firstly, we

consider the simple normal case, say  and . Accordingly, we

observe . In this case, one can show that if ni = 1, there are no unique

solutions of estimation of  and  (non-identifiability). The observations Z’s in each
group i are dependent, since they are measured using the same bioarray. Note that if we fix
the value of Xi, Zij conditioned on Xi is independent of each other, e.g., in the case of

, we have . In a general case, the likelihood function based
on the repeated measures data has the general form of

When the distribution of Xi and εij are known, we can obtain the specific likelihood

functions, and further, we can also derive the maximum likelihood estimators of μx,  and

. Well-known asymptotic results related to the maximum likelihood estimation give

evaluations of properties of estimators based on the likelihood .

2.1.2. Parametric likelihood based on pooled and unpooled data—We briefly
address the basic concept of the pooling design. Let T be the number of individual
biospecimens available and N be the total number of measurements that can be obtained due
to limited study budget. The pooling samples are obtained by randomly grouping individual
samples into groups of size p, where p = [T/N], the number of individual samples in a
pooling group and [x] is the integral part of x. The pooling design requires a physical
combination of specimens of the same group and a test of each pooled specimen, obtaining a
single observation, when the pooled sample is measured. Since the measurements are
generally per unit of volume, we assume that the true measurement for a pooled set is the
average of the true individual marker values in that group. In this case, taking into account
that instruments applied to the measurement process can be sensitive and subject to some
random exposure measurement error, we define a single observation to be a sum of the
average of individual marker values and a value of measurement error. Note that, in
accordance with the pooling literature, we assume that analysis of the biomarkers is
restricted by the high cost of the measurement process, whereas access to a large number of
individual biospecimens can be considered to have a relatively low cost.

In this subsection of hybrid design, we assume T distinct individual bioassays are available,
but still we can provide just N measurements (N<T). The ratio of pooled and upooled
samples is α/(1 − α), α ∈ [0, 1] and the pooling group size is p. Namely, T = αNP + (1 −
α)N. Specifically, pooled data can be obtained by mixing p individual bioassays together
and the αNp bioassays are therefore divided into np groups, where np = αN. The grouped

biospecimens are measured as np single observations. Let , i = 1, …, np denote
measurements of pooled bioassays. In accordance with the literature, we have
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(see, e.g., Faraggi et al. [12], Liu and Schisterman [13], Liu et al. [14], Schisterman and

Vexler et al. [16-17], Vexler et al. [18-21]). Hence, we can obtain that  are independent,

identically distributed (i.i.d.) with the mean μx and the variance , namely,

The unpooled samples are based on nup = (1 − α)N independent observations

In this case, we have .

Note that the pooled and unpooled samples are independent of each other. As a result, the
likelihood function based on the combination of pooled and unpooled data has the form of

If the distribution functions of Xi and εij are known, the likelihood functions can be derived

according to the distribution of  and Zj. Therefore, the corresponding theoretical

maximum likelihood estimators of (μx, , ) can also be obtained. Since the estimators
follow the maximum likelihood methodology, the asymptotic properties of the estimators
can be easily shown.

2.2. Normal case

In this subsection, we assume  and . Then closed-form
analytical solutions for the maximum likelihood estimators of the unknown parameters, μx,

, and , are obtained.

2.2.1. Maximum likelihood estimators based on repeated measures—Assume

that i = 1, …, t; j = 1, …, ni; . By the additive property of the normal

distribution, we have .

Referring to Searle et al. [30], the likelihood function is a well-known result that can be
expressed by
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where .

Under the assumption that ni’s are equal (i.e. assuming balanced data), the log likelihood
function is in the form of

where , , and

.

Let . By taking the partial derivatives of lR with respect to μx,  and λ and
setting the equations equal to zero, we obtain the maximum likelihood equations with the
roots

Thus, the maximum likelihood estimator of μx is μ̂x = μ̃x = Z̄.. and the maximum likelihood

estimators of  and  are  and , respectively, when ;  and

, respectively, when .

Also, the large-sample variances and covariance of  and  are given by

(for details, see Searle et al. [30])

By the property of the maximum likelihood estimators, it is clear that asymptotically those
estimators follow a multivariate normal distribution as

where
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2.2.2. Maximum likelihood estimators followed the hybrid design—Since we

assume that  and , i = 1, …, np, we can write

 and , i = 1, …, np, j = 1, …, nup, np + nup = N.

The likelihood function based on pooled-unpooled data then takes the form

Differentiating the log likelihood function, , with respect to μx,  and

, respectively, we obtain the maximum likelihood estimators of μx,  and  given by

(1)

Note that the estimator of μ has a structure that weighs estimations based on pooled and
unpooled data in a similar manner to a Bayes point estimator used in normal-normal models
(see Carlin and Louis [31]). In this case, we show that inference regarding the parameters
can be obtained by using this hybrid approach without repeating measures on the same
individual, which is the most common strategy to solve measurement error problems.

By the virtue of the properties of the maximum likelihood estimators, the asymptotic
distribution of the estimators (1) is asymptotically

, where Σ is the inverse of the Fisher
Information matrix, I,

where  is the corresponding log likelihood function (for details,
see Appendix A1 of the supplementary material).

2.2.3. Remarks on the normal case—As shown above, when biomarkers’ values and
measurement errors are normally distributed, the maximum likelihood estimators exist and
can be easily obtained. It is also clear that these estimators can be considered as the least
square estimators in a nonparametric context.

However, when data are not from normal distributions, it may be very complicated or even
be infeasible to extract the distributions of repeated measures data or pooled and unpooled
data (e.g., Vexler et al. [21]). For example, in various situations, closed analytical forms of
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the likelihood functions cannot be found based on pooled data, since the density function of
the pooled biospecimen values involves complex convolutions of p-individual biospecimen
values. Consequently, efficient nonparametric inference methodologies based on the
repeated measures data or pooled-unpooled data are reasonable to be considered.

3. Empirical likelihood method
In this section, we apply the empirical likelihood (EL) methodology to the statement of the
problem in this article. The EL technique has been extensively proposed as a nonparametric
approximation of the parametric likelihood approach (e.g., DiCiccio et al. [22]; Owen
[23-25]; Vexler et al. [26-27]; Vexler and Gurevich [28]; Yu et al. [29]). We begin by
outlining the EL ratio method and then modifying the EL ratio test to apply to construct
confidence interval estimations and tests based on data with repeated measures and pooled-
unpooled data.

3.1. The EL ratio test
Consider the following simple testing problem that is stated nonparametrically. Suppose
i.i.d. random variables Y1, Y2, …, Yn with E(Y1) = μ and E|Y1|3 < ∞ are observable. The
problem of interest, for example, is to test the hypothesis

(2)

where μ0 is fixed and known. To test for the hypothesis at (2), the EL function can be
written as

where pi’s are assumed to have values that maximize Ln given empirical constraints. The
empirical constraints correspond to hypotheses settings. Then, under the null hypothesis at

(2), we maximize Ln subject to . Here the condition  is an
empirical form of EY1 = μ0. Using the Lagrange multipliers, one can show the maximum EL
function has the form of

where λ is a root of

Similarly, under the alternative hypothesis, the maximum EL function has the simple form
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As a consequence, the 2log EL ratio test for (2) is

It is proven in Owen [25] that the 2log EL ratio, l(μ0), follows asymptotically  distribution

as n → ∞. Thus, we reject the null hypothesis at a significance level α if .
Furthermore, we also can construct the confidence interval estimator of EY1 as

(Here, C1−α is the 100(1 − α)% percentile of a  distribution with one degree of freedom.)

3.2. The EL method based on repeated measures data
Following the statement mentioned in Section 2, we have correlated data with repeated
measures. In order to obtain an i.i.d. sample, we utilize the fact that Zij is independent of Zkl
when i ≠ k. Therefore, we give an EL function for the block sample mean

, i = 1, …, t, , in a similar manner to the blockwise EL
method given in Kitamura [32]. Then, the random variables become Z̄1, Z̄2 …, Z̄t and the
corresponding EL function for μx is given by

where λ is a root of

In this case, the 2log EL ratio test statistic is in the form of

Proposition 3.2.1—Assume E|Z11|3 < ∞. Then the 2log EL ratio, lR (μx), distributes ,

when , as t → ∞.
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(Proof in Appendix A2.1 of the supplementary material.)

The associated confidence interval estimator is then given by CIR = {μx : lR (μx) ≤ C1 −α},

where C1 −α is the 100(1 − α)% percentile of a  distribution with one degree of freedom.

3.3. The EL method based on pooled-unpooled data
In this section, we consider two distribution-free alternatives to the parametric likelihood
method mentioned in Section 2.1.2. To this end, we apply the EL technique. Note that, in
contrast to data that consists of repeated measures, in this section we use data that are based
on independent observations. Consequently, we can introduce a combined EL function for

the mean μx based on two independent samples, i.e. i.i.d. , , …,  and i. i. d. Z1, Z2,
…, Znup (N = np + nup), representing measurements that correspond to pooled and unpooled
biospecimens, respectively. Under the null hypothesis, the EL function for μx can be
presented in the form of

where λ1 and λ2 are roots of the equations

Finally, the 2log EL ratio test statistic can be given in the form of

(3)

In a similar manner to common EL considerations, one can show that the statistics

 and  follow asymptotically a 
distribution, respectively. By virtue of the additive property of χ2 distributions, the 2log EL

ratio, lH (μx), has an asymptotic  distribution with two degrees of freedom. Thus, we
formulate the next proposition.

Proposition 3.3.1—Let E|Z1|3 < ∞. Then the 2log EL ratio, lH (μx), has a  distribution
as np, nup → ∞.

The corresponding confidence interval estimator is

(4)

where H1−α is the 100(1 − α)% percentile of a  distribution with two degrees of freedom.
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In practice, to execute the procedure above, we can directly use standard programs related to
the c assica EL ratio tests, e.g., the code “el.test” of the R software can be utilized to conduct
the EL confidence interval estimator (4).

The EL technique mentioned above does not use an empirical version of the rule

(5)

that connects the second moments derived from pooled and unspooled observations.
Intuitively, using a constraint related to (5), one can increase the power of the EL approach.
Consider the EL function for μx under the null hypothesis,

as an alternative to the simple EL function LH (μx). Here,  is the estimator from (1) that is
defined under the null hypothesis,

λ1, λ2, λ3, and λ4 are roots of the equations mentioned under the operator sup in the

definition of  with  and qj = (λ2 − λ4(Zj)2)−1. Likewise,

under the alternative hypothesis, we maximize the EL function, , subject to

(6)

where

Thus, the EL under the alternative hypothesis that depends on  is given by
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where ,  as well as , , , and  should be
numerically derived using the equations (6). As a result, the corresponding 2log EL ratio test
statistic is

(7)

Note that, following Qin and Lawless [33],  is asymptotically equivalent to the
maximum log EL ratio test statistic. By virtue of results mentioned in Qin and Lawless [33],

 asymptotically follows a  distribution. Then we reject the null hypothesis at a
significance level α when

(8)

where  is the 100(1 − α)% percentile of a  distribution. Moreover, the corresponding

confidence interval is , where  is the 100(1 − α)%

percentile of a  distribution.

The Monte Carlo simulation study presented in the next section examines the performance
of each EL method mentioned above.

4. Monte Carlo experiments
In this section, we conduct an extensive Monte Carlo study to evaluate the performance of
the parametric and nonparametric likelihood methods proposed in Sections 2 and 3.

4.1. Simulation settings
Examining the repeated measures sampling method, we randomly generated samples of x1,

…, xt values from a normal distribution with mean E(X1) = μx and variance .
Let ni, i = 1, …, t, denote the number of replicates for each subject. For simplicity, we
assume each subject has the same number of replicates n1 = ⋯ = nt (i.e. assuming balanced
data). Then, in a similar manner, we randomly generate normally distributed measurement

errors, εij’s, having E(εij) = 0 and , i = 1, …, t; j = 1, …, n. Therefore, we
conducted samples of zij = xi + εij. Each sample had N = tn observations.

To obtain the hybrid samples, we first generate a sample of size T, where T = αNp + (1 −
α)N, np = αN, nup = (1 − α)N, to represent available individual bioassays. Then we proceed
to generate pooled data. To this end, we pool αNp, α ∈ [0, 1], samples of xi’s to constitute
pooled data, where αNp is assumed to be an integer and xi’s, i = 1, …, T, are i.i.d. random

samples from a normal distribution with mean E(X1) = μx and . Following the
pooling literature, if there are no measurement errors, the average values of the pooled

biospecimens, , i = 1, …, np, are assumed to be observed and can be
represented as the np measurements of pooled bioassays. The remaining (1 − α)N
observations xpnp + j, j = 1, …, nup, are taken as individual measurements. For each
observation, we randomly generate a measurement error εi1 from a normal distribution.

Combining the pooled sample, , i = 1, …, np, with the unpooled
sample, zj = xpnp + j + εj1, j = 1, …, nup, we obtain pooled-unpooled data with the total
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sample size N = np + nup equal to that in the Monte Carlo evaluations related to the repeated
measures approaches.

To evaluate the performance of proposed methods, the following simulation setting was

applied: the fixed significance level was 0.05; μx =1 and ; , 1; n =2, 5, 10; the
pooling group size p= 2, 5, 10; the pooling proportion α=0.5; the total sample size N=100,
300. For each set of parameters, there were 10,000 data generations (Monte Carlo). In this
section, following the pooling literature, we assume that the simulated analysis of
biomarkers is restricted to execute just N measurements and T = 0.5N(p + 1) individual
biospeciaments are available, when the hybrid design is compared with the repeated
measures sampling method. The Monte Carlo simulation results are presented in the next
subsection.

4.2. Monte Carlo outputs
Table 1 shows the estimated parameters based on the repeated measures data using the
parametric likelihood method. The results show that as the replicates increase, the standard

errors of the estimates of  decrease, indicating that the estimations of  appear to be
better as the number of replicates increases. Apparently, the Monte Carlo standard errors of

the estimators of μx and  increase when the number of replicates is increased.

To accomplish the efficiency comparison between the repeated measures strategy and the
hybrid design strategy, the Monte Carlo properties of the maximum likelihood estimates
based on pooled-unpooled data are provided in Table 1. Table 1 shows that the Monte Carlo
standard errors of the estimates for μx based on pooled-unpooled data are clearly less than
those of the corresponding estimates that utilize repeated measures, when p ≥ 2

(respectively, n ≥ 2). One observed advantage is that the estimation for  based on pooled-
unpooled data is very accurate when the total number of measurements is fixed at the same
level. Another advantage is that the standard errors of the estimates for the mean are much
smaller than those shown in Table 1.

Table 2 displays the coverage probabilities of the confidence interval estimators constructed
by the parametric likelihood and EL method based on repeated measures data and the mixed
data, respectively. Table 2 shows that the EL ratio test statistic is as efficient as the
traditional parametric likelihood approach in the context of constructing confidence
intervals, since the coverage probabilities and the interval width of the two methods are very
close.

It is clearly shown that when sample sizes are greater than 100, the coverage probabilities
obtained via the pooled-unpooled design are closer to the expected 0.95 value than those
based on repeated measurements. This, again, demonstrates that mixed data are more
efficient than repeated measures data.

To compare the Monte Carlo type I errors and powers of the tests based on the test statistics

lH (μx) and  by (3) and (7), we performed 10,000 simulations for each parametric
setting and sample size. To test the null hypothesis H0: μx = 0, we use the statistics lH (μx)

and  by (3) and (7). Table 3 depicts results that correspond to the case when Xi~N(μx,
1). The outputs show that the Monte Carlo type I errors and powers of the test statistic lH

(μx) are slightly better than those corresponding to the test statistic . This indicates
that the test based on the simple statistic lH (μx) outperforms that based on the statistic

, in the considered cases.
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Table 4 displays the Monte Carlo simulation results of testing the null hypothesis H0: μx = 2

when , where  is a chi-squared distribution with two degrees of freedom and a is
an effect size. Again, in this case, it is obvious that the type I errors (when a=0) of the test
statistic lH (μx) are much better controlled by 0.05 than those based on the test statistic

. In addition, the Monte Carlo powers of the test based on the test statistic lH (μx) are

higher than those based on the statistic  when the effect size a is large than 0.5. On
the contrary, as the effect size a is small such as 0.1 and 0.2, the Monte Carlo powers of the

tests based on the test statistic  seem higher than those based on the statistic lH (μx).
This shows that when the effect size a is large, the test based on the simple statistic lH (μx) is

preferable to that based on the statistic .

5. An example
In this section, the proposed methods are illustrated via data from the Cedars-Sinai Medical
Center. This study on coronary heart disease investigated the discriminatory ability of a
cholesterol biomarker for myocardial infarction (MI). We have 80 individual measurements
of cholesterol biomarker in total. Half of them were collected on cases, who recently
survived a myocardial infarction (MI), and the other half on controls, who had a normal rest
ECG and were free of symptoms having no previous cardiovascular procedures or MIs.
Additionally, the blood specimens were randomly pooled in groups of p = 2, keeping cases
and controls separate, and then re-measured. Consequently, we have measurements for 20
samples of pooled cases and 20 samples of pooled controls, allowing us to form the hybrid
design.

The p-value of 0.8662 for Shapiro-Wilk test indicates that we can assume a cholesterol
biomarker follows a normal distribution. A histogram and normal Q-Q plot in Figure 1
confirm that the normal distributional assumption for the data is reasonable.

Hybrid samples are formed by taking combinations of 20 unpooled samples and 10 pooled
samples from different individuals for cases and controls, separately. In this example, we
focused on the means of cholesterol measurements and therefore we calculated these means
based on 40 individual samples for cases and controls, separately. The obtained means were
226.7877 and 205.5290, respectively. Using a bootstrap strategy, we compared the
confidence interval estimators and the coverage probabilities of the EL method with those of
the parametric method. To execute the bootstrap study, we proceeded as follows. We
randomly selected 10 pooled assays of group size p = 2 with replacement. We then
randomly sampled 20 assays from the individual assays, excluding those performed on
individual biospecimens that contributed to the 10 chosen pooled assays. With our 20
sampled individual and 10 pooled assays, we applied a parametric likelihood method
assuming a normal distributional assumption and an EL ratio test (3) to calculate the 95%
confidence interval of the mean of cholesterol biomarkers. We repeatedly sampled and
calculated the confidence interval of the cholesterol mean 5,000 times, obtaining 5,000
values for the confidence interval of the mean value of cholesterol measurements for both
case and control. Table 5 depicts the outputs of the bootstrap evaluation.

The bootstrap coverage probabilities of the Cholesterol mean were computed as 0.9999
(Healthy controls), 1 (MI cases), utilizing the parametric (normal) likelihood method and as
0.955 (Healthy controls), 0.966 (MI cases) based on the EL technique, respectively. Also,
we calculated the coverage probabilities of the intersections of the 95% confidence intervals
for each case (MI) and control (healthy). The obtained coverage probabilities were 0.9987
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and 0.9324, corresponding to applications of the parametric method and the EL approach,
respectively.

In accordance with these results, the confidence intervals of estimators of the cholesterol
mean via the EL ratio method are close to those corresponding to the parametric approach;
therefore, we cannot observe a significant difference in the confidence intervals related to
the approaches. However, differences between the parametric method and the EL ratio
approach in the coverage probability of mean of cholesterol biomarker are much more
appreciable. The EL ratio method provided a good result in that the coverage probability of
the cholesterol mean is close to the expected 0.95, whereas the corresponding result of the
parametric method gave 1 as the coverage probability. This result shows that, in this
example, the proposed EL approach outperforms the traditional parametric method.

6. Conclusions
In this article, we proposed and examined different parametric and distribution-free
likelihood methods to evaluate data subject to measurement errors. The common sampling
strategy based on repeated measures and the novel hybrid sample procedure were evaluated.
When the measurement error problem is in effect, we pointed out that the repeated
measurements strategy may not perform well. The proposed hybrid design utilizes the cost-
efficient pooling approach and combines the pooled and unpooled samples.

The study done in this paper has confirmed that the strategy to repeat measures provides a
lot of information just related to ME distributions, reducing efficiency of this procedure
compared to the hybrid design in the context of the eva uation of biomarker’s characteristics.
The EL techniques, very efficient nonparametric methods, were proposed to apply to data
subject to ME.

To verify the efficiency of the hybrid design and the EL methodology, theoretical
propositions as well as the Monte Carlo simulation results were provided.

The numerical studies have supported our arguments that the likelihood based on pooled-
unpooled data are more efficient than those based on the repeated measures data. We
showed the EL method can be utilized as a very powerful tool in statistical inference
involving measurement errors.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The Histogram and the Normal Q-Q plot of Cholesterol Data
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Table 5

Bootstrap Evaluations of the Confidence Interval Estimators Based on Parametric Likelihood Ratio Test and
the EL ratio Test

Health MI

Parametric (Normal)
CI Length CI Length

(192.5738, 220.8708) 28.29704 (210.0585, 239.4560) 29.39748

Empirical (192.9715, 221.1471) 28.17561 (210.4337, 240.5975) 30.16376
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