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Abstract
Rheumatoid arthritis (RA) is a complex and common systemic autoimmune disease characterized
by synovial inflammation and hyperplasia. Multiple proteins, cells, and pathways have been
identified to contribute to the pathogenesis of RA. Galectins are a group of lectins that bind to β-
galactoside carbohydrates on the cell surface and in the extracellular matrix. They are expressed in
a wide variety of tissues and organs with the highest expression in the immune system. Galectins
are potent immune regulators and modulate a range of pathological processes, such as
inflammation, autoimmunity, and cancer. Accumulated evidence shows that several family
members of galectins play positive or negative roles in the disease development of RA, through
their effects on T and B lymphocytes, myeloid lineage cells, and fibroblast-like synoviocytes. In
this review, we will summarize the function of different galectins in immune modulation and their
distinct roles in RA pathogenesis.
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Introduction
Rheumatoid arthritis (RA) is a complex and common systemic autoimmune disease,
characterized by synovial inflammation and hyperplasia, cartilage and bone destruction, and
extra-synovial symptoms [1]. The prevalence of RA in the adult population is estimated at
1% worldwide and is three times higher in women than in men [2]. RA principally attacks
flexible joints symmetrically, progressing from distal joints to proximal joints [3]. RA
inflammation can also diffuse into extra-synovial tissues and organs, leading to a higher risk
of developing cardiovascular diseases, lymphoma, and lung cancer [2,4,5]. The diagnosis of
clinical RA is based on several criteria, including physical symptoms, joint radiographs, and
serological tests [6]. Treatment strategies for RA patients include non-steroidal anti-
inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), and
biological agents, such as blocking antibodies for tumor necrosis factor alpha (TNFα) and
interleukin-6 (IL-6) [2]. Although these drugs can relieve symptoms and delay disease
progression, none of them provide a cure for RA nor have consistent efficacy in all patients.
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The etiology of RA involves a complex interplay of multiple proteins, cells, and pathways.
Among those, galectins have recently emerged as an important group of proteins which
modulate immune activation and inflammation [7]. Galectins are the lectin family members
that bind to β-galactoside carbohydrates. They are widely expressed in different tissues and
organs with the highest expression patterns in the immune system [8]. Through binding to
their receptors, galectins mediate fundamental intra- and inter-cellular signaling as well as
cell-extracellular matrix (ECM) interactions [8]. As potent immune regulators, galectins
play an important role in a number of pathological processes including inflammation,
autoimmunity, fibrosis, and cancer [7].

In this review, we will summarize the current understanding of the role of different galectins
in RA, based on a comprehensive literature review of published empirical research. The
electronic databases of Pubmed/Medline, Embase, EBSCO, SCOPUS, and Cochrane Library
were searched using key words “arthritis” and “galectin” in all fields to the cut-off date of
September 16, 2013. Over 100 manuscripts in English language were identified in the
search. Among those, thirty research manuscripts and one conference abstract provide direct
evidence regarding the pathogenic role and therapeutic potential of galectins in RA (Table
1). Herein, we will briefly review the pathogenic mechanisms of RA and discuss in detail
the role of different galectins in RA pathogenesis and therapeutics.

Pathogenesis of RA
Although RA was first described more than 200 years ago, its etiology has not been
completely characterized. Both genetic and environmental factors contribute to the
development of RA. To date, more than 30 gene loci have been found to contribute to RA
susceptibility and disease severity [9–11]. Many of those gene loci are related to immune
cell activation, such as MHC class I allele HLA-DRB1 and gene variants of cytotoxic T
lymphocyte-associated antigen-4 (CTLA-4) and proteintyrosine-phosphatase nonreceptor
type 22 (PTPN22). Environmental risk factors include bacterial and viral infections,
smoking, and alcohol consumption [11,12]. Gene-environment interactions can also
synergistically increase the risk of developing RA in certain subgroups of people. For
example, a combination of smoking and the HLA-DRB1 allele increases the risk for RA by
21-fold in the anti-cyclic citrullinated peptide antibody (ACPA) positive population [13].

A major characteristic of RA is the infiltration of multiple leukocytes into the joints,
including B cells, T cells, macrophages, dendritic cells, and neutrophils. Infiltrated
leukocytes form ectopic germinal centers and drive adaptive immune responses in the RA
joints. B cells can locally produce autoantibodies, including ACPA [14,15]. T cells play a
central role in mediating joint damage by driving the activation of other effector cells
[16,17]. Although CD4+ T cells are the dominant T cell types in the synovium, Th17, a
subset of T helper cells secreting IL-17, and regulatory T cells (Treg) also play a critical role
in RA pathogenesis [18,19]. Neutrophils are the most abundant leukocytes in RA synovial
fluid (SF) [20]. In RA patients, SF neutrophils remain active for an overly extended length
of time [21,22]. Activated neutrophils release proteolytic enzymes, reactive oxygen species
(ROS), and neutrophil extracellular trap (NET), which can damage local tissues as in other
autoimmune diseases [23]. Neutrophils also secrete pro-inflammatory cytokines such as
TNFα, IL-1 and IL-6, as well as chemokines to further amplify joint inflammation [24].
Macrophages, derived from circulating monocytes or local macrophage-like synoviocytes,
provide another main source of pro-inflammatory cytokines [25]. In addition, synovial
macrophages in RA strongly express MHC class II and are potent for antigen presenting and
T cell activation [16].
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Another characteristic of RA is the activation of local fibroblast-like synoviocytes (FLS)
[26]. In RA joints, resident FLS show a transformed phenotype with over-expressed proto-
oncogenes and defective cell death pathways. FLS in RA secret a wide range of pro-
inflammatory cytokines and chemotactic proteins and also express surface ligands for
interacting with immune cells [27]. In addition, RA FLS release proteolytic enzymes such as
matrix metalloproteinases (MMP), cathepsins, and plasmins. Thus, it has been suggested
that FLS are the main cells responsible for the invasion and destruction of cartilage and
bones, promotion of angiogenesis, and facilitation of osteoclastogenesis [27].

Besides the cells mentioned above, numerous proteins have been shown to play a role in RA
pathogenesis. Some of them have been successfully adapted in clinical diagnosis and
therapies for RA, such as ACPA, TNFα, IL-1, and IL-6 [2]. The family of galectins is
involved in a wide range of biological processes. Their immune modulating role has drawn
an increasing attention in the field of arthritis research. Our discussion will now turn to the
function of galectins and their potential role in RA pathogenesis and therapies.

The Family of Galectins
Galectins are a group of lectins that specifically bind to β-galectoside carbohydrates and
share significant sequence similarity in their carbohydrate-recognition domains (CRDs) [8].
The galectin genes are evolutionarily conserved and can be found in many organisms,
including viruses, sponges, fungi, plants, nematodes, insects, and vertebrates [8]. Currently
there are at least 15 mammalian galectins, all of which contain one or two CRDs of about
130 amino acids each. Based on the CRD organization, galectins are divided into three
subfamilies (Figure 1, panel A). Galectin-1, -2, -5, -7, -10, -11, -13, and -14 contain only one
CRD and are classified as the “proto type”. In contrast, the “tandem-repeat type” (galectin-4,
-6, -8, -9, and -12) have two separate CRDs connected by non-conserved amino acid
sequences. Galectin-3 is the only member of the “chimeric type” and contains one CRD and
a non-lectin region of about 120 residues at the N-terminal of CRD [8]. Some galectins can
self-dimerize or oligomerize, forming bivalent or multivalent complexes for stronger
signaling [28,29] (Figure 1, panel A).

Galectins have been detected in numerous tissues and organs. Their distributions can be
ubiquitous (e.g. galectin-1, -3, -8 and -9) or limited to specific tissue types (e.g. galectin-2
and -4) [30]. Due to the absence of the classical signal sequence for insertion into the
endoplasmic reticulum (ER), galectins primarily localize intracellularly [31]. However,
some types of galectins can be found on the cell surface (e.g. galectin-9) or secreted through
a non-classical ER/Golgi-independent pathway to the extracellular compartment (e.g.
galectin-1 and -3) [32,33].

Function of Galectins
The sugar-binding specificity and affinity vary among different members of the galectin
family, implicating their specialized and diversified functions [34]. Each galectin recognizes
a set of glycoproteins with a particular oligosaccharide sequence. The variety of binding
partners and wide distribution of galectins allow them to function in multiple biological
reactions, including mRNA splicing (e.g. galectin-1 and -3) [35,36], cell apoptosis (e.g.
galectin-3, 7,-9,-12) [37–39], cell cycle regulation (e.g. galectin-3 and -12) [40,41], cell
activation (e.g. galectin-3) [42,43], cell adhesion and migration (e.g. galectin-1, -2, -3, -4, -8
and -9) [44], and cell differentiation (e.g. galectin-3, -9, -10) [45]. Pathologically, galectins
have been linked to a number of diseases including cancer, cardiovascular disease, liver
fibrogenesis, asthma, and RA [7].
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The role of galectins in RA varies among different members of the galectin family as
different galectins can positively or negatively regulate immune responses and inflammatory
reactions. To date, multiple studies have identified a regulatory role of galectin-1, -3, and -9
in RA while only a few studies suggested a role of galectin-2 and -8 in RA. We will now
discuss each of the five types of galectins regarding to their potential function in RA.

Galectin-1 in RA
Overview of galectin-1

Galectin-1 is a “proto type” galectin and can form homodimers by cross-linking [46,47]. It is
highly expressed by immune-related cells such as lymphoid stromal cells, macrophages [48],
T cells [49], and endothelial cells [50]. In most studies, galectin-1 has been shown to be
immunosuppressive and anti-inflammatory. The main receptors of galectin-1 on the T cell
surface are CD43 and CD45 [51,52]. Through surface receptor binding, galectin-1 regulates
negative selection of T cells in the thymus [51,53], induces Th1 and Th17 cell apoptosis
[54], and promotes the shift from Th1 to Th2 polarized immune responses [55]. Treatment
of T cells with galectin-1 changes the cytokine profile, with decreased pro-inflammatory
cytokines such as TNFα, IL-1β, IL-2, and IFNγ [56,57] and increased anti-inflammatory
cytokines such as IL-10 [58]. For B cells, galectin-1 negatively regulates cell proliferation
and BCR-mediated signal transduction [59]. Galectin-1 also regulates innate immune cell
activation. Treatment of galectin-1 dramatically reduced neutrophil infiltration, mast cell
degranulation [60], and inducible nitric oxide synthase (iNOS) expression in macrophages
[61]. The anti-inflammatory activity of galectin-1 has also been suggested in various
experimental models of inflammatory or autoimmune diseases including experimental
autoimmune uveitis [62], myasthenia gravis [63], graft-versus-host disease [64],
experimental autoimmune encephalomyelitis [65], experimental colitis [66], diabetes [67],
concanavalin A-induced hepatitis [68], and collagen-induced arthritis [55].

Galectin-1 in arthritis animal models
The link between galectin-1 and RA was first reported by Rabinovich et al. in 1999 using
collagen-induced arthritis (CIA) mouse model [55]. A single injection of fibroblasts
engineered to secrete mouse galectin-1 or daily administration of 100 μg of recombinant
human galectin-1 in DBA/1 mice was sufficient to suppress the overall clinical and
histopathological manifestations of CIA [55]. Galectin-1 treatment also reduced the anti-
collagen antibody levels and skewed the cytokine profile toward a type-2 polarized immune
reaction [55]. Further investigation into the mechanism revealed that galectin-1 treatment
enhanced the susceptibility of T cells to antigen-induced apoptosis, increased T cell
adhesion to extracellular matrix, and also inhibited IL-2 secretion from collagen-specific T
cell hybridomas [54,56,57]. In addition, galectin-1 functions to limit neutrophil recruitment
to TNF-treated endothelium; and leukocyte adhesion and emigration were significantly
increased in galectin-1-deficient mice inflamed with IL-1β [69]. In a more recent study,
galectin-1-deficient mice exhibited increased susceptibility to CIA, with earlier onset of
arthritis and more severe manifestations than the wild type mice [70]. These studies further
demonstrated the inhibitory function of galectin-1 in the development of arthritis and the
disease severity in animal models.

Galectin-1 in RA patients
In human patients, in situ immunohistochemistry showed remarkably reduced expression of
galectin-1 in synovial tissue from patients with long duration of juvenile idiopathic arthritis
(JIA) [71]. Reduced expression of galectin-1 may lead to defective mononuclear cell
apoptosis in JIA patients [71]. Furthermore, expression of galectin-1 has never been found at
the sites of cartilage invasion in RA [72,73]. Although the plasma levels of galectin-1 are
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comparable between RA patients and healthy controls, concentration of galectin-1 in
synovial fluid (SF) is significantly decreased [74]. The reduced SF galectin-1 levels
correlate to the increased levels of anti-galectin-1 autoantibodies and anti-cyclic citrullinated
peptide (CCP) antibodies in RA patients [74]. These clinical studies confirmed the potential
involvement of galectin-1 in RA pathogenesis, and provided a rational for using synovial
galectin-1 as a biomarker for RA prognosis.

Therapeutic potential of galectin-1
Based on the immunomodulatory effects of galectin-1 in RA, there has been much interest in
designing galectin-1 derivatives as anti-RA drugs. In one study, intra-articular lentiviral
vectors encoding galectin-1 were injected into rats with CIA [75]. This treatment
significantly ameliorated CIA, measured by articular index, radiographic, and histological
scores; T-cell infiltrates; and microvessel density in the ankle joints [75]. High frequencies
of antigen-induced T cell apoptosis were also noticed in the lymph nodes of treated rats [75].
However, the anti-RA activities of galectin-1 require concentrations higher than 7 μM to
allow formation of galectin-1 homodimers [76,77]. To overcome this limitation, galectin-1
was conjugated onto gold nanoparticles (Au-Gal1) to form a multivalent structure [78]. Au-
Gal1 provided enhanced stability and biological activity, and showed better therapeutic
effects than free galectin-1 in vitro and in vivo. In another study, a chimeric protein was
genetically engineered by fusing galectin-1 to the Fc region of human IgG1 (Gal-1hFc) [79].
Gal-1hFc is stable and always dimeric, thus the molecule is biologically functional at low
concentrations. Investigation of Gal-1hFc’s effects on leukocytic infiltrates in RA synovial
fluids showed that 94% of leukocytes expressed galectin-1 receptor and were susceptible to
Gal-1hFc–mediated cell death, revealing the potency of this chimeric protein for RA
treatment. Furthermore, a recent study showed that low concentrations of galectin-1 can
induce chondrogenic differentiation of mesenchymal stem cells (MSCs) from RA bone
marrow [80], suggesting a potential application of galectin-1 in cartilage transplantation
treatment for RA.

In summary, galectin-1 plays an inhibitory role in the development of experimental arthritis
mainly through the induction of T cell apoptosis and skewed type-2 cytokine response. In
human patients, the expression levels of galectin-1 were significantly down-regulated in the
synovium of RA and JIA patients and the downregulation of galectin-1 was correlated with
the increased anti-CCP titers. In pre-clinical animal studies, administration of galectin-1 or
its derivatives ameliorated the antigen-induced arthritis, providing a strong rational for using
galectin-1 as anti-RA drugs in the future.

Galectin-3 in RA
Overview of galectin-3

While galectin-1 is a negative regulator of autoimmunity in RA, galectin-3 promotes
inflammation in RA. Galectin-3 is the only chimeric type of galectin. It has a long N-
terminal domain with proline-and glycine-rich repeats connected to one CRD [81]. The N-
terminal domain, which is 34% homologous to the collagen-1 chain, is responsible for self-
oligomerization, and thus is essential for its biological activity [81]. Galectin-3 exists as
monomer in solution, and self-assembles into higher order oligomers in the presence of
multivalent carbohydrate ligands [82].

Functionally, galectin-3 is also known as epsilon BP for its IgE-binding activity and as
Mac-2, a macrophage surface antigen [81]. By cross-linking cell surface receptors,
galectin-3 activates several types of lymphoid and myeloid cells. It increases IL-2
production in T cells [83] and promotes IgE production in B cells [84]. For myeloid-linage
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cells, galectin-3 stimulates superoxide release from neutrophils and monocytes [43],
potentiates IL-1 production by monocytes [85], and induces 5-hydroxytryptamine (5-HT)
release from mast cells [86] and basophils [86,87]. In addition, galectin-3 can bridge cells
and the ECM to promote chemo-attraction and retention of macrophages [88] and
neutrophils [89]. In line with its in vitro pro-inflammatory function, it has been shown that
the levels of galectin-3 are elevated in the serum or nidi of patients with inflammatory
diseases including RA [72], systemic lupus erythematosus (SLE) [90], Behçet’s disease
[91], and systemic sclerosis [92].

Galectin-3 in arthritis animal models
Studies with CIA rats found increased galectin-3 secretion into the plasma over time, which
correlated with the disease progression, implicating that galectin-3 promotes the
development of experimental arthritis [93]. Recent studies with galectin-3-deficient mice
further confirmed the stimulating role of galectin-3 in arthritis [94]. The joint inflammation
and bone erosion of antigen-induced arthritis were markedly suppressed in galectin-3-
deficient mice as compared with the wild type mice [94]. The reduced arthritis in galectin-3-
deficient mice was accompanied by decreased levels of antigen-specific IgG and
proinflammatory cytokines including TNFα, IL-6, and IL-17 [94]. Furthermore, an
exogenous supply of recombinant galectin-3 restored the reduced arthritis and cytokine
production in galectin-3-deficient mice [94]. This study provided the direct evidence that
galectin-3 plays a crucial role in the development of arthritis in animal models.

Galectin-3 in RA patients
In human patients, galectin-3 was detected in the synovial tissue of RA and JIA patients,
with clear accumulation at the sites of cartilage invasion [71,72,95–97]. The serum levels of
galectin-3 were elevated in patients with RA, JIA, Behçet’s disease, or systemic sclerosis
[72,91,92,98]. Although the increased galectin-3 is not specific for RA, the serum levels of
galectin-3 were significantly associated with the C-reactive protein (CRP) levels and the
disease activity scores in patients with JIA, suggesting that galectin-3 may be utilized as a
biomarker for the disease progression of JIA [98]. In addition, the galectin-3 gene allele
(LGALS3 +292C) is more prevalent in RA patients than in healthy controls, indicating that
genetic polymorphisms of galectin-3 may influence the susceptibility to RA [99].

In addition to immune cells, FLS in the synovium of RA patients also express galectin-3 at
high levels [72,73,95]. While floating FLS only express low levels of galectin-3 [95],
adhesion of FLS to cartilage components through CD51/CD61 induces galectin-3 expression
[100]. In RA patients, about 39% of FLS are cartilage-adhering cells, which is four times
more than in osteoarthritis (OA) patients. The increased numbers of adhering FLS contribute
to the elevated galectin-3 levels in the RA synovium [100]. Moreover, galectin-3 can induce
rheumatoid FLS to secret a set of pro-inflammatory cytokines and chemokines including
IL-6, granulocyte-macrophage colony-stimulating factor (GMCSF), TNF, CXCL8, CCL2,
CCL3, and CCL5 [101]. The induction of cytokines and chemokines by galectin-3 appears
to involve different signaling pathways. The MAPK-ERK pathway was necessary for
cyotokine IL-6 production, while phosphatidylinositol 3-kinase (PI3K) was required for
chemokine CCL5 induction [101]. These studies using human materials further suggest a
promotional role of galectin-3 in the pathogenesis of RA.

Therapeutic potential of galectin-3
In concordance with the human and animal studies discussed above, silencing of galectin-3
expression by intra-articular injections of shRNA into rat ankle joints ameliorated the
manifestation of CIA, suggesting that downregulation of galectin-3 may be a therapeutic
strategy for RA [75]. In addition, using FLS derived from the synovium of RA patients, it
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has been reported that downregulation of galectin-3 expression by galectin-3 siRNA
inhibited spontaneous and LPS-induced secretion of inflammatory cytokine IL-6, further
suggesting the potential of targeting galectin-3 in the suppression of joint inflammation
[102].

Overall, galectin-3 acts as a positive regulator for inflammation by stimulating
proinflammatory cytokine/chemokine production and potentiating myeloid linage cell
activation. In animal models, galectin-3 aggravates antigen-induced arthritis. In patients with
RA and JIA, the levels of galectin-3 are increased in both serum and synovium. Thus,
galectin-3 blockade may provide a novel strategy for the treatment of RA.

Galectin-9 in RA
Overview of galetin-9

Like galectin-1, galectin-9 is anti-inflammatory, as suggested by studies in several disease
animal models including CIA [103,104], asthma [105], nephrotoxic serum nephritis [106],
diabetic nephropathy [107], and autoimmune encephalitis [108]. Galectin-9 contains two
distinct CRDs connected by a linker peptide [109]. Three isoforms of galectin-9 have been
reported which differ in the length of the linker peptide: short type (311 AAs), medium type
(323 AAs), and long type (355 AAs). Galectin-9 can also form stable dimers or multimers to
induce stronger signals [110]. Galectin-9 is expressed by T cells, macrophages, endothelial
cells, and fibroblasts and plays an important role in regulating inflammation and immune
responses [111–113].

Galectin-9 negatively regulates pro-inflammatory T cell responses. An important cell
surface receptor for galectin-9 is T cell immunoglobulin and mucin-domain-containing-
molecule-3 (Tim-3). Tim-3 is specifically expressed on CD4+ Th1 cells, CD8+ cytotoxic T
cells, and CD11b+ dendritic cells (DC), but not on Th2 cells or macrophages [114–116]. The
galectin-9-Tim-3 pathway induces apoptosis of CD4+ Th1 and CD8+ cytotoxic T cells.
Blockade of this interaction in vivo results in exacerbated autoimmunity and abrogation of
self-tolerance in animal models [117]. Galectin-9 also regulates T cell subset differentiation
in vitro and in vivo. In cell culture, treatment with galectin-9 induced the differentiation of
naïve T cells to regulatory T cells (Treg) and suppressed the differentiation of Th17 cells
[103].

Galectin-9 in arthritis animal models
In mouse models, galectin-9 deficiency led to increased numbers of Th1 and Th17 cells and
decreased numbers of Treg cells in the joint, rendering susceptibility to CIA [103].
Conversely, subcutaneous and intraperitoneal delivery of the human stable galectin-9
recombinant proteins decreased the production of proinflammatory cytokine and suppressed
the disease symptoms in the CIA mice [103]. Another study by the same group
demonstrated that treatment with human stable galectin-9 induced apoptosis of cells in the
joints of CIA mice and SCID mice implanted with RA patient synovial tissues [103,104].
Furthermore, galectin-9 was shown to negatively regulate macrophage activation by
increasing the expression of immunoinhibitory FcRIIb and decreasing the expression of
immunoactivating FcRIII, leading to the suppression of arthritis in an immune complex-
induced arthritis mouse model [118].

Galectin-9 in RA patients
Using a cell culture system, stable galectin-9 protein preferentially induced apoptosis and
suppressed the proliferation of RA patient-derived FLS [103,104]. In RA patients, decreased
galectin-9-Tim-3 signaling has been observed. The levels of Tim-3 expression on CD4+ T
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cells from RA patients were lower compared to those from healthy controls, leading to
blunted galectin-9-mediated apoptosis of CD4+ T cells [119,120]. Another study showed
that galectin-9 mRNA expression levels in peripheral blood mononuclear cells (PBMCs)
were significantly lower in RA patients with moderate to high disease activity than those
with low disease activity [104,119], implicating that galectin-9 may prevent the disease
progression of RA.

Therapeutic potential of galectin-9
As discussed in the section of galectin-9 in arthritis animal models, administration of human
stable recombinant galectin-9 ameliorated arthritis in CIA and an immune complex-induced
arthritis mouse model, assessed by pannus formation, inflammatory cell infiltration, and
bone/cartilage destruction [103,104]. These studies warrant the development of galectin-9
derivatives with enhanced in vivo stability and efficacy for the treatment of RA.

Taken together, galectin-9 is a negative regulator of arthritis as suggested by both animal
and human studies. Galectin-9 plays a key role in T cell differentiation through the
galectin-9-Tim-3 pathway. Galectin-9 induces the differentiation of naïve T cells to Treg
cells and suppresses the differentiation of proinflammatory Th17 cells. In addition,
galectin-9 induces apoptosis of FLS which may prevent synoviocyte hyperproliferation in
RA joints. Therefore, up-regulation of galectin-9 and galectin-9-Tim-3 pathway is a
promising strategy for the treatment of RA.

While galectin-1, 3, and 9 has been extensively studied regarding their modulating role in
inflammation and arthritis, galectin-2 and -8 have been less studied in these aspects. Only a
few reports revealed the linkage of galectin -2 and -8 with RA. In the following, we will
briefly summarize these findings.

Galectin-2 in RA
Galectin-2 is structurally similar to galectin-1, but has a distinct expression profile which is
primarily confined to the gastrointestinal tract [121]. Like galectin-1, galectin-2 induces T
cell apoptosis and suppressed colitis in a mouse model [122]. A human genetic study
showed that galectin-2 3279C/T gene polymorphism may be independently associated with
diastolic blood pressure in patients with RA [123]. These studies indicate that galectin-2
may play a suppressive role in RA, but more confirmative evidence is needed to support this
notion.

Galectin-8 in RA
Galectin-8 is a modulator of cell adhesion and cell growth [124]. The soluble form of
galectin-8 was detected in the synovium of RA patients at the concentration that can induce
apoptosis of synoviocytes [125]. However, the galectin-8-mediated apoptosis of
synoviocytes was neutralized by free CD44vRA, a CD44 variant prevalent in RA SF [125].
In another study, function-blocking autoantibodies against galectin-8 were detected in a
small percentage (about 20%) of RA patients [126,127]. The blockade of galectin-8 function
in RA patients suggests that galectin-8 may play a suppressive role in RA. The potential role
of galectin-8 in RA was further supported by a human association study. A single nucleotide
polymorphism of galectin-8 that substitutes tyrosine for phenylalanine at position 18 was
shown to be more prevalent in RA patients; and also associate with the early onset of RA in
a large cohort [128].
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Conclusion
RA is a systemic autoimmune disease that involves a complex interplay of a variety of
immune-modulating proteins [1]. Increasing amounts of evidence suggest that individual
galectins, including galectin-1,-2, -3, -8, and -9, could play positive or negative roles in the
pathogenesis of RA. Manipulation of certain types of galectins can suppress or aggravate the
disease symptoms in arthritis animal models, indicating the therapeutic potential of galectins
for the treatment of RA. Several anti-galectin compounds are under phase 1 or 2 clinical
trials for the treatment of fibrosis and cancer. Although there are no ongoing clinical trials
targeting galectins for the treatment of RA, we hope that galectin-related anti-inflammatory
therapies will be developed in the future as we continue to unravel the specific
immunomodulatory functions of individual galectins.
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Figure 1. The structure and function of the galectin family members
(A) The galectin family members are divided into three types: the prototype with one
carbohydrate recognition domain (CRD), the tandem-repeat type with two CRDs connected
by a non-conserved linker, and the chimeric type with one CRD and a non-lectin N-terminal
domain (ND). Some galectins can self-associate into dimers or oligomers. (B) Biological
functions of extracellular galectins. Bivalent or multivalent galectins crosslink their
receptors on the same cell for intracellular signal transduction, two different cells for cell-
cell interaction, or cell and extracellular matrix (ECM) for cell-ECM interaction.
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Table 1

Pathogenic role and therapeutic potential of galectins in RA.

Galectin Animal studies Human studies Therapeutic potential

Galectin-1 Administration of galectin-1
suppressed CIA by enhancing T cell
apoptosis and inhibiting IL-2
secretion [55].
Galectin-1 limited neutrophil
recruitment to inflammatory tissue
by in vitro experiment and
galectin-1-deficient mice [69].
Galectin-1 deficient mice were
more susceptible to CIA [70].

Down-regulated expression of galectin-1 in the
synovial fluid from RA/JIA patients [71,73,74].

Administration of galectin-1 or its
derivates ameliorated CIA
[55,75,78,79].
Galectin-1 induced chondrogenic
differentiation of MSCs from RA
bone marrow [80].

Galectin-3 Over-expression of galectin-3 was
detected in CIA [93].
Galectin-3 deficient mice displayed
reduced disease severity of antigen-
induced arthritis [94].

Increased expression of galectin-3 in sera and
synovial fluid in RA/JIA patients [71,72,91,95–
97].
A galectin-3 gene allele (LGALS3 +292C) is more
prevalent in RA patients [99].
RA patients had a higher number of galectin-3-
expressing FLS [100].
Galectin-3 induced FLS to secret a set of
proinflammatory cytokines and chemokines [101].

Intra-articular lentivirus-mediated
delivery of galectin-3 shRNA
ameliorated CIA in rats [75].
Downregulation of galectin-3
inhibited IL-6 secretion in FLSs
from RA synovium [102].

Galectin-9 Galectin-9 deficiency promoted
Th1 and Th17; and inhibited Treg
differentiation, rendering
susceptibility to CIA [103].
Galectin-9 induced apoptosis of
FLS and downregulated pro-
inflammatory cytokine production
[104].
Galectin-9 ameliorated immune-
complex-induced arthritis by
regulating the expression profile of
macrophage Fc receptors [118]

Galectin-9 induced apoptosis of FLS from RA
patients in cell culture [104].
Decreased expression of galectin-9 was detected in
RA patients with high disease activities [119].
Down-regulated expression of Tim-3 led to
defective galectin-9-induced apoptosis of CD4+ T
cells [120].

Administration of galectin-9
ameliorated CIA or immune
complex-induced arthritis
[104,118].

Galectin-2 Galectin-2 3279C/T gene polymorphism is
correlated with diastolic blood pressure in patients
with RA [123].

Galectin-8 CD44vRA, a CD44 variant prevalent in RA
patients, can neutralize the galectin-8 induced
apoptosis of synoviocytes [125].
Autoantibodies against galectin-8 were detected in
the sera of about 20% of RA patients [126,127].
A galectin-8 gene variant is prevalent in RA
patients and associates with the early onset of RA
[128]
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