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Abstract
We introduce vector diffusion maps (VDM), a new mathematical framework for organizing and
analyzing massive high-dimensional data sets, images, and shapes. VDM is a mathematical and
algorithmic generalization of diffusion maps and other nonlinear dimensionality reduction
methods, such as LLE, ISOMAP, and Laplacian eigenmaps. While existing methods are either
directly or indirectly related to the heat kernel for functions over the data, VDM is based on the
heat kernel for vector fields. VDM provides tools for organizing complex data sets, embedding
them in a low-dimensional space, and interpolating and regressing vector fields over the data. In
particular, it equips the data with a metric, which we refer to as the vector diffusion distance. In
the manifold learning setup, where the data set is distributed on a low-dimensional manifold ℳd

embedded in ℝp, we prove the relation between VDM and the connection Laplacian operator for
vector fields over the manifold.

1 Introduction
A popular way to describe the affinities between data points is using a weighted graph,
whose vertices correspond to the data points, edges that connect data points with large
enough affinities, and weights that quantify the affinities. In the past decade we have
witnessed the emergence of nonlinear dimensionality reduction methods, such as locally
linear embedding (LLE) [33], ISOMAP [39], Hessian LLE [12], local tangent space
alignment (LTSA) [42], Laplacian eigenmaps [2], and diffusion maps [9]. These methods
use the local affinities in the weighted graph to learn its global features. They provide
invaluable tools for organizing complex networks and data sets, embedding them in a low-
dimensional space, and studying and regressing functions over graphs. Inspired by recent
developments in the mathematical theory of cryo-electron microscopy [18, 37] and
synchronization [10, 35], in this paper we demonstrate that in many applications, the
representation of the data set can be vastly improved by attaching to every edge of the graph
not only a weight but also a linear orthogonal transformation (see Figure 1.1).

Consider, for example, a data set of images, or small patches extracted from images (see,
e.g., [8, 27]). While weights are usually derived from the pairwise comparison of the images
in their original representation, we instead associate the weight wij to the similarity between
image i and image j when they are optimally rotationally aligned. The dissimilarity between
images when they are optimally rotationally aligned is sometimes called the rotationally

© 2012 Wiley Periodicals, Inc.
5We do not align a basis with itself, so the edge set E does not contain self-loops of the form (i, i).
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invariant distance [31]. We further define the linear transformation Oij as the 2 × 2
orthogonal transformation that registers the two images (see Figure 1.2). Similarly, for data
sets consisting of three-dimensional shapes, Oij encodes the optimal 3 × 3 orthogonal
registration transformation. In the case of manifold learning, the linear transformations can
be constructed using local principal component analysis (PCA) and alignment, as discussed
in Section 2.

In this paper, the linear transformations relating data points are restricted to orthogonal
transformations in O(d). Transformations belonging to other matrix groups, such as
translations and dilations, are not treated here.

While diffusion maps and other nonlinear dimensionality reduction methods are either
directly or indirectly related to the heat kernel for functions over the data, our VDM
framework is based on the heat kernel for vector fields. We construct this kernel from the
weighted graph and the orthogonal transformations. Through the spectral decomposition of
this kernel, VDM defines an embedding of the data in a Hilbert space. In particular, it
defines a metric for the data, that is, distances between data points that we call vector
diffusion distances. For some applications, the vector diffusion metric is more meaningful
than currently used metrics, since it takes into account the linear transformations, and as a
result, it provides a better organization of the data. In the manifold learning setup, we prove
a convergence theorem illuminating the relation between VDM and the connection
Laplacian operator for vector fields over the manifold.

The paper is organized in the following way: First, Table 1.1 summarizes the notation used
throughout this paper. In Section 2 we describe the manifold learning setup and a procedure
to extract the orthogonal transformations from a point cloud scattered in a high-dimensional
euclidean space using local PCA and alignment. In Section 3 we specify the vector diffusion
mapping of the data set into a finite-dimensional Hilbert space. At the heart of the vector
diffusion mapping construction lies a certain symmetric matrix that can be normalized in
slightly different ways. Different normalizations lead to different embeddings, as discussed
in Section 4. These normalizations resemble the normalizations of the graph Laplacian in
spectral graph theory and spectral clustering algorithms. In the manifold learning setup, it is
known that when the point cloud is uniformly sampled from a low-dimensional Riemannian
manifold, then the normalized graph Laplacian approximates the Laplace-Beltrami operator
for scalar functions. In Section 5 we formulate a similar result, stated as Theorem 5.3, for
the convergence of the appropriately normalized vector diffusion mapping matrix to the
connection Laplacian operator for vector fields.1

The proof of Theorem 5.3 appears in Appendix B. We verify Theorem 5.3 numerically for
spheres of different dimensions, as reported in Section 6 and Appendix C. We also use other
surfaces to perform numerical comparisons between the vector diffusion distance, the
diffusion distance, and the geodesic distance. In Section 7 we briefly discuss out-of-sample
extrapolation of vector fields via the Nyström extension scheme. The role played by the heat
kernel of the connection Laplacian is discussed in Section 8. We use the well-known short-
time asymptotic expansion of the heat kernel to show the relationship between vector
diffusion distances and geodesic distances for nearby points. In Section 9 we briefly discuss
the application of VDM to cryo-electron microscopy, as a prototypical multireference

1One of the main considerations in the presentation of this paper is to make it as accessible as possible, including to readers who are
not familiar with differential geometry. Although the connection Laplacian is essential to the understanding of the mathematical
framework that underlies VDM, and differential geometry is extensively used in Appendix B for the proof of Theorem 5.3, we do not
assume knowledge of differential geometry in Sections 2 through 10 (except for some parts of Section 8) that detail the algorithmic
framework. The concepts of differential geometry that are required for achieving basic familiarity with the connection Laplacian are
explained in Appendix A.
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rotational alignment problem. We conclude in Section 10 with a summary followed by a
discussion of some other possible applications and extensions of the mathematical
framework.

2 Data Sampled from a Riemannian Manifold
One of the main objectives in the analysis of a high-dimensional large data set is to learn its
geometric and topological structure. Even though the data itself is parametrized as a point
cloud in a high-dimensional ambient space ℝ

p
the correlation between parameters often

suggests the popular “manifold assumption” that the data points are distributed on (or near)
a single low-dimensional Riemannian manifold ℳd embedded in ℝp, where d is the
dimension of the manifold and d ≪ p. Suppose that the point cloud consists of n data points
x1; x2, …, xn that are viewed as points in ℝp but are restricted to the manifold.

We now describe how the orthogonal transformations Oij can be constructed from the point
cloud using local PCA and alignment.

Local PCA. For every data point xi we suggest estimating a basis to the tangent plane Txiℳ
to the manifold at xi using the following procedure, which we refer to as local PCA. We fix
a scale parameter ∊PCA > 0 and define xi, ∊PCA as the neighbors of xi inside a ball of
radius  centered at xi:

Denote the number of neighboring points of xi by Ni,2 that is, Ni | xi, ∊PCA|, and denote the
neighbors of xi by xi1, xi2, …, xiNi

. We assume that ∊PCA is large enough so that Ni ≥ d, but
at the same time ∊PCA is small enough such that Ni ≪ n. At this point we assume d is
known; methods to estimate it will be discussed later in this section. In Theorem B.1 we
show that a satisfactory choice for ∊PCA is given by ∊PCA = O(n−2/(d+1)), so that Ni =
O(n1/(d+1)). In fact, it is even possible to choose ∊PCA = O (n−2/(d+2)) if the manifold does
not have a boundary.

Observe that the neighboring points are located near Txiℳ, where deviations are possible
due to curvature. Define Xi to be a p × Ni matrix whose jth column is the vector xij – xi that
is,

In other words, Xi is the data matrix of the neighbors shifted to be centered at the point xi.

Notice that while it is more common to shift the data for PCA by the mean ,
here we shift the data by xi. Shifting the data by µi is also possible for all practical purposes,
but has the slight disadvantage of complicating the proof for the convergence of the local
PCA step (see Appendix B.1).

The local covariance matrix corresponding to the neighbors of xi is . Among the
neighbors, those that are further away from xi contribute the most to the covariance matrix.
However, if the manifold is not flat at xi then we would like to give more emphasis to the

2Since Ni depends on ∊PCA, it should be denoted as Ni,∊PCA, but since ∊PCA is kept fixed it is suppressed from the notation, a
convention that we use except for cases in which confusion may arise.
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nearby points, so that the tangent space estimation is more accurate. In order to give more
emphasis to nearby points, we weigh the contribution of each point by a monotonically
decreasing function of its distance from xi. Let KPCA be a C2 positive monotonic decreasing
function with support on the interval [0, 1], for example, the Epanechnikov kernel KPCA(u)
= (1–u2)χ[0,1], where χ is the indicator function. Let Di be an Ni × Ni diagonal matrix with

and define the p × Ni matrix Bi as

(2.1)

The local weighted covariance matrix at xi, which we denote by Ξi is

(2.2)

Since KPCA is supported on the interval [0, 1] the covariance matrix Ξi can also be
represented as

(2.3)

The definition of Di(j, j) above is via the square root of the kernel, so it appears linearly in
the covariance matrix. We denote the singular values of Bi by σi;1 ≥ σi;2≥⋯ ≥σi,Ni. The
eigenvalues of the p × p local covariance matrix Ξi equal the squared singular values. Since
the ambient space dimension p is typically large, it is usually more efficient to compute the
singular values and singular vectors of Bi rather than the eigendecomposition of Ξi.

Suppose that the singular value decomposition (SVD) of Bi is given by

The columns of the p × Ni matrix Ui are orthonormal and are known as the left singular
vectors

We define the p × d matrix Oi by the first d left singular vectors (corresponding to the
largest singular values):

(2.4)
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The d columns of Oi are orthonormal, i.e., . The columns of Oi represent an
orthonormal basis to a d-dimensional subspace of ℝp. This basis is a numerical
approximation to an orthonormal basis of the tangent plane Txiℳ. The order of the
approximation (as a function of ∊PCA and n, where n is the number of the data points) is
established later in Appendix B, using the fact that the columns of Oi are also the
eigenvectors (corresponding to the d largest eigenvalues) of the p × p; weighted covariance
matrix. Ξi. We emphasize that the covariance matrix is never actually formed due to its
excessive storage requirements, and all computations are performed with the matrix Bi.

In cases where the intrinsic dimension d is not known in advance, the following procedure
can be used to estimate d. The underlying assumption is that data points lie exactly on the
manifold, without any noise contamination. We remark that in the presence of noise, other
procedures (e.g., [28]) could give a more accurate estimation.

Because our previous definition for the neighborhood size parameter ∊PCA involves d, we
are not allowed to use it when trying to estimate d. Instead, we can take the neighborhood
size ∊PCA to be any monotonically decreasing function of n that satisfies

. This condition ensures that the number of neighboring points
increases indefinitely in the limit of an infinite number of sampling points. One can choose,
for example, ∊PCA = 1/log(n), though other choices are also possible.

Notice that if the manifold is flat, then the neighboring points in xi, ∊PCA are located
exactly on Txiℳ and as a result rank (Xi) = rank (Bi) = d and Bi has exactly d nonvanishing
singular values (i.e., σi;d+1 = σi,d+2 = ⋯ = σi,Ni = 0). In such a case, the dimension can be
estimated as the number of nonzero singular values. For nonflat manifolds, due to curvature,
there may be more than d nonzero singular values. Clearly, as n goes to infinity, these
singular values approach 0, since the curvature effect disappears. A common practice is to
estimate the dimension as the number of singular values that account for a high enough
percentage of the variability of the data. That is, one sets a threshold γ between 0 and 1
(usually closer to 1 than to 0), and estimates the dimension as the smallest integer di for
which

For example, setting γ = 0:9 means that di singular values account for at least 90%
variability of the data, while di − 1 singular values account for less than 90%. We refer to
the smallest integer di as the estimated local dimension of ℳ at xi. From the previous
discussion it follows that this procedure produces an accurate estimation of the dimension at
each point as n goes to infinity. One possible way to estimate the dimension of the manifold
would be to use the mean of the estimated local dimensions d1; d2; …, dn, that is,

 (and then round it to the closest integer). The mean estimator minimizes the

sum of squared errors . We estimate the intrinsic dimension of the manifold by
the median value of all the di’s; that is, we define the estimator d̂ for the intrinsic dimension
d as
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In all proceeding steps of the algorithm we use the median estimator d̂, but in order to
facilitate the notation we write d instead of y d̂.

Alignment Suppose xi and xj are two nearby points whose euclidean distance satisfies

, where ∊ > 0 is a scale parameter different from the scale parameter ∊PCA.
In fact, ∊ is much larger than ∊PCA as we later choose ∊ = O(n−2/(d+4)), while, as mentioned
earlier, ∊PCA = O(n−2/(d+1)) (manifolds with boundary) or ∊PCA = O(n−2/(d+2)) (manifolds
with no boundary). In any case, ∊ is small enough so that the tangent spaces Txiℳ and
Txjℳ are also close (in the sense that their Grassmannian distance given approximately by

the operator norm  is small). Therefore, the column spaces of Oi and Oj are
almost the same. If the subspaces were to be exactly the same, then the matrices Oi and Oj
would differ by a d × d orthogonal transformation Oij satisfying OiOij = Oj, or equivalently

. In that case,  would be the matrix representation of the operator that
transport vectors from Txjℳ to Txjℳ, viewed as copies of ℝd. The subspaces, however, are

usually not exactly the same, due to curvature. As a result, the matrix  is not
necessarily orthogonal, and we define Oij as its closest orthogonal matrix, i.e.,

(2.5)

where ∥·∥HS is the Hilbert-Schmidt (HS) norm (given by  for any real
matrix A) and O(d) is the set of orthogonal d × d matrices. This minimization problem has a

simple solution3 [1, 13, 21, 25] via the SVD of . Specifically, if

is the SVD of , then Oij is given by

We refer to the process of finding the optimal orthogonal transformation between bases as
alignment. Later in Appendix B we show that the matrix Oij is an approximation to the
parallel transport operator4 from Txjℳ to Txiℳ whenever xi and xj are nearby.

Note that not all bases are aligned; only the bases of nearby points are aligned. We set E to
be the edge set of the undirected graph over n vertices that correspond to the data points,
where an edge between i and j exists if and only if their corresponding bases are aligned by

the algorithm5 (or equivalently, if and only if . The weights wij are
defined6 using a kernel function K as

3The solution is unique whenever  is nonsingular, a condition that is satisfied whenever the distance between xi and xj is
sufficiently small, due to bounded curvature.
4The definition of the parallel transport operator is provided in Appendix A and in textbooks on differential geometry; see, e.g., [32,
chap. 2].
6Notice that the weights are only a function of the euclidean distance between data points; another possibility, which we do not

consider in this paper, is to include the Grassmannian distance  in the definition of the weight.
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(2.6)

where we assume that K is supported on the interval [0, 1]. For example, the Gaussian kernel
K(u) = exp {−u2}χ[0,1] leads to weights of the form

 and 0 otherwise. Notice that the kernel K
used for the definition of the weights wij could be different from the kernel KPCA used for
the previous step of local PCA.

3 Vector Diffusion Mapping
We construct the following matrix S:

(3.1)

That is, S is a block matrix, with n × n blocks, each of which is of size d × d. Each block is
either a d × d orthogonal transformation Oij multiplied by the scalar weight wij or a zero d ×
d matrix. (As mentioned in a previous footnote, the edge set does not contain self-loops, so

wii = 0 and S(i, i) = 0d × d.) The matrix S is symmetric since  and wij = wji, and its
overall size is nd × nd. We define a diagonal matrix D of the same size, where the diagonal
blocks are scalar matrices given by

(3.2)

and

(3.3)

is the weighted degree of node i. The matrix D−1S can be applied to vectors v of length nd,
which we regard as n vectors of length d, such that v(i) is a vector in ℝd viewed as a vector
in Txiℳ. The matrix D−1S is an averaging operator for vector fields, since

(3.4)

This implies that the operator D−1S : (ℝd)n → (ℝd)n transports vectors from the tangent
spaces Txjℳ (that are nearby to Txiℳ) to Txiℳ and then averages the transported vectors in
Txiℳ.

Notice that diffusion maps and other nonlinear dimensionality reduction methods make use

of the weight matrix  but not of the transformations Oij. In diffusion maps, the
weights are used to define a discrete random walk over the graph, where the transition
probability aij in a single time step from node i to node j is given by

(3.5)
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The Markov transition matrix  can be written as

(3.6)

where is an n × n diagonal matrix with

(3.7)

While A is the Markov transition probability matrix in a single time step, At is the transition
matrix for t steps. In particular, At (i, j) sums the probabilities of all paths of length t that
start at i and end at j. Coifman and Lafon [9, 26] showed that At can be used to define an
inner product in a Hilbert space. Specifically, the matrix A is similar to the symmetric matrix

−1/2W −1/2 through A = −1/2( −1/2W −1/2) 1/2. It follows that A has a complete set of

real eigenvalues and eigenvectors , respectively, satisfying Aφl = µlφl.
Their diffusion mapping Φt is given by

(3.8)

where φl(i) is the ith entry of the eigenvector φl. The mapping Φt satisfies

(3.9)

where 〈·,·〉 is the usual dot product over euclidean space. The metric associated to this inner
product is known as the diffusion distance. The diffusion distance dDM,t (i, j) between i and j
is given by

(3.10)

Thus, the diffusion distance between i and j is the weighted-ℓ2 proximity between the
probability clouds of random walkers starting at i and j after t steps.

In the VDM framework, we define the affinity between i and j by considering all paths of
length t connecting them, but instead of just summing the weights of all paths, we sum the
transformations. A path of length t from j to i is some sequence of vertices j0, j1, …, jt with
j0 = j and jt = i, and its corresponding orthogonal transformation is obtained by multiplying
the orthogonal transformations along the path in the following order:

(3.11)

Every path from j to i may therefore result in a different transformation. This is analogous to
the parallel transport operator from differential geometry that depends on the path
connecting two points whenever the manifold has curvature (e.g., the sphere). Thus, when
adding transformations of different paths, cancellations may happen.

We would like to define the affinity between i and j as the consistency between these
transformations, with higher affinity expressing more agreement among the transformations

Singer and Wu Page 8

Commun Pure Appl Math. Author manuscript; available in PMC 2014 January 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



that are being averaged. To quantify this affinity, we consider again the matrix D−1S, which
is similar to the symmetric matrix

(3.12)

through D−1S = D−1/2S̃D1/2, and define the affinity between i and j as

that is, as the squared HS norm of the d × d matrix S̃2t (i, j), which takes into account all

paths of length 2t, where t is a positive integer. In a sense,  measures not only
the number of paths of length 2t connecting i and j but also the amount of agreement

between their transformations. That is, for a fixed number of paths,  is larger
when the path transformations are in agreement and is smaller when they differ.

Since S̃ is symmetric, it has a complete set of eigenvectors v1; v2; …, vnd and eigenvalues λ1,
λ2; …, λnd. We order the eigenvalues in decreasing order of magnitude |λ1|≥ |λ2|≥…≥|λnd|.
The spectral decompositions of S̃ and S̃2t are given by

(3.13)

where vl(i) ∈ ℝd for i = 1, 2, …, n and l = 1, 2, …, nd. The HS norm of S̃2t (i, j) is calculated
using the trace:

(3.14)

It follows that the affinity  is an inner product for the finite-dimensional Hilbert
space ℝ(nd)2 via the mapping Vt:

(3.15)

That is,

(3.16)

Note that in the manifold learning setup, the embedding i ↦ Vt(i) is invariant to the choice
of basis for Txiℳ because the dot products 〈vl(i), vr(i)〉 are invariant to orthogonal
transformations. We refer to Vt as the vector diffusion mapping.

From the symmetry of the dot products 〈vl (i), vr (i)〉, it is clear that  is also an
inner product for the finite-dimensional Hilbert space ℝnd(nd+1)/2 corresponding to the
mapping

Singer and Wu Page 9

Commun Pure Appl Math. Author manuscript; available in PMC 2014 January 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We define the symmetric vector diffusion distance dVDM,t (i, j) between nodes i and j as

(3.17)

The matrices I − S ̃ and I + S̃ are positive semidefinite due to the following identity:

(3.18)

for any v ∈ ℝnd. As a consequence, all eigenvalues λl of S̃ reside in the interval [−1; 1]. In
particular, for large enough t, most terms of the form (λlλr)2t in (3.14) are close to 0, and

 can be well approximated by using only the few largest eigenvalues and their
corresponding eigenvectors. This lends itself to an efficient approximation of the vector
diffusion distances dVDM;t(i, j) of (3.17), and it is not necessary to raise the matrix S̃ to its 2t
power (which usually results in dense matrices). Thus, for any δ > 0, we define the truncated

vector diffusion mapping  that embeds the data set in ℝm2
 (or equivalently, but more

efficiently, in ℝm(m+1)/2) using the eigenvectors v1, v2; …, vm as

(3.19)

where m = m(t, δ) is the largest integer for which

We remark that Vt is defined through  rather than , because we
cannot guarantee that in general all eigenvalues of S̃ are nonnegative. In Section 8, we show
that in the continuous setup of the manifold learning problem all eigenvalues are
nonnegative. We anticipate that for most practical applications that correspond to the
manifold assumption, all negative eigenvalues (if any) would be small in magnitude (say,
smaller than δ). In such cases, one can use any real t > 0 for the truncated vector diffusion

map .

4 Normalized Vector Diffusion Mappings
It is also possible to obtain slightly different vector diffusion mappings using different
normalizations of the matrix S. These normalizations are similar to the ones used in the
diffusion map framework [9]. For example, notice that

(4.1)

are the right eigenvectors of D−1S, that is, D−1Swl = λlwl. We can thus define another vector

diffusion mapping, denoted , as
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(4.2)

From (4.1) it follows that  and Vt satisfy the relations

(4.3)

and

(4.4)

As a result,

(4.5)

In other words, the Hilbert-Schmidt norm of the matrix D−1S leads to an embedding of the
data set in a Hilbert space only upon proper normalization by the vertex degrees (similar to
the normalization by the vertex degrees in (3.9) and (3.10) for the diffusion map). We define
the associated vector diffusion distances as

(4.6)

We comment that the normalized mappings  that map the data
points to the unit sphere are equivalent, that is,

(4.7)

This means that the angles between pairs of embedded points are the same for both
mappings. For a diffusion map, it has been observed that in some cases the distances

are more meaningful than ∥Φt(i)–Φt(j)∥ (see, for example, [17]). This may also suggest the
usage of the distances

in the VDM framework.
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Another important family of normalized diffusion mappings is obtained by the following
procedure. Suppose 0 ≤ α ≤ 1, and define the symmetric matrices Wα and Sα as

(4.8)

and

(4.9)

We define the weighted degrees degα(1), degα(2), …, degα(n) corresponding to Wα by

the n × n diagonal matrix Dα as

(4.10)

and the n × n block diagonal matrix Dα (with blocks of size d × d) as

(4.11)

We can then use the matrices Sα and Dα (instead of S and D) to define the vector diffusion

mappings . Notice that for α = 0 we have S0 = S and D0 = D, so that V0,t = Vt and

. The case α = 1 turns out to be especially important as discussed in the next section.

5 Convergence to the Connection Laplacian
For diffusion maps, the discrete random walk over the data points converges to a continuous
diffusion process over that manifold in the limit n → ∞ and ∊ → 0. This convergence can
be stated in terms of the normalized graph Laplacian L given by

In the case where the data points  are sampled independently from the uniform
distribution over ℳd the graph Laplacian converges pointwise to the Laplace-Beltrami
operator, as we have the following proposition [3, 20, 26, 34]: If f: ℳd → ℝ is a smooth
function (e.g., f ∈ C3(ℳ)), then with high probability

(5.1)

where Δℳ is the Laplace-Beltrami operator on ℳd. The error consists of two terms: a bias

term O(∊) and a variance term that decreases as  but also depends on ∊. Balancing the
two terms may lead to an optimal choice of the parameter ∊ as a function of the number of
points n. In the case of uniform sampling, Belkin and Niyogi [4] have shown that the
eigenvectors of the graph Laplacian converge to the eigenfunctions of the Laplace-Beltrami
operator on the manifold, which is stronger than the pointwise convergence given in (5.1).
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In the case where the data points  are independently sampled from a probability
density function p(x) whose support is a d-dimensional manifold ℳd and satisfies some
mild conditions, the graph Laplacian converges pointwise to the Fokker-Planck operator as
stated in following proposition [3, 20, 26, 34]: If f ∈ C3(ℳ), then with high probability

(5.2)

where the potential term U is given by U(x) = −2 log p(x). The error is interpreted in the
same way as in the uniform sampling case. In [9] it is shown that it is also possible to
recover the Laplace-Beltrami operator for nonuniform sampling processes using W1 and 1

(that correspond to α = 1 in (4.8) and (4.11)). The matrix  converges to the
Laplace-Beltrami operator independently of the sampling density function p(x).

For VDM, we prove in Appendix B the following theorem, Theorem 5.3, that states that the

matrix , where 0 ≤ α ≤ 1, converges to the connection Laplacian operator
(defined via the covariant derivative; see Appendix A and [32]) plus some potential terms

depending on p(x). In particular,  converges to the connection Laplacian
operator, without any additional potential terms. Using the terminology of spectral graph

theory, it may thus be appropriate to call  the connection Laplacian of the graph.

The main content of Theorem 5.3 specifies the way in which VDM generalizes diffusion
maps: while diffusion mapping is based on the heat kernel and the Laplace-Beltrami
operator over scalar functions, VDM is based on the heat kernel and the connection
Laplacian over vector fields. While for diffusion maps the computed eigenvectors are
discrete approximations of the Laplacian eigenfunctions, for VDM the lth eigenvector vl of

 is a discrete approximation of the lth eigenvector field Xl of the connection
Laplacian ▽2 over ℳ, which satisfies ▽2Xl= −λlXl for some λ1 ≥ 0.

In the formulation of Theorem 5.3, as well as in the remainder of the paper, we slightly
change the notation used so far in the paper, as we denote the sampled data points in ℳd by
x1; x2; …, xn, and the observed data points in ℝp by ι(x1), ι(x2), …, ι(xn), where ι : ℳ ↪
ℝp is the embedding of the Riemannian manifold ℳ in ℝp. Furthermore, we denote by
ι*Txiℳ the d-dimensional subspace of ℝp that is the embedding of Txiℝ in ℝp. It is
important to note that in the manifold learning setup, the manifold ℳ, the embedding ι, and
the points x1, x2; …, xn ∈ ℳ are assumed to exist but cannot be directly observed.

Theorems 5.3, 5.5, and 5.6, stated later in this section, and their proofs in Appendix B all
share the following assumption:

ASSUMPTION 5.1.

1. ι : ℳ ↪ ℳp is a smooth d-dimensional compact Riemannian manifold embedded
in ℳp, with metric g induced from the canonical metric on ℳp.

2. When ∂ ℳ ≠, we denote ℳt = {x ∈ ℳ : miny∈∂ℳd(x, y) ≤ t}, where t > 0 and d(x;
y) is the geodesic distance between x and y.

3. The data points x1, x2; …, xn are independent samples from ℳ according to the
probability density function p ∈ C3 (ℳ) supported on ℳ ⊂ ℝp, where p is
uniformly bounded from below and above, that is, 0 < pm ≤ p(x) ≤ pM < ∞.
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4. K ∈ C2([0, 1)) is a positive function. Also, ml := ∫ℝd ∥x∥lK(∥x∥)dx and

. We assume m0 = 1.

5. The vector field X is in C3(Tℳ).

6. Denote τ to be the largest number having the following property: the open normal
bundle about ℳ of radius r is embedded in ℝp for every r < τ [30]. This condition
holds automatically since ℳ is compact. In all theorems, we assume that . In
[30], 1/τ is referred to as the “condition number” of ℳ.

7. To ease notation, in what follows we use the same notation ▽ to denote different
connections on different bundles whenever there is no confusion and the meaning
is clear from the context.

DEFINITION 5.2. For ∊ > 0, define

We define the empirical probability density function by

and for 0 ≤ α ≤ 1 define the α-normalized kernel K∊, α by

For 0 ≤ α ≤ 1, we define

THEOREM 5.3. In addition to Assumption 5.1, suppose ℳ is closed and ∊PCA =
O(n−2/(d+2)). For all xi with high probability (w.h.p.)

(5.3)

where  is an orthonormal basis for a

d-dimensional subspace of ℝp determined by local PCA (i.e., the columns of Oi), 
is an orthonormal basis for ι*Txiℳ, Oij is the optimal orthogonal transformation
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determined by the alignment procedure, and

, where El is an orthonormal basis for Txiℳ.

When ∊PCA = O(n−2/(d+1)), then the same almost surely convergence results above hold but
with a slower convergence rate.

COROLLARY 5.4. For ∊ = O(n−2/(d+4)) almost surely,

(5.4)

and in particular

(5.5)

When the manifold is compact with boundary, (5.3) does not hold at the boundary.
However, we have the following result for the convergence behavior near the boundary:

THEOREM 5.5. Suppose the boundary ∂ℳ is smooth and that Assumption 5.1 applies.
Choose ∊PCA = O(n−2/d+1)). When  we have

(5.6)

where x0 = argminy∈∂ℳ d(xi, y),  are constants defined in (B.93) and (B.94)and ∂d

is the normal direction to the boundary at x0.

For the choice ∊ = O(n−2/(d+4)) (as in Corollary 5.4), the error appearing in (5.6) is O(∊3/4),

which is asymptotically smaller than , which is the order of . A consequence
of Theorem 5.3, Theorem 5.5, and the above discussion about the error terms is that the

eigenvectors of  are discrete approximations of the eigenvector fields of the
connection Laplacian operator with homogeneous Neumann boundary condition that satisfy

(5.7)

We remark that the Neumann boundary condition also emerges for the choice ∊PCA =
O(n−2/(d+2)). This is due to the fact that the error in the local PCA term is

, which is asymptotically smaller than O(∊1/2 = O(n−1/(d+4)) error
term.

Finally, Theorem 5.6 details the way in which the algorithm approximates the continuous
heat kernel of the connection Laplacian:

THEOREM 5.6. Under Assumption 5.1, for any t > 0, the heat kernel et▽2 can be

approximated on L2(Tℳ) by , that is,
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6 Numerical Simulations
In all numerical experiments reported in this section, we use the normalized vector diffusion

mapping  corresponding to α = 1 in (4.9) and (4.10); that is, we use the eigenvectors of

 to define the VDM. In all experiments we used the kernel function K (u) = e−5u2
χ[0,1]

for the local PCA step as well as for the definition of the weights wij. The specific choices
for ∊ and ∊PCA are detailed below. We remark that the results are not very sensitive to these
choices; that is, similar results are obtained for a wide regime of parameters. The purpose of
the first experiment is to numerically verify Theorem 5.3 using spheres of different
dimensions. Specifically, we sampled n = 8000 points uniformly from d embedded in ℝd+1

for d = 2, 3, 4, 5. Figure 6.1 shows bar plots of the largest 30 eigenvalues of the matrix

 for ∊PCA = 0:1 when d = 2, 3, 4 and ∊PCA = 0:2 when d = 5, and . It is
noticeable that the eigenvalues have numerical multiplicities greater than 1. Since the
connection Laplacian commutes with rotations, the dimensions of its eigenspaces can be
calculated using representation theory (see Appendix C). In particular, our calculation
predicted the following dimensions for the eigenspaces of the largest eigenvalues:

These dimensions are in full agreement with the bar plots shown in Figure 6.1.

In the second set of experiments, we numerically compare the vector diffusion distance, the
diffusion distance, and the geodesic distance for different compact manifolds with and
without boundaries. The comparison is performed for the following four manifolds: (1) the
sphere 2 embedded in ℝ3; (2) the torus 2 embedded in ℝ3; (3) the interval [−π, π] in ℝ
and (4) the square [0, 2π] × [0, 2π] in ℝ2. For both VDM and DM we truncate the mappings
using δ = 0.2; see (3.19). The geodesic distance is computed by the algorithm of Dijkstra on
a weighted graph, whose vertices correspond to the data points, the edges link data points
whose euclidean distance is less than , and the weights wG(i, j) are the euclidean
distances, that is,

2 case: We sampled n = 5000 points uniformly from 2 = {x ∈ ℝ3 : ∥x∥ = 1} ⊂ ℝ3 and set
∊PCA = 0.1 and . For the truncated vector diffusion distance, when t = 10,

we find that the number of eigenvectors whose eigenvalue is larger (in magnitude) than 
is mVDM = mVDM(t = 10, δ = 0.2) = 16 (recall the definition of m(t, δ) that appears after
(3.19)). The corresponding embedded dimension is mVDM(mVDM + 1)/2, which in this case
is 16 · 17/2 = 136. Similarly, for t = 100, mVDM = 6 (embedded dimension is 6 · 7/2 = 21),
and when t = 1000, mVDM = 6 (embedded dimension is again 21). Although the first
eigenspace (corresponding to the largest eigenvalue) of the connection Laplacian over 2 is
of dimension 6, there are small discrepancies between the top 6 numerically computed
eigenvalues, due to the finite sampling. This numerical discrepancy is amplified upon
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raising the eigenvalues to the tth power, when t is large, e.g., t = 1000. For demonstration
purposes, we remedy this numerical effect by artificially setting λl = λl for l = 2, 3, …, 6. For
the truncated diffusion distance, when t = 10, mDM = 36 (embedded dimension is 36 − 1 =
35), when t = 100, mDM = 4 (embedded dimension is 3), and when t = 1000, mDM = 4
(embedded dimension is 3). Similarly, we have the same numerical effect when t = 1000,
that is, µ2, µ3, and µ4 are close but not exactly the same, so we again set µl = µ2 for l = 3, 4.
The results are shown in Figure 6.2.

2 case: We sampled n = 5000 points (u, v) uniformly over the [0, 2π) × [0, 2π) square and
then mapped them to ℝ3 using the following transformation, which defines the surface 2 as

Notice that the resulting sample points are not uniformly distributed over 2. Therefore, the
usage of S1 and D1 instead of S and D is important if we want the eigenvectors to
approximate the eigenvector fields of the connection Laplacian over 2. We used ∊PCA =
0:2 and , and find that for the truncated vector diffusion distance, when t
= 10, the embedded dimension is 2628, when t = 100, the embedded dimension is 36, and
when t = 1000, the embedded dimension is 3. For the truncated diffusion distance, when t =
10, the embedded dimension is 130; when t = 100, the embedded dimension is 14; and when
t = 1000, the embedded dimension is 2. The results are shown in Figure 6.3.

One-dimensional interval case: We sampled n = 5000 equally spaced grid points from the

interval [−π, π] ⊂ ℝ1 and set ∊PCA = 0.01 and . For the truncated vector
diffusion distance, when t = 10, the embedded dimension is 120, when t = 100, the
embedded dimension is 15, and when t = 1000, the embedded dimension is 3. For the
truncated diffusion distance, when t = 10, the embedded dimension is 36, when t = 100, the
embedded dimension is 11, and when t = 1000, the embedded dimension is 3. The results are
shown in Figure 6.4.

Square case: We sampled n = 6561 = 812 equally spaced grid points from the square [0, 2π]
× [0, 2π] and fixed ∊PCA = 0:01 and . For the truncated vector diffusion
distance, when t = 10, the embedded dimension is 20;100 (we only calculate the first 200
eigenvalues); when t = 100, the embedded dimension is 1596; and when t = 1000, the
embedded dimension is 36. For the truncated diffusion distance, when t = 10, the embedded
dimension is 200 (we only calculate the first 200 eigenvalues); when t = 100, the embedded
dimension is 200; and when t = 1000, the embedded dimension is 28. The results are shown
in Figure 6.5.

7 Out-of-Sample Extension of Vector Fields
Let  so that  ⊂ ℳd where ℳ is embedded in ℝp by ι.
Suppose X is a smooth vector field that we observe only on and want to extend to  That
is, we observe the vectors ι*X(x1), ι*X(x2), …, ι*X(xn) ∈ ℝp and want to estimate ι*X(y1),
ι*X(y2), …, ι*X(ym). The set is assumed to be fixed, while the points in may arrive on
the fly and need to be processed in real time. We propose the following Nyström scheme for
extending X from to 

In the preprocessing step we use the points x1, x2; …, xn for local PCA, alignment, and
vector diffusion mapping as described in Sections 2 and 3. That is, using local PCA, we find
the p × d matrices Oi (i = 1, 2, …, n) such that the columns of Oi are an orthonormal basis
for a subspace that approximates the embedded tangent plane ι*Txiℳ; using alignment, we
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find the orthonormal d × d matrices Oij that approximate the parallel transport operator from
Txjℳ to Txiℳ; and using wij and Oij we construct the matrices S and D and compute (a
subset of) the eigenvectors v1, v2, …, vnd and eigenvalues λ1, λ2, …, λnd of D−1S.

We project the embedded vector field ι*X(xi) ∈ ℝp into the d-dimensional subspace spanned
by the columns of Oi and define Xi ∈ ℝd as

(7.1)

We represent the vector field X on 1D4B3 by the vector x of length nd, organized as n
vectors of length d, with

We use the orthonormal basis of eigenvector fields v1; v2, …, vnd to decompose x as

(7.2)

where al = xΤvl. This concludes the preprocessing computations.

Suppose y ∈ is a “new” out-of-sample point. First, we perform the local PCA step to find a
p × d matrix, denoted Oy whose columns form an orthonormal basis to a d-dimensional
subspace of ℝp that approximates the embedded tangent plane ι*Tyℳ. The local PCA step
uses only the neighbors of y among the points in (but not in  inside a ball of radius

 centered at y.

Next, we use the alignment process to compute the d × d orthonormal matrix Oy,i between xi
and y by setting

Notice that the eigenvector fields satisfy

We denote the extension of vl to the point y by ṽl(y) and define it as

(7.3)

To finish the extrapolation problem, we denote the extension of x to y by x̃(y) and define it
as

Singer and Wu Page 18

Commun Pure Appl Math. Author manuscript; available in PMC 2014 January 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(7.4)

where m(δ) = maxl|λl| > and > 0 is some fixed parameter to ensure the numerical stability of
the extension procedure (due to the division by λl in (7.3); 1/δ can be regarded as the
condition number of the extension procedure).

8 The Continuous Case: Heat Kernels
As discussed earlier, in the limit n → ∞ and ∊ ∞ 0 considered in (5.2), the normalized
graph Laplacian converges to the Laplace-Beltrami operator, which is the generator of the
heat kernel for functions (0-forms). Similarly, in the limit n → ∞ considered in (5.3), we get
the connection Laplacian operator, which is the generator of a heat kernel for vector fields
(or 1-forms). The connection Laplacian ▽2 is a self-adjoint, second-order elliptic operator
defined over the tangent bundle Tℳ. It is well-known [16] that the spectrum of ▽2 is
discrete inside ℝ−, and the only possible accumulation point is −∞. We will denote the

spectrum as , where 0 ≤ λ0 ≤ λ1 ≤ …. From classical elliptic theory (see, for
example, [16]), we know that et▽2

 has the kernel

where ▽2Xn = −λnXn. Also, the eigenvector fields Xn of ▽2 form an orthonormal basis of
L2(Tℳ). In the continuous setup, we define the vector diffusion distance between x; y ∈ ℳ

using . An explicit calculation gives

(8.1)

It is well-known that the heat kernel kt(x, y) is smooth in x and y and analytic in t [16], so for
t > 0 we can define a family of vector diffusion mappings Vt that map any x ∈ ℳ into the
Hilbert space ℓ2 by

(8.2)

which satisfies

(8.3)

The vector diffusion distance dVDM,t (x, y) between x ∈ M and y ∈ M is defined as

(8.4)

which is clearly a distance function over ℳ. In practice, due to the decay of e−(λn+λm)t only
pairs (n, m) for which λn + λm is not too large are needed to get a good approximation of this
vector diffusion distance. As in the discrete case, the dot products 〈Xn (x), Xm(x)〉 are
invariant to the choice of basis for the tangent space at x.
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We now study some properties of the vector diffusion map Vt (8.2). First, we claim that for
all t > 0, the vector diffusion mapping Vt is an embedding of the compact Riemannian
manifold ℳ into ℓ2.

THEOREM 8.1. Given a d-dimensional closed Riemannian manifold (ℳ, g) and an

orthonormal basis  composed of the eigenvector fields of the connection
Laplacian ▽2, then for any t > 0, the vector diffusion map Vt is a diffeomorphic embedding
of ℳ in ℓ2.

PROOF. We show that Vt: ℳ → ℓ2 is continuous in x by noting that

(8.5)

From the continuity of the kernel kt(x, y) it is clear that  as y → x.
Since ℳ is compact, it follows that Vt(ℳ) is compact in ℓ2. Finally, we show that Vt is one-
to-one. Fix x ≠ y and a smooth vector field X that satisfies 〈X(x),X(x)〉 ≠ 〈X(y), X(y)〉. Since

the eigenvector fields  form a basis for L2 (Tℳ), we have

where cn = ∫ℳ〈X,Xn〉dV. As a result,

Since 〈X(x), X(x)〉 ≠ 〈X(y), X(y)〉, there exist n, m ∈ ℕ such that

which shows that Vt (x) ≠ Vt (y); i.e., Vt is one-to-one. From the fact that the map Vt is
continuous and one-to-one from ℳ, which is compact, onto Vt (ℳ), we conclude that Vt is
an embedding.

Next, we demonstrate the asymptotic behavior of the vector diffusion distance dVDM,t(x, y)
and the diffusion distance dDM,t (x, y) when t is small and x is close to y. The following
theorem shows that in this asymptotic limit both the vector diffusion distance and the
diffusion distance behave like the geodesic distance.

THEOREM 8.2. Let (ℳ, g) be a smooth d-dimensional closed Riemannian manifold.
Suppose x, y ∈ ℳ so that x = expy(v), where v ∈ Ty ℳ. For any t > 0, when ∥v∥2 ≪ t ≪ 1
we have the following asymptotic expansion of the vector diffusion distance:
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Similarly, when ∥v∥2 ≪ t ≪ 1, we have the following asymptotic expansion of the diffusion
distance:

PROOF. Fixing y and a normal coordinate around y, we define j(x, y) = |det(dv expy)|, where
x = expy(v), v ∈ Txℳ. Suppose ∥v∥ is small enough so that x = expy(v) is away from the cut
locus of y. It is well-known that the heat kernel kt(x, y) for the connection Laplacian ▽2 over
the vector bundle ℰ possesses the following asymptotic expansion when x and y are close [5,
p. 84] or [11]:

(8.6)

, where ∥·∥l is the Cl norm,

(8.7)

N > d/2, and Φi is a smooth section of the vector bundle ℰ ⊗ ℰ over ℳ × ℳ. Moreover,
Φ0(x, y) = Px, y is the parallel transport from ℰy to ℰx. In the VDM setup, we take ℰ = Tℳ,
the tangent bundle of ℳ. Also, by [5, prop. 1.28], we have the following expansion:

(8.8)

Equations (8.7) and (8.8) lead to the following expansion under the assumption ∥v∥2 ≪ t:
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In particular, for ∥v∥ = 0 we have

Thus, for ∥v∥2 ≪ t ≪ 1, we have

(8.9)

By the same argument we can carry out the asymptotic expansion of the diffusion distance
dDM,t (x, y). Denote the eigenfunctions and eigenvalues of the Laplace-Beltrami operator Δ
by φn and µn. We can rewrite the diffusion distance as follows:

(8.10)

where k̃t is the heat kernel of the Laplace-Beltrami operator. Note that the Laplace- Beltrami
operator is equal to the connection Laplacian operator defined over the trivial line bundle
over ℳ. As a result, equation (8.7) also describes the asymptotic expansion of the heat
kernel for the Laplace-Beltrami operator as

Putting these facts together, we obtain

(8.11)

, when ∥v∥2 ≪ t ≪ 1.

9 Application of VDM to Cryo-Electron Microscopy
In addition to being a general framework for data analysis and manifold learning, VDM is
useful for performing robust multireference rotational alignment of objects, such as one-
dimensional periodic signals, two-dimensional images, and three-dimensional shapes. In this
section, we briefly describe the application of VDM to a particular multireference rotational
alignment problem of two-dimensional images that arise in the field of cryo-electron
microscopy (cryo-EM). A more comprehensive study of this problem can be found in [19,
37]. It can be regarded as a prototypical multireference alignment problem, and we expect
many other multireference alignment problems that arise in areas such as computer vision
and computer graphics to benefit from the proposed approach.

The goal in cryo-EM [14] is to determine three-dimensional macromolecular structures from
noisy projection images taken at unknown random orientations by an electron microscope,
i.e., a random computational tomography (CT). Determining three-dimensional
macromolecular structures for large biological molecules remains vitally important, as
witnessed, for example, by the 2003 Chemistry Nobel Prize, co-awarded to R. MacKinnon
for resolving the three-dimensional structure of the Shaker K+ channel protein, and by the
2009 Chemistry Nobel Prize, awarded to V. Ramakrishnan, T. Steitz, and A. Yonath for
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studies of the structure and function of the ribosome. The standard procedure for structure
determination of large molecules is X-ray crystallography. The challenge in this method is
often more in the crystallization itself than in the interpretation of the X-ray results, since
many large proteins have so far withstood all attempts to crystallize them.

In cryo-EM, an alternative to X-ray crystallography, the sample of macromolecules is
rapidly frozen in an ice layer so thin that their tomographic projections are typically disjoint;
this seems the most promising alternative for large molecules that defy crystallization. The
cryo-EM imaging process produces a large collection of tomographic projections of the
same molecule, corresponding to different and unknown projection orientations. The goal is
to reconstruct the three-dimensional structure of the molecule from such unlabeled
projection images, where data sets typically range from 104 to 105 projection images whose
size is roughly 100 × 100 pixels. The intensity of the pixels in a given projection image is
proportional to the line integrals of the electric potential induced by the molecule along the
path of the imaging electrons (see Figure 9.1). The highly intense electron beam destroys the
frozen molecule, and it is therefore impractical to take projection images of the same
molecule at known different directions as in the case of classical CT. In other words, a
single molecule can be imaged only once, rendering an extremely low signal-to-noise ratio
(SNR) for the images (see Figure 9.2 for a sample of real microscope images), mostly due to
shot noise induced by the maximal allowed electron dose (other sources of noise include the
varying width of the ice layer and partial knowledge of the contrast function of the
microscope). In the basic homogeneity setting considered hereafter, all imaged molecules
are assumed to have the exact same structure; they differ only by their spatial rotation. Every
image is a projection of the same molecule but at an unknown random three-dimensional
rotation, and the cryo-EM problem is to find the three-dimensional structure of the molecule
from a collection of noisy projection images.

The rotation group SO(3) is the group of all orientation-preserving orthogonal
transformations about the origin of the three-dimensional euclidean space ℝ3 under the
operation of composition. Any three-dimensional rotation can be expressed using a 3 × 3
orthogonal matrix

satisfying RRΤ = RΤR = I3×3 and det R = 1. The column vectors R1, R2, R3 of R form an
orthonormal basis to ℝ3. To each projection image P there corresponds a 3 × 3 unknown
rotation matrix R describing its orientation (see Figure 9.1). Excluding the contribution of
noise, the intensity P(x, y) of the pixel located at (x, y) in the image plane corresponds to the
line integral of the electric potential induced by the molecule along the path of the imaging
electrons, that is,

(9.1)

where φ : ℝ3 ↦ ℝ is the electric potential of the molecule in some fixed “laboratory”
coordinate system. The projection operator (9.1) is also known as the X-ray transform [29].

We therefore identify the third column R3 of R as the imaging direction, also known as the
viewing angle of the molecule. The first two columns R1 and R2 form an orthonormal basis
for the plane in ℝ3 perpendicular to the viewing angle R3. All clean projection images of the
molecule that share the same viewing angle look the same up to some in-plane rotation. That

Singer and Wu Page 23

Commun Pure Appl Math. Author manuscript; available in PMC 2014 January 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



is, if Ri and Rj are two rotations with the same viewing angle 
are two orthonormal bases for the same plane. On the other hand, two rotations with

opposite viewing angles  give rise to two projection images that are the same after
reflection (mirroring) and some in-plane rotation.

As projection images in cryo-EM have extremely low SNR, a crucial initial step in all
reconstruction methods is “class averaging” [14, 41]. Class averaging is the grouping of a
large data set of n noisy raw projection images P1, P2; …, Pn into clusters such that images
within a single cluster have similar viewing angles (it is possible to artificially double the
number of projection images by including all mirrored images). Averaging rotationally
aligned noisy images within each cluster results in “class averages”; these are images that
enjoy a higher SNR and are used in later cryo-EM procedures such as the angular
reconstitution procedure [40] that requires better-quality images. Finding consistent class
averages is challenging due to the high level of noise in the raw images as well as the large
size of the image data set. A sketch of the class-averaging procedure is shown in Figure 9.3.

Penczek, Zhu, and Frank [31] introduced the rotationally invariant K-means clustering
procedure to identify images that have similar viewing angles. Their rotationally invariant
distance dRID(i, j) between image Pi and image Pj is defined as the euclidean distance
between the images when they are optimally aligned with respect to in-plane rotations
(assuming the images are centered)

(9.2)

, where R(θ) is the rotation operator of an image by an angle θ in the counterclockwise
direction. Prior to computing the invariant distances of (9.2), a common practice is to center

all images by correlating them with their total average , which is approximately
radial (i.e., has little angular variation) due to the randomness in the rotation. The resulting
centers usually miss the true centers by only a few pixels (as can be validated in simulations
during the refinement procedure). Therefore, like [31], we also choose to focus on the more
challenging problem of rotational alignment by assuming that the images are properly
centered, while the problem of translational alignment can be solved later by solving an
overdetermined linear system.

It is worth noting that the specific choice of metric to measure proximity between images
can make a big difference in class averaging. The cross-correlation and euclidean distance
(9.2) are by no means optimal measures of proximity. In practice, it is common to denoise
the images prior to computing their pairwise distances. Although the discussion that follows
is independent of the particular choice of filter or distance metric, we emphasize that
filtering can have a dramatic effect on finding meaningful class averages.

The invariant distance between noisy images that share the same viewing angle (with
perhaps a different in-plane rotation) is expected to be small. Ideally, all neighboring images
of some reference image Pi in a small invariant distance ball centered at Pi should have
similar viewing angles, and averaging such neighboring images (after proper rotational
alignment) would amplify the signal and diminish the noise.

Unfortunately, due to the low SNR, it often happens that two images of completely different
viewing angles have a small invariant distance. This can happen when the realizations of the
noise in the two images match well for some random in-plane rotational angle, leading to
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spurious neighbor identification. Therefore, averaging the nearest-neighbor images can
sometimes yield a poor estimate of the true signal in the reference image.

The histograms of Figure 9.5 demonstrate the ability of small rotationally invariant distances
to identify images with similar viewing directions. For each image we use the rotationally
invariant distances to find its 40 nearest neighbors among the entire set of n = 40;000
images. In our simulation we know the original viewing directions, so for each image we
compute the angles (in degrees) between the viewing direction of the image and the viewing
directions of its 40 neighbors. Small angles indicate successful identification of “true”
neighbors that belong to a small spherical cap, while large angles correspond to outliers. We

see that for  there are no outliers, and all the viewing directions of the neighbors
belong to a spherical cap whose opening angle is about 8°. However, for lower values of the
SNR, there are outliers, indicated by arbitrarily large angles (all the way to 180°).

Clustering algorithms, such as the K-means algorithm, perform much better than naive
nearest-neighbors averaging, because they take into account all pairwise distances, not just
distances to the reference image. Such clustering procedures are based on the philosophy
that images that share a similar viewing angle with the reference image are expected to have
a small invariant distance not only to the reference image but also to all other images with
similar viewing angles. This observation was utilized in the rotationally invariant K-means
clustering algorithm [31]. Still, due to noise, the rotationally invariant K-means clustering
algorithm may suffer from misidentifications at the low SNR values present in experimental
data.

VDM is a natural algorithmic framework for the class-averaging problem, as it can further
improve the detection of neighboring images even at lower SNR values. The rotationally
invariant distance neglects an important piece of information, namely, the optimal angle that
realizes the best rotational alignment in (9.2):

(9.3)

In VDM, we use the optimal in-plane rotation angles θij to define the orthogonal
transformations Oij and to construct the matrix S in (3.1). The eigenvectors and eigenvalues
of D−1S (other normalizations of S are also possible) are then used to define the vector
diffusion distances between images.

This VDM based classification method has proven to be quite powerful in practice. We

applied it to a set of n = 40;000 noisy images with . For every image we found the
40 nearest neighbors using the vector diffusion metric. In the simulation we knew the
viewing directions of the images, and we computed for each pair of neighbors the angle (in
degrees) between their viewing directions. The histogram of these angles is shown in Figure
9.6 (left panel). About 92% of the identified images belong to a small spherical cap of
opening angle 20° whereas this percentage is only about 65% when neighbors are identified

by the rotationally invariant distances (right panel). We remark that for , the
percentage of correctly identified images by the VDM method goes up to about 98%.

The main advantage of the algorithm presented here is that it successfully identifies images
with similar viewing angles even in the presence of a large number of spurious neighbors,
that is, even when many pairs of images with viewing angles that are far apart have
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relatively small rotationally invariant distances. In other words, the VDM-based algorithm is
shown to be robust to outliers.

10 Summary and Discussion
This paper introduced vector diffusion maps, an algorithmic and mathematical framework
for analyzing data sets where scalar affinities between data points are accompanied by
orthogonal transformations. The consistency among the orthogonal transformations along
different paths that connect any fixed pair of data points is used to define an affinity between
them. We showed that this affinity is equivalent to an inner product, giving rise to the
embedding of the data points in a Hilbert space and to the definition of distances between
data points, to which we referred as vector diffusion distances.

For data sets of images, the orthogonal transformations and the scalar affinities are naturally
obtained via the procedure of optimal registration. The registration process seeks to find the
optimal alignment of two images over some class of transformations (also known as
deformations), such as rotations, reflections, translations, and dilations. For the purpose of
vector diffusion mapping, we extract from the optimal deformation only the corresponding
orthogonal transformation (rotation and reflection). We demonstrated the usefulness of the
vector diffusion map framework in the organization of noisy cryo-electron microscopy
images, an important step towards resolving three-dimensional structures of
macromolecules. Optimal registration is often used in various mainstream problems in
computer vision and computer graphics, for example, in optimal matching of three-
dimensional shapes. We therefore expect the vector diffusion map framework to become a
useful tool in such applications.

In the case of manifold learning, where the data set is a collection of points in a high-
dimensional euclidean space, but with a low-dimensional Riemannian manifold structure,
we detailed the construction of the orthogonal transformations via the optimal alignment of
the orthonormal bases of the tangent spaces. These bases are found using the classical
procedure of PCA. Under certain mild conditions about the sampling process of the
manifold, we proved that the orthogonal transformation obtained by the alignment procedure
approximates the parallel transport operator between the tangent spaces. The proof required
careful analysis of the local PCA step, which we believe is interesting in its own right.
Furthermore, we proved that if the manifold is sampled uniformly, then the matrix that lies
at the heart of the vector diffusion map framework approximates the connection Laplacian
operator. Following spectral graph theory terminology, we call that matrix the connection
Laplacian of the graph. Using different normalizations of the matrix we proved convergence
to the connection Laplacian operator also for the case of nonuniform sampling. We showed
that the vector diffusion mapping is an embedding and proved its relation with the geodesic
distance using the asymptotic expansion of the heat kernel for vector fields. These results
provide the mathematical foundation for the algorithmic framework that underlies the vector
diffusion mapping.

We expect many possible extensions and generalizations of the vector diffusion mapping
framework. We conclude by mentioning a few of them.

• Topology of the data. In [36] we showed how the vector diffusion mapping can
determine if a manifold is orientable or nonorientable, and in the latter case to
embed its double covering in a euclidean space. To that end we used the
information in the determinant of the optimal orthogonal transformation between
bases of nearby tangent spaces. In other words, we used just the optimal reflection
between two orthonormal bases. This simple example shows that vector diffusion
mapping can be used to extract topological information from the point cloud. We
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expect more topological information can be extracted using appropriate
modifications of the vector diffusion mapping.

• Hodge and higher-order Laplacians. Using tensor products of the optimal
orthogonal transformations it is possible to construct higher-order connection
Laplacians that act on p-forms (p ≥ 1). The index theorem [16] relates topological
structure with geometrical structure. For example, the so-called Betti numbers are
related to the multiplicities of the harmonic p-forms of the Hodge Laplacian. For
the extraction of topological information it would therefore be useful to modify our
construction in order to approximate the Hodge Laplacian instead of the connection
Laplacian.

• Multiscale, sparse, and robust PCA. In the manifold learning case, an important
step of our algorithm is local PCA for estimating the bases for tangent spaces at
different data points. In the description of the algorithm, a single-scale parameter
∊PCA is used for all data points. It is conceivable that a better estimation can be
obtained by choosing a different, location-dependent scale parameter. A better
estimation of the tangent space Txiℳ may be obtained by using a location-
dependent scale parameter ∊PCA,i due to several reasons: nonuniform sampling of
the manifold, varying curvature of the manifold, and global effects such as different
pieces of the manifold that are almost touching at some points (i.e., varying the
“condition number” of the manifold). Choosing the correct scale was recently
considered in [28], where a multiscale approach was taken to resolve the optimal
scale. We recommend the incorporation of such multiscale PCA approaches into
the vector diffusion mapping framework. Another difficulty that we may face when
dealing with real-life data sets is that the underlying assumption about the data
points being located exactly on a low-dimensional manifold does not necessarily
hold. In practice, the data points are expected to reside off the manifold, either due
to measurement noise or due to the imperfection of the low-dimensional manifold
model assumption. It is therefore necessary to estimate the tangent spaces in the
presence of noise. Noise is a limiting factor for successful estimation of the tangent
space, especially when the data set is embedded in a high-dimensional space and
noise affects all coordinates [23]. We expect recent methods for robust PCA [7]
and sparse PCA [6, 24] to improve the estimation of the tangent spaces and as a
result to become useful in the vector diffusion map framework.

• Random matrix theory and noise sensitivity. The matrix S that lies at the heart of
the vector diffusion map is a block matrix whose blocks are either d × d orthogonal
matrices Oij or the zero blocks. We anticipate that for some applications the
measurement of Oij would be imprecise and noisy. In such cases, the matrix S can
be viewed as a random matrix, and we expect tools from random matrix theory to
be useful in analyzing the noise sensitivity of its eigenvectors and eigenvalues. The
noise model may also allow for outliers, for example, orthogonal matrices that are
uniformly distributed over the orthogonal group O(d) (according to the Haar
measure). Notice that the expected value of such random orthogonal matrices is 0,
which leads to robustness of the eigenvectors and eigenvalues even in the presence
of a large number of outliers (see, for example, the random matrix theory analysis
in [35]).

• Compact and noncompact groups and their matrix representation. As mentioned
earlier, the vector diffusion mapping is a natural framework to organize data sets
for which the affinities and transformations are obtained from an optimal alignment
process over some class of transformations (deformations). In this paper we
focused on utilizing orthogonal transformations. At this point the reader has
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probably asked herself the following question: Is the method limited to orthogonal
transformations, or is it possible to utilize other groups of transformations such as
translations, dilations, and more? We note that the orthogonal group O(d) is a
compact group that has a matrix representation and remark that the vector diffusion
mapping framework can be extended to such groups of transformations without
much difficulty. However, the extension to noncompact groups, such as the
euclidean group of rigid transformation, the general linear group of invertible
matrices, and the special linear group is less obvious. Such groups arise naturally in
various applications, rendering the importance of extending the vector diffusion
mapping to the case of noncompact groups.
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Appendix A

Some Differential Geometry Background
The purpose of this appendix is to provide the required mathematical background for readers
who are not familiar with concepts such as the parallel transport operator, connection, and
the connection Laplacian. We illustrate these concepts by considering a surface ℳ
embedded in ℝ3.

Given a function f (x) : ℝ3 → ℝ, its gradient vector field is given by

Through the gradient, we can find the rate of change of f at x ∈ ℝ3 in a given unit vector v ∈
ℝ3, using the directional derivative:

Define ▽vf(x) := ▽f(x)(v).

Let X be a vector field on ℝ3,

It is natural to extend the derivative notion to a given vector field X at x ∈ ℝ3 by mimicking
the derivative definition for functions in the following way:
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(A.1)

where v ∈ ℝ3. Following the same notation for the directional derivative of a function, we
denote this limit by ▽vX(x). This quantity tells us that at x, following the direction v, we
compare the vector field at two points x and x + tv, and see how the vector field changes.
While this definition looks good at first sight, we now explain that it has certain
shortcomings that need to be fixed in order to generalize it to the case of a surface embedded
in ℝ3.

Consider a two-dimensional smooth surface ℳ embedded in ℝ3 by ι. Fix a point x ∈ ℳ
and a smooth curve γ(t) : (−∊, ∊); → ℳ ⊂ ℝ3 where ∊ ≪ 1 and γ(0) = x. We call γʹ(0) ∈
ℝ3 a tangent vector to ℳ at x. The two-dimensional subspace in ℝ3 spanned by the
collection of all tangent vectors to ℳ at x is defined to be the tangent plane at x and denoted
by Txℳ;7 see Figure A.1 (left panel). Having defined the tangent plane at each point x ∈
ℳ, we define a vector field X over ℳ to be a differentiable map that maps x to a tangent
vector in Txℳ.8

We now generalize the definition of the derivative of a vector field over ℝ3 (A.1) to define
the derivative of a vector field over ℳ. The first difficulty we face is how to make sense of
“X(x +tv),” since x + tv does not belong to ℳ. This difficulty can be tackled easily by
changing the definition (A.1) a bit by considering the curve γ: (−∊, ∊) → ℳ ⊂ ℝ3 so that
γ(0) = x and γʹ(0) = v. Thus, (A.1) becomes

(A.2)

where v ∈ ℝ3. In ℳ, the existence of the curve γ: (−∊, ∊) → ℝ3 and γ(0) = x and γʹ(0) = v is
guaranteed by the classical ordinary differential equation theory. However, (A.2) still cannot
be generalized to ℳ directly even though X(γ(t)) is well-defined. The difficulty we face
here is how to compare X(γ(t)) and X(x), that is, how to make sense of the subtraction X(γ(t))
− X(γ(0)). It is not obvious since a priori we do not know how Tγ(t)ℳ and Tγ(0)ℳ are
related. The way we proceed is by defining an important notion in differential geometry
called “parallel transport,” which plays an essential role in our VDM framework.

Fix a point x ∈ ℳ and a vector field X on ℳ, and consider a parametrized curve γ: (−∊, ∊)
→ ℳ so that γ(0) = x. Define a vector-valued function V : (−∊, ∊) → ℝ3 by restricting X to
γ, that is, V(t) = X(γ(t)). The derivative of V is well-defined as usual:

where h ∈ (−∊; ∊). The covariant derivative  is defined as the projection of 

onto Tγ(h)ℳ. Then, using the definition of , we consider the following equation:

7Here we abuse notation slightly. Usually Txℳ defined here is understood as the embedded tangent plane by the embedding ι of the
tangent plane at x. Please see [32] for a rigorous definition of the tangent plane.
8See [32] for the exact notion of differentiability. Here again we abuse notation slightly. Usually X defined here is understood as the
embedded vector field by the embedding ι of the vector field X. For the rigorous definition of a vector field, please see [32].
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where w ∈ Tγ(0)ℳ. The solution W(t) exists by the classical ordinary differential equation
theory. The solution W(t) along γ(t) is called the parallel vector field along the curve γ(t),
and we also call W(t) the parallel transport of w along the curve γ(t) and denote W(t) =
Pγ(t),γ (0)w.

We come back to address the initial problem: how to define the “derivative” of a given
vector field over a surface ℳ. We define the covariant derivative of a given vector field X
over ℳ as follows:

(A.3)

where γ: (−∊, ∊) → ℳ with γ(0) = x ∈ ℳ, γʹ (0) = v ∈ Tγ(0)ℳ. This definition says that if
we want to analyze how a given vector field at x ∈ ℳ changes along the direction v, we
choose a curve γ so that γ(0) = x and γʹ(0) = v, and then “transport” the vector field value at
point γ(t) to γ(0) = x so that the comparison of the two tangent planes makes sense. The key
point of the whole story is that without applying parallel transport to transport the vector at
point γ(t) to Tγ(0)ℳ, then the subtraction X(γ(t)) – X(γ(0)) ∈ ℝ3 in general does not live on
Txℳ, which distorts the notion of derivative. For comparison, let us reconsider definition
(A.1). Since at each point x ∈ ℝ3, the tangent plane at x is Txℝ

3 = ℝ3, the subtraction X(x +
tv) – X(x) always makes sense. To be more precise, the true meaning of X(x+tv) is
Pγ(0),γ(t)X(γ(t)), where Pγ(0),γ(t) = id, and γ(t) = x + tv.

With the above definition, when X and Y are two vector fields on ℳ, we define ▽XY to be a
new vector field on ℳ so that

Note that X(x) ∈ Txℳ. We call ▽ a connection on ℳ. (The notion of connection can be
quite general. For our purposes, this definition is sufficient.)

Once we know how to differentiate a vector field over ℳ, it is natural to consider the
second-order differentiation of a vector field. The second-order differentiation of a vector
field is a natural notion in ℝ3. For example, we can define a second-order differentiation of
a vector field X over ℝ3 as follows:

(A.4)

where x, y, z are standard unit vectors corresponding to the three axes. This definition can be
generalized to a vector field over ℳ as follows:

(A.5)

where X is a vector field over ℳ, x ∈ ℳ, and E1, E2 are two vector fields on ℳ that satisfy
▽EiEj = 0 for i, j = 1, 2. The condition ▽EiEj = 0 (for i, j = 1, 2) is needed for technical
reasons. (Please see [32] for details.) Note that in the ℝ3 case (A.4), if we set E1 = x, E2 = y,
and E3 = z, then ▽EiEj = 0 for i, j = 1, 2, 3. The operator ▽2 is called the connection
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Laplacian operator, which lies at the heart of the VDM framework. The notion of an
eigenvector field over ℳ is defined to be the solution of the following equation:

for some λ ∈ ℝ. The existence and other properties of the eigenvector fields can be found in
[16]. Finally, we comment that all the above definitions can be extended to the general
manifold setup without much difficulty, where, roughly speaking, a “manifold” is the
higher-dimensional generalization of a surface. (We will not provide details in the manifold
setting, and refer readers to standard differential geometry textbooks, such as [32].)

Appendix B

Proofs of Theorems 5.3, 5.5, and 5.6
Throughout this appendix, we adapt Assumption 5.1 and Definition 5.2 (see also Table 1.1).
We divide the proof of Theorem 5.3 into four theorems, each of which has its own interest.
The first theorem, Theorem B.1, states that the columns of the matrix Oi that are found by
local PCA (see (2.4)) form an orthonormal basis to a d-dimensional subspace of ℝp that
approximates the embedded tangent plane ι*Txiℳ. The proven order of approximation is
crucial for proving Theorem 5.3. The proof of Theorem B.1 involves geometry and
probability theory.

THEOREM B.1. In addition to Assumption 5.1, suppose KPCA ∈ C2([0, 1]). If ∊PCA =

O(n−2/(d+2)) and  then, with high probability (w.h.p.), the columns 
of the p × d matrix Oi, which is determined by local PCA, form an orthonormal basis to a d-

dimensional subspace of ℝp that deviates from  in the following sense:

(B.1)

where Θi is a p × d matrix whose columns form an orthonormal basis to ι*Txiℳ. Let the
minimizer in (B.1) be

(B.2)

and denote by Qi the p × d matrix

(B.3)

and el(xi) the lth column of Qi. The columns of Qi form an orthonormal basis to ι*Txiℳ, and

(B.4)

If  then, w.h.p.

Better convergence near the boundary is obtained for ∊PCA = O(n−2/(d+1)), which gives
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for , and

for .

Theorem B.1 may seem a bit counterintuitive at first glance. When considering data points
in a ball of radius , it is expected that the order of approximation would be O(∊PCA),

while equation (B.1) indicates that the order of approximation is higher .
The true order of approximation for the tangent space, as observed in (B.4), is still O(∊PCA).
The improvement observed in (B.1) is of relevance to Theorem B.2, and we relate it to the
probabilistic nature of the PCA procedure, more specifically, to a large-deviation result for
the error in the law of large numbers for the covariance matrix that underlies PCA. Since the
convergence of PCA is slower near the boundary, then for manifolds with boundary we need
a smaller ∊PCA. Specifically, for manifolds without boundary we choose ∊PCA =
O(n−2/(d+2)), and for manifolds with boundary we choose ∊PCA = O(n−2/(d+1)). We remark
that the first choice also works for manifolds with boundary at the expense of a slower
convergence rate.

The second theorem, Theorem B.2, states that the d × d orthonormal matrix Oij which is the
output of the alignment procedure (2.5), approximates the parallel transport operator Pxi,xj

from xj to xi along the geodesic connecting them. Assuming that  (here, ∊

is different than ∊PCA), the order of this approximation is  whenever xi, xj are
away from the boundary. This result is crucial for proving Theorem 5.3. The proof of
Theorem B.2 uses Theorem B.1 and is purely geometric.

THEOREM B.2. Consider  satisfying that the geodesic distance between

xi and xj is . For ∊PCA = O(n−2/(d+2)) w.h.p., Oij approximates Pxi, xj in the following
sense:

(B.6)

where  is an orthonormal set determined

by local PCA. For 

(B.7)

For∊PCA = O(n−2/(d+1)), the orders of ∊PCA in the error terms change according to Theorem
B.1.

The third theorem, Theorem B.3, states that the n × n block matrix  is a discrete
approximation of an integral operator over smooth sections of the tangent bundle. The
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integral operator involves the parallel transport operator. The proof of Theorem B.3 mainly
uses probability theory.

THEOREM B.3. In addition to Assumption 5.1 suppose ∊PCA = O(n−2/(d+2)). For

 we have w.h.p.

(B.

8)

where T∊, α is defined in (5.2),  is the
orthonormal set determined by local PCA, and Oij is the optimal orthogonal transformation
determined by the alignment procedure.

For  we have w.h.p.

(B.

9)

For ∊PCA = O(n−2/(d+1)) the orders of ∊PCA in the error terms change according to Theorem
B.1.

The fourth theorem, Theorem B.4, states that the operator T∊, α can be expanded in powers
of , where the leading-order term is the identity operator, the second-order term is the
connection Laplacian operator plus some possible potential terms, and the first- and third-
order terms vanish for vector fields that are sufficiently smooth. For α = 1, the potential
terms vanish, and as a result, the second-order term is the connection Laplacian. The proof is
based on geometry.

THEOREM B.4. For  we have

(B.10)

where T∊, α is defined in (5.2).

COROLLARY B.5. Under the same conditions and notation as in Theorem B.4 if X ∈
C3(Tℳ), then for all  we have

(B.11)

Putting Theorems B.1, B.3, and B.4 together, we now prove Theorem 5.3.

PROOF OF THEOREM 5.3. Suppose . By Theorem B.3, w.h.p.

Singer and Wu Page 33

Commun Pure Appl Math. Author manuscript; available in PMC 2014 January 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where ∊PCA = O(n−2/(d+2)), and Theorem B.1 was used to replace ul(xi) by el(xi). Using
Theorem B.4 for the right-hand side of (B), we get

For ∊ = O(n−2/(d+4)), upon dividing by ∊, the three error terms are

Clearly the three error terms vanish as n → ∞. Specifically, the dominant error is

O(n−1/(d+4)), which is the same as . As a result, in the limit n → ∞, almost surely,

as required.

B.1 Preliminary Lemmas
For the proofs of Theorems B.1 through B.4, we need the following lemmas: LEMMA B.6.
In polar coordinates around x ∈ ℳ, the Riemannian measure is given by

, where θ ∈ Txℳ, ∥θ∥ = 1, t > 0 and

PROOF. Please see [32].
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The following lemma is needed in Theorems B.1 and B.2.

LEMMA B.7. Fix x ∈ ℳ and denote by expx the exponential map at x and by  the
exponential map of ℝp at ι(x). With the identification of Tι(x) ℝp with ℝp, for v ∈ Txℳ with
∥v∥ ≪ 1 we have

(B.12)

Furthermore, for w ∈ Txℳ ≅ ℝd, we have

(B.

13)

PROOF. Define , that is,

(B.14)

Since φ can be viewed as a function from Txℳ ≅ ℝd to Tι,(x)ℝ
p≅ ℝp we can Taylor-expand

it to get

where the equality holds since φ(0) = 0 and  for all w ∈ Tι(x)ℝ
p if we

identify Tι(x)ℝ
p with ℝp. To conclude (B.12), we claim that

which comes from the chain rule and the fact that

(B.15)

Indeed, we have that d  from the definition of the
exponential map, where  is the pullback tangent bundle, and

where v ∈ Txℳ, v(t) = tv ∈ Txℳ, and vʹ(t) = v ∈ TtvTxℳ. The claim (B.15) for k = 1
follows when t = 0. The result for k ≥ 2 follows from a similar argument. Hence

which gives us (B.12) since ▽dι =Π and ▽2dι = ▽Π.
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Next we show (B.13). When w ∈ TvTxℳ, we view d[ι○expx].(w) as a function from Txℳ≅
ℝd to ℝp so that when ∥v∥ ≪ 1, Taylor expansion gives us

(B.

16)

here d and ▽ are understood as the ordinary differentiation over ℝd. To simplify the
calculation of ▽(d[ι ○ expx].(w))|0 (v) and ▽2(d[ι ○ expx].(w))|0 (v,v), we denote

and

where u, v, w ∈ ℝd. By (B.12), when ∥v∥ is small enough, we have

where R(v) is the remainder term in the Taylor expansion:

Thus

(B.17)

since

Similarly, from (B.17), when ∥u∥ is small enough we have

(B.

18)

and

(B.19)

As a result, from (B.17), (B.18), and (B.19) we have that
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Plugging them into (B.16) we get (B.13) as required.

LEMMA B.8. Suppose x, y ∈ ℳ such that y = expx(tθ)where θ ∈ Txℳ and ∥θ∥ = 1. If t ≪
1, then h = ∥ι(x) – ι(y)∥ ≪ 1 satisfies

(B.20)

PROOF. Please see [9] or apply (B.12) directly.

LEMMA B.9. Fixx ∈ ℳ and y = expx(tθ)where θ ∈ Txℳ and ∥θ∥ = 1. Let  be the
normal coordinate on a neighborhood U of x; then for a sufficiently small t we have

(B.

21)

for all l = 1, 2, …, d.

PROOF. Choose an open subset U ⊂ ℳ small enough and find an open neighborhood B of
0 ∈ Txℳ so that expx : B → U is diffeomorphic. It is well-known that

where Jl(t) is the Jacobi field with Jl(0) = 0 and ▽tJl (0) = ∂l(x). By applying Taylor’s
expansion in a neighborhood of t = 0, we have

Since , the following relationship holds:

(B.

22)

Thus we obtain

(B.23)

On the other hand, from (B.13) in Lemma B.7 we have

(B.

24)
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Putting (B.23) and (B.24) together, it follows that, for l = 1, 2, … d,

(B.25)

B.2 Proof of Theorem B.1

Fix . Denote by  the standard orthonormal basis of ℝpthat is, vk has 1
in the kth entry and 0 elsewhere. We can properly translate and rotate the embedding ι so
that ι(xi) = 0 and the first d components {v1, v2; …, vd} ⊂ ℝp form the orthonormal basis of

ι*Txiℳ, and we find a normal coordinate  around xi so that ι*∂k(xi) = vk. Instead of
directly analyzing the matrix Bi that appears in the local PCA procedure given in (2.3), we

analyze the covariance matrix , whose eigenvectors coincide with the left singular
vectors of Bi. Throughout this proof, we let K = KPCA to simply the notation. We rewrite Ξi
as

(B.26)

where

(B.27)

and

(B.28)

Let  denote the geodesic ball of radius  around xi. We apply the same
variance error analysis as in [34, sec. 3] to approximate Ξi. Since the points xi are
independent identically distributed (i.i.d.), Fj, j ≠ i , are also i.i.d.; by the law of large
numbers one expects

(B.29)

Singer and Wu Page 38

Commun Pure Appl Math. Author manuscript; available in PMC 2014 January 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where F = F1,

(B.30)

and

(B.31)

In order to evaluate the first moment F (k, l) of (B.31), we note that for y = expxi v, where v
∈ Txiℳ, by (B.12) in Lemma B.7 we have

(B.32)

By substituting (B.32) into (B.31), applying Taylor’s expansion, and combining Lemma B.8
and Lemma B.6, we have

where the last equality holds since integrals involving odd powers of θ must vanish due to
the symmetry of the sphere d−1. Note that 〈ι*θ, vk〉 = 0 when k = d + 1, d + 2, … p.
Therefore,

(B.33)

where  is a positive constant. Similar
considerations give the second moment of F(k, l) as

(B.34)

Hence, the variance of F(k, l) becomes
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(B.35)

We now move on to establish a large-deviation bound on the estimation of

 by its mean Fj(k, l). For that purpose, we measure the deviation from the
mean value by α and define its probability by

(B.36)

To establish an upper bound for the probability pk,l(n, α), we use Bernstein’s inequality; see,
e.g., [22]. Define

Clearly Yj (k, l) are zero mean i.i.d. random variables. From the definition of Fj (k, l) (see (B.
27) and (B.28)) and from the calculation of its first moment (B.33), it follows that Yj (k, l)
are bounded random variables. More specifically,

(B.37)

.

Consider first the case k, l = 1, 2, …, d, for which Bernstein’s inequality gives

(B.

38)

From (B.38) it follows that for

and

(B.39)

the probability pk, l(n, α) is exponentially small.

Similarly, for k, l = d + 1, d + 2, …, p, we have
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, which means that for

and (B.39), the probability pk, l(n, α) is exponentially small.

Finally, for k = d+1, d+2, …, p, l = 1, 2, …, d or l = d+1, d+2; …, p, and k = 1, 2, …, d, we
have

, which means that for

and (B.39), the probability pk,l(n, α) is exponentially small. The condition (B.39) is quite
intuitive as it is equivalent to n∊PCA

d/2 ≫ 1, which says that the expected number of points

inside  should be large.

As a result, when (B.39) holds, w.h.p., the covariance matrix Ξi is given by

(B.40)

(B.41)

(B.42)

where Id×d is the identity matrix of size d×d, and 0m×mʹ is the zero matrix of size m × mʹ.
The error term in (B.41) is the bias term due to the curvature of the manifold, while the error
term in (B.42) is the variance term due to finite sampling (i.e., finite n). In particular, under
the condition in the statement of the theorem for the sampling rate, namely, ∊PCA =
O(n−2/(d+2)), we have w.h.p.
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(B.43)

Note that by definition Ξi is symmetric, so we rewrite (B.43) as

(B.44)

where I is the d × d identity matrix, A is a d × d symmetric matrix, C is a d × (p – d) matrix,
and B is a (p – d) × (p – d) symmetric matrix. All entries of A, B, and C are O(1).

Denote by uk and λk, k = 1, 2, …, p, the eigenvectors and eigenvalues of Ξi, where the
eigenvectors are orthonormal and the eigenvalues are listed in decreasing order. Using
regular perturbation theory, we find that λk = D∊PCA

d/2+1 (1 + O (∊PCA
1/2)) (for k = 1, 2, …,

d), and that the expansion of the first d eigenvectors  is given by

(B.45)

where  are orthonormal eigenvectors of A satisfying . Indeed, a direct
calculation gives us

(B.46)

where v3/2, v2 ∈ ℝd and z1, z3/2 ∈ ℝp–d. On the other hand,

(B.

47)

where γ2 ∈ R. Matching orders of ∊PCA between (B.46) and (B.47), we conclude that

(B.

48)

Note that the matrix  appearing in (B.48) is singular and its null space is spanned

by the vector wk so the solvability condition is . We mention that A is a
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generic symmetric matrix generated due to random finite sampling, so almost surely the

eigenvalue  is simple.

Denote by Oi the p × d matrix whose kth column is the vector uk. We measure the deviation
of the d-dimensional subspace of ℝp spanned by uk, k = 1, 2, …, d, from ιTxiM by

(B.49)

where Θi is a p×d matrix whose kth column is vk (recall that vk is the kth standard unit vector
in ℝp). Let Ô be the d × d orthonormal matrix

Then,

(B.50)

which completes the proof for points away from the boundary.

Next, we consider . The proof is almost the same as the above, so we just
point out the main differences without giving the full details. The notations Ξi, Fj (k, l),
pk,l(n, α), and Yj (k, l) refer to the same quantities. Here the expectation of Fj (k, l) is

(B.

51)

Due to the asymmetry of the integration domain  when xi is near
the boundary, we do not expect Fj (k, l) to be the same as (B.33) and (B.34), since integrals
involving odd powers of θ do not vanish. In particular, when l = d + 1, …, p, k = 1, 2, …, d
or k = d + 1, d + 2, …, p, l = 1, 2, …, d, F(k, l) becomes

which is O(∊PCA
d/2+3/2). Note that for  the bias term in the expansion of the

covariance matrix differs from (B.41) when l = d + 1, d = 2, …, p, k = 1, 2, …, d or k = d +1,
d +2, …, p, l = 1, 2, …, d. Similar calculations show that

(B.52)
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(B.53)

(B.54)

Similarly, Yj (k, l) are also bounded random variables satisfying

(B.55)

Consider first the case k, l = 1, 2, …, d, for which Bernstein’s inequality gives

(B.56)

From (B.56) it follows that w.h.p.

provided (B.39). Similarly, for k, l = d + 1, d + 2, …, p, we have

which means that w.h.p.

provided (B.39). Finally, for k = d + 1, d + 2, …, p, l = 1, 2, …, d, or l = d + 1, d + 2, …, p, k
= 1, 2, …, d, we have

which means that w.h.p.
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provided (B.39). As a result, under the condition in the statement of the theorem for the
sampling rate, namely, ∊PCA = O(n−2/(d+2)), we have w.h.p.

Then, by the same argument as in the case when , we conclude that

Similar calculations show that for ∊PCA = O(n−2/(d+1)) we get

B.3 Proof of Theorem B.2
Denote by Oi the p × d matrix whose columns ul(xi), l = 1, 2, …, d, are orthonormal inside
ℝp as determined by local PCA around xi. As in (B.3), we denote by el(xi) the lth column of
Qi where Qi is a p × d matrix whose columns form an orthonormal basis of ι*Txiℳ so by

Theorem B.1 , which is the case of focus

here (if ∊PCA = O(n−2/(d+1)), then ).

Fix xi and the normal coordinate  around xi so that ι*∂l(xi) = el(xi). Let xj = expxi tθ,

where θ ∈ Txiℳ, . Then, by the definition of the parallel transport, we
have

(B.57)

and since the parallel transport and the embedding ι are isometric, we have

(B.58)
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Local PCA provides an estimation of an orthonormal basis spanning ι*Txiℳ, which is free
up to O(d). Thus, there exists R ∈ O(p) so that ι*Txjℳ is invariant under R and el(xj) =
Rι*Pxj,xi ∂l (xi) for all l = 1, 2, …, d. Hence we have the following relationship:

(B.

59)

where

On the other hand, since , Lemma B.9 gives us

We now analyze the right-hand side term by term. Note that since ι*Txjℳ is invariant under

R, we have . For the O(t) term, we have

(B.60)

where the second equality is due to Lemma B.9 and the third equality holds since Π(θ, ∂l(xi))
is perpendicular to ι*∂r(xi) for all l, r = 1, 2, …, d. Moreover, the Gauss equation gives us

which means the matrix
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is symmetric.

Fix a vector field X on a neighborhood around xi so that X(xi) = θ. By definition we have

(B.61)

Viewing Tℳ as a subbundle of Tℝpwe have the equation of Weingarten:

(B.62)

where AΠ(X, X)∂l and  are the tangential and normal components of ▽∂l,
respectively. Moreover, the following equation holds:

(B.63)

By evaluating (B.61) and (B.62) at xi we have

(B.64)

where the third equality holds since  are perpendicular
to ι*∂l(xi) and the last equality holds by (B.63). Due to the symmetry of the second
fundamental form, we know that the matrix

is symmetric.

Similarly we have

(B.65)

Since  by (B.63), which we denoted
earlier by S1 and used the Gauss equation to conclude that it is symmetric.
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To estimate the last term, we work out the following calculation by using the isometry of the
parallel transport:

(B.66)

Denote , which is symmetric by the definition of ℛ.

By (B.60), (B.64), (B.65), and (B.66) we have

(B.67)

where S:= −S1 − S2/3 + S1/6 − S3/6 is a symmetric matrix.

Suppose that both xi and xj are not in . To finish the proof, we have to understand the

relationship between  which is rewritten as

(B.68)

From (B.1) in Theorem B.1, we know

which is equivalent to

(B.69)

Due to (B.67) we have Qj = Qi R̄+t2QiSR̄+O(t3), which together with (B.69) gives

(B.70)

Together with the fact that  derived from (B.67), we have
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(B.71)

Recall that the following relationship between Oi and Qi holds (B.45)

(B.72)

when the embedding ι is translated and rotated so that it satisfies ι(xi) = 0, the first d
standard unit vectors {v1, v2, … vd} ⊂ ℝp form the orthonormal basis of ι*Txiℳ, and the

normal coordinates . Similarly, the following
relationship between Oj and Qj holds (B.45):

(B.73)

when the embedding ι is translated and rotated so that it satisfies ι(xj) = 0, the first d
standard unit vectors {v1, v2, … vd} ⊂ ℝp form the orthonormal basis of ι*Txjℳ, and the

normal coordinates  around xj satisfy ι*∂k(xj) = R̄ι*Pxj,xi∂k(xi)=vk. Also, recall that
ι*Txjℳis invariant under the rotation R and from Lemma B.9, ek(xi) and ek(xj) are related by

. Therefore,

(B.74)

when expressed in the standard basis of ℝp so that the first d standard unit vectors {v1, v2,
… vd} ⊂ ℝp form the orthonormal basis of ι*Txiℳ. Hence, plugging (B.74) into (B.71)
gives

(B.75)

Inserting (B.71) and (B.75) into (B.68), we conclude

(B.76)

Recall that Oij is defined as Oij = UVΤ, where U and V come from the singular value

decomposition of . As a result,
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Since R̄ΤSR̄ is symmetric, we rewrite R̄ΤSR ̄ = UΣUΤ, where U is an orthonormal matrix and
Σ is a diagonal matrix with the eigenvalues of R̄ΤSR̄ on its diagonal. Thus,

Since the Hilbert-Schmidt norm is invariant to orthogonal transformations, we have

Since UΤR̄ΤOU is orthogonal, the minimizer must satisfy , as
otherwise the sum of squares of the matrix entries would be larger. Hence we conclude

Applying (B.59) and (B.45), we conclude

This concludes the proof for points away from the boundary.

When xi and xj are in , by the same reasoning as above we get
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This concludes the proof. Similar results hold for ∊PCA = O(n−2/(d+1)) by using the results in
Theorem B.1.

B.4 Proof of Theorem B.3
We demonstrate the proof for the case when the data is uniformly distributed over the
manifold. The proof for the nonuniform sampling case is the same but more tedious. Note
that when the data is uniformly distributed, T∊,α = T∊,0 for all 0 < α ≤ 1, so in the proof we

focus on analyzing T∊ := T∊, 0. Denote K∊ := K∊, 0. Fix . We rewrite the left-
hand side of (B.8) as

(B.77)

where

Since x1, x2; …, xn are i.i.d. random variables, then Gj for j ≠ i are also i.i.d. random
variables. However, the random vectors Fj for j ≠ i are not independent, because the
computation of Oij involves several data points, which leads to possible dependency
between Oij1 and Oij2. Nonetheless, Theorem B.2 implies that the random vectors Fj are

well approximated by the i.i.d. random vectors  that are defined as

(B.78)

and the approximation is given by

(B.79)

where we use ∊PCA = O(n−2/(d+2)) (the following analysis can be easily modified to apply to
the case ∊PCA = O(n−2/(d+1)).

Since Gj when j ≠ i are identical and independent random variables and  when j ≠ i are

identical and independent random vectors, we hereafter replace  and Gj by Fʹ and G in
order to ease notation. By the law of large numbers we should expect the following
approximation to hold:

(B.

80)

where

(B.81)
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and

(B.82)

In order to analyze the error of this approximation, we make use of the result in [34, eq.
(3.14), p. 132] to conclude a large-deviation bound on each of the d coordinates of the error.
Together with a simple union bound, we obtain the following large-deviation bound:

(B.

83)

where C1 and C2 are some constants (related to d). This large-deviation bound implies that

w.h.p. the variance term is . As a result,

which completes the proof for points away from the boundary. The proof for points inside
the boundary is similar.

B.5 Proof of Theorem B.4
We begin the proof by citing the following lemma from [9, lemma 8]: LEMMA B.10.

Suppose f ∈ 3(ℳ) and  then

where .

By Lemma B.10, we get

(B.84)

which leads to

(B.85)

Plug (B.85) into the numerator of T∊,αX(x):
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where

We evaluate A and B by changing the integration variables to polar coordinates, and the odd
monomials in the integral vanish because the kernel is symmetric. Thus, applying Taylor’s
expansion to A leads to

which after rearrangement becomes
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From the definition of z(x) it follows that

Suppose  is an orthonormal basis of Txℳ and express . A direct
calculation shows that

and similarly

Therefore, the first three terms of A become

and the last term is simplified to

Next, we consider B. Note that since there is an ∊ in front of B, we only need to consider the

leading-order term. Let  to simplify notation. Thus, applying
Taylor’s expansion to each of the terms in the integrand of B leads to
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In conclusion, the numerator of T∊,αX(x) becomes

Similar calculation of the denominator of the T∊,αX(x) gives

where
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We apply Lemma B.10 to C and D and get

In conclusion, the denominator of T∊,αX(x) is

Putting all the above together, we have

In particular, when α = 1, we have

B.6 Proof of Theorem 5.5
Suppose miny∈∂ℳd(x, y) =∊̃. Choose a normal coordinate {∂1, ∂2; …, ∂d} on the geodesic
ball B∊1/2(x) around x so that x0 = expx(∊̃∂d(x)). Due to the Gauss lemma, we know span
{∂1(x0), ∂1(x1), …, ∂d–1(x0)}=Tx0∂ℳ and ∂d(x0) is outer normal at x0.

We focus first on the integral appearing in the numerator of T∊, 1X(x):

We divide the integral domain  into slices Sη defined by

where η ∈ [−∊1/2,∊1/2] and u = (u1, u2, …, ud–1) ∈ ℝd–1. By Taylor’s expansion and (B.85),
the numerator of T∊,1X becomes
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(B.

86)

Note that in general the integral domain Sη is not symmetric with relation to (0, …, 0, η), so
we will try to symmetrize Sη by defining the symmetrized slices:

where Ri(u1; …, ui, …, η) = (u1, …, −ui, …, η). Note that from (B.22) in Lemma B.9, the
orthonormal basis {Px0,x∂1(x), Px0,x∂2(x), …, Px0,x∂d–1(x)} of Tx0∂ℳ differs from
(∂1(x0),∂2(x0), … ∂d–1(x0)} by O(∊). Also note that up to error of order ∊3/2, we can express
∂ℳ ∩ B∊1/2(x) by a homogeneous degree 2 polynomial with variables {Px0,x∂1(x),
Px0,x∂2(x), …, Px0,x∂d–1(x)}. Thus the difference between S̃η and Sη is of order ∊ and (B.86)
can be reduced to

(B.

87)

Next, we apply Taylor’s expansion to X(x):

Since

the Taylor expansion of X(x) becomes

(B.88)

Similarly for all i = 1, 2, …, d we have

(B.89)

Plugging (B.88) and (B.89) into (B.87) further reduces (B.86) into
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(B.

90)

The symmetry of the kernel implies that for i = 1, 2, …, d – 1,

(B.91)

and hence the numerator of T1,∊X(x) becomes

(B.92)

where

(B.93)

and

(B.94)

Similarly, the denominator of T∊,1X can be expanded as

(B.95)

which together with (B.92) gives us the following asymptotic expansion:

(B.96)

Combining (B.96) with (B.9) in Theorem B.3, we conclude the theorem.

B.7 Proof of Theorem 5.6

We denote the spectrum of ▽2 by  and the corresponding
eigenspaces by El := {X ∈ L2(Tℳ) : ▽2X = −λlX}, l = 0, 1, …. The eigenvector fields are
smooth and form a basis for L2(Tℳ), that is,

Thus we proceed by considering the approximation through eigenvector field subspaces. To

simplify notation, we rescale the kernel K so that .
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Fix Xl ∈ El. When  from Corollary B.5 we have uniformly

When , from Theorem 5.5 and the Neumann condition, we have uniformly

(B.97)

Note that we have

thus again by the Neumann condition at x0, (B.97) becomes

In conclusion, when  uniformly we have

Note that when the boundary of the manifold is smooth, the measure of . We
conclude that in the L2 sense,

(B.98)

Next we show how  converges to e−t▽2
. We know I + ∊▽2 is invertible on El with norm

. Next, note that if B is a bounded operator with norm ∥B∥ < 1,
we have the following bound for any s > 0 by the binomial expansion:
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(B.99)

On the other hand, note that on El

(B.100)

Indeed, for X ∈ El we have  and

by the binomial expansion. Thus we have the claim.

Putting all the above together, over El for all l ≥ 0, when  we have

where the first equality comes from (B.98) and (B.100), and the third inequality comes from

(B.99). Thus on . By taking ∊ → 0, the
proof is completed.
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Appendix C

Multiplicities of Eigen 1-Forms of Connection Laplacian over n

All results and proofs in this section can be found in [15, 38]. Consider the following
setting:

Denote by Ω1( n) the complexified smooth 1-forms, which is a G-module by (g · s)(x) = g ·
s(g−1x) for g ∈ G, s ∈ Ω1( n), and x ∈ n. Over ℳ we have the Haar measure dµ defined by
the bi-invariant Hermitian metric 〈·, ·〉, which comes from the Killing form of G and the
Hodge Laplacian operator Δ = dδ+ δd defined by 〈·, ·〉. Since Δ is a self-adjoint and uniform
second-order elliptic operator on Ω1( n), the eigenvalues λi are discrete and nonnegative real
numbers, with an accumulation point only at ∞, and their related eigenspaces Ei are of finite
dimension. We also know  is dense in Ω1( n) in the topology defined by the inner
product (f, g) n := ∫ n 〈f, g〉dµ. Note that ℊ/ ℝ ℂ ≅ ℂn when G = SO(n + 1) and K = SO(n).
Denote by V = ℂn the standard representation of SO(n). We split the calculation of the
multiplicity of eigenforms of Δ over n into four steps. Step 1. Clearly Ω1( n) is a reducible
G-module. Fix an irreducible representation λ of G acting on Γλ and construct a G-
homomorphism

by φ ⊗ v ↦ φ (v). We call the image the Γλ-isotypical summand in Ω1( n) with multiplicity
dimℂHomG(Γλ, Ω1( n)). Then we apply the Frobenius reciprocity law:

Thus if we can calculate dimℂ HomK , we know how many copies of the
irreducible representation Γλ are inside Ω1( n).

Denote by L1, L2, …, Ln the basis for the dual space of Cartan subalgebra of so(2n) or so(2n

+1). Then L1, L2; …, Ln together with  generate the weight lattice. The Weyl
chamber of SO(2n + 1) is

and the edges of the W are thus the rays generated by the vectors L1, L1 + L2; …, L1 + L2 +
… + Ln; for SO(2n), the Weyl chamber is

and the edges are thus the rays generated by the vectors L1, L1 + L2, …, L1 + L2 + …, + Ln–3
+ Ln–2, L1 + L2 + … + Ln–3 + Ln–2 + Ln–1 + Ln, and L1 + L2 + … + Ln–3 + Ln–2 + Ln–1 – Ln.
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To keep the notation unified, we denote the fundamental weights ωi separately. When G =
SO(2n), denote

(C.1)

when G = SO(2n + 1), denote

(C.2)

THEOREM C.1.

1. When m = 2n + 1, the exterior powers ΛpV of the standard representation V of
so(2n + 1) are the irreducible representations with the highest weight ωp when p <
n and 2ωn when p = n.

2. When m = 2n, the exterior powers ΛpV of the standard representation V of so(2n)
are the irreducible representations with the highest weight ωp when p ≤ n–1; when
p = n, ΛnV splits into two irreducible representations with the highest weights
2ωm–1 and 2ωm.

PROOF. Please see [15] for details.

THEOREM C.2 (Branching Theorem). When G = SO(m) and K = SO(m – 1) the restriction
of the irreducible representations of G to K will be decomposed as the direct sum of the
irreducible representations of K in the following way: Let Γλ be an irreducible G-module
over ℂ with the highest weight .

1. If m = 2n

where ⊕ runs over all  such that

with  and λi simultaneously all integers or all half-integers. Here  is the

irreducible K-module with the highest weight .

2. If m = 2n+1

where ⊕ runs over all  such that
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with  and λi simultaneously all integers or all half-integers. Here  is the

irreducible K-module with the highest weight .

PROOF. Please see [15] for details.

From the above theorems, we know how to calculate dimℂ HomG(Γλ,Ω1(ℳ)). To be more

precise, since the right-hand side of HomK  is the irreducible representation of K
with the highest weight ω1 (or splits in the low-dimension case), we know the dimℂ

HomK  can be 1 only if  has the same highest weight by Schur’s lemma
and the classification theorem.

Step 2. In this step we relate the irreducible representation Γλ ⊂ Ω1( n) to the eigenvalue of
the Hodge-Laplace operator Δ.

THEOREM C.3. Suppose Γµ ⊂ Ω1( n) is an irreducible G-module with the highest weight
µ; then we have

where f ∈ Γµ, ρ is the half sum of all positive roots, and 〈·, ·〉 is induced inner product on the
dual Cartan subalgebra of ℊ from the Killing form B.

PROOF. Please see [38] for details.

Note that for  since R+={Li–Lj, Li+Lj,Li:i < j} for
 since R+={Li–Lj, Li+Lj : i < j}.

Combining these theorems, we know if Γµ is an irreducible representation of G, then it is an
eigenspace of Δ with eigenvalue λ = 〈µ +2ρ, µ〉. In particular, if we can decompose the eigen
1-form space Eλ ⊂ Ω1( n) into an irreducible G-module and calculate the dimension of the
irreducible G-module, we can determine the multiplicity of Eλ.

Step 3. Now we apply the Weyl character formula to calculate the dimension of Γλ for G.

THEOREM C.4.

1. When m = 2n + 1, consider  where λ1 ≥ λ2 ≥ … ≥ λn ≥ 0, the highest
weight of an irreducible representation Γλ. Then

2. When m = 2n, consider  where λ1 ≥ λ2 ≥ … ≥|λn|, the highest weight of
an irreducible representation Γλ. Then
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PROOF. Please see [15] for details.

Step 4. We need the following theorem about real representations of G to solve the original
problem.

TABLE C.1

Eigenvalues and their multiplicity of m, where m ≥ 2. l0,i = λi + n – i, m0,i = n – i, l1/2,i =

 , and  .

λ eigenvalues multiplicity

2n, n
≥ 2

kL1, k
≥ 1
kL1 +
L2, k ≥
1

k(k + 2n − 1)
(k + 1)(k +
2n − 2)

2n+1,
n ≥ 2

kL1, k
≥ 1
kL1 +
L2, k ≥
1

k(k + 2n)
(k + 1)(k +
2n − 1)

3 kL1, k
≥ 1
kL1 +
L2, k ≥
1
kL1 −
L2, k ≥
1

k(k + 2)
(k + 1)2

(k + 1)2

(k + 1)2
k(k + 2)
k(k + 2)

2 kL1 k
≥ 1

k(k + 1) 2(2k + 1)

THEOREM C.5.

1. When n is odd, for any weight λ = a1ω1 + a2ω2 +… + an–1ωn–1 + anωn/2 of
so2n+1ℝ, the irreducible representation Γλ with the highest weight λ is real if an is
even or if n ≅ 0 or 3 mod 4, if an is odd and n ≡ 1 or 2 mod 4 then Γλ is
quaternionic.

2. When n is even, the representation Γλ of so2n ℝ with highest weight λ = a1ω1 +
a2ω2 + … + an–2ωn–2 + an–1ωn–1 + anωn will be complex if n is odd and an–1 ≠ an;
it will be quaternionic if n ≡ 2 mod 4 and an–1 +an is odd; and it will be real
otherwise.

PROOF. Please see [15] for details.

Combining Table C.1 and this theorem, we know all the eigen 1-form spaces are real form.

Step 5. Now we put all the above together. All the eigen 1-form spaces of 핊 m as an
irreducible representation of SO(m+1), m ≥ 2, are listed in Table C.1. The highest weight is
denoted by λ.

Consider SO(3) for example. In this case, n = 1 and ℳ = 2. From the analysis in cryo-EM
[18], we know that the multiplicities of eigenvectors are 6, 10, …, which echoes the above
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analysis. Moreover, the first few multiplicities of 3, 4, and 5 are 4, 6, 9, 16, 16, …; 5, 10,
14, …; and 6, 15, 20, …, respectively.
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Figure 1.1.
In VDM, the relationships between data points are represented as a weighted graph, where
the weights wij are accompanied by linear orthogonal transformations Oij.
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Figure 1.2.
An example of a weighted graph with orthogonal transformations: Ii and Ij are two different
images of the digit 1, corresponding to nodes i and j in the graph. Oij is the 2 × 2 rotation
matrix that rotationally aligns Ij with Ii and wij is some measure for the affinity between the
two images when they are optimally aligned. The affinity wij is large, because the images Ii
and OijIj are actually the same. On the other hand, Ik is an image of the digit 2, and the
discrepancy between Ik and Ii is large even when these images are optimally aligned. As a
result, the affinity wik would be small, perhaps so small that there is no edge in the graph
connecting nodes i and k. The matrix Oik is clearly not as meaningful as Oij. If there is no
edge between i and k, then Oik is not represented in the weighted graph.
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Figure 2.1.
The orthonormal basis of the tangent plane Txiℳ is determined by local PCA using data
points inside a euclidean ball of radius  centered at xi. The bases for Txiℳ and Txjℳ
are optimally aligned by an orthogonal transformation Oij that can be viewed as a mapping
from Txjℳ to Txiℳ.
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Figure 6.1.

Bar plots of the largest 30 eigenvalues of  for n = 8000 points uniformly distributed
over spheres of different dimensions.
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Figure 6.2.
2 case. Top: truncated vector diffusion distances for t = 10, t = 100, and t = 1000. Bottom:

truncated diffusion distances for t = 10, t = 100, and t = 1000, and the geodesic distance. The
reference point from which distances are computed is marked in red.
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Figure 6.3.
2 case. Top: truncated vector diffusion distances for t = 10, t = 100, and t = 1000. Bottom:

truncated diffusion distances for t = 10, t = 100, and t = 1000, and the geodesic distance. The
reference point from which distances are computed is marked in red.
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Figure 6.4.
One-dimensional interval case. Top: truncated vector diffusion distances for t = 10, t = 100,
and t = 1000. Bottom: truncated diffusion distances for t = 10, t = 100, and t = 1000, and the
geodesic distance. The reference point from which distances are computed is marked in red.
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Figure 6.5.
Square case. Top: truncated vector diffusion distances for t = 10, t = 100, and t = 1000.
Bottom: truncated diffusion distances for t = 10, t = 100, and t = 1000, and the geodesic
distance. The reference point from which distances are computed is marked in red.
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Figure 9.1.
Schematic drawing of the imaging process: every projection image corresponds to some
unknown three-dimensional rotation of the unknown molecule.
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Figure 9.2.
A collection of four real electron microscope images of the E. coli 50S ribosomal subunit;
courtesy of Dr. Fred Sigworth (Yale Medical School).
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Figure 9.3.
(a) A clean simulated projection image of the ribosomal subunit generated from its known
volume. (b) Noisy instance of (a), denoted Pi, obtained by the addition of white Gaussian
noise. For the simulated images we chose the SNR to be higher than that of experimental
images in order for image features to be clearly visible. (c) Noisy projection, denoted Pj,
taken at the same viewing angle but with a different in-plane rotation. (d) Averaging the
noisy images (b) and (c) after in-plane rotational alignment. The class average of the two
images has a higher SNR than that of the noisy images (b) and (c), and it has better
similarity with the clean image (a).
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Figure 9.4.
Simulated projection with various levels of additive Gaussian white noise.
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Figure 9.5.
Histograms of the angle (in degrees, x-axis) between the viewing directions of 40,000
images and the viewing directions of their 40 nearest neighboring images as found by
computing the rotationally invariant distances. (Courtesy of Zhizhen Zhao, Princeton
University)
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Figure 9.6.

: Histogram of the angles (x-axis, in degrees) between the viewing directions of
each image (out of 40;000) and its 40 neighboring images. Left: neighbors are post-
identified using vector diffusion distances. Right: neighbors are identified using the original
rotationally invariant distances dRID.
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Figure A.1.
Left: a tangent plane and a curve γ. Middle: a vector field. Right: the covariant derivative.
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TABLE 1.1

Summary of symbols used throughout the paper.

Symbol Meaning

p Dimension of the ambient euclidean space

d Dimension of the low-dimensional Riemannian manifold

ℳd d-dimensional Riemannian manifold embedded in ℝp

ι Embedding of ℳd into ℝp

g Metric of ℳ induced from ℝp

dV Volume form associated with the metric g

n Number of data points sampled from ℳd

x1 …,xn Points sampled from ℳd

expx Exponential map at x

Δ Laplace-Beltrami operator

Tℳ Tangent bundle of ℳ

Txℳ Tangent space to ℳ at x

X Vector field

Ck(Tℳ) Space of kth continuously differentiable vector fields, k = 1,2,…

L2(Tℳ) Space of squared-integrable vector fields

Px,y Parallel transport from y to x along the geodesic linking them

∇ Connection of the tangent bundle

∇2 Connection (rough) Laplacian

et∇2 Heat kernel associated with the connection Laplacian

ℛ Riemannain curvature tensor

Ric Ricci curvature

s Scalar curvature

Π Second fundamental form of the embedding ι

K, KPCA Kernel functions

∊,∊PCA Bandwidth parameters of the kernel functions
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