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Abstract

Tumors are often heterogeneous in which tumor cells of different phenotypes have distinct properties. For scientific and
clinical interests, it is of fundamental importance to understand their properties and the dynamic variations among different
phenotypes, specifically under radio- and/or chemo-therapy. Currently there are two controversial models describing tumor
heterogeneity, the cancer stem cell (CSC) model and the stochastic model. To clarify the controversy, we measured
probabilities of different division types and transitions of cells via in situ immunofluorescence. Based on the experiment
data, we constructed a model that combines the CSC with the stochastic concepts, showing the existence of both
distinctive CSC subpopulations and the stochastic transitions from NSCCs to CSCs. The results showed that the dynamic
variations between CSCs and non-stem cancer cells (NSCCs) can be simulated with the model. Further studies also showed
that the model can be used to describe the dynamics of the two subpopulations after radiation treatment. More
importantly, analysis demonstrated that the experimental detectable equilibrium CSC proportion can be achieved only
when the stochastic transitions from NSCCs to CSCs occur, indicating that tumor heterogeneity may exist in a model
coordinating with both the CSC and the stochastic concepts. The mathematic model based on experimental parameters
may contribute to a better understanding of the tumor heterogeneity, and provide references on the dynamics of CSC
subpopulation during radiotherapy.
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Introduction

Tumors are often heterogeneous in which individual tumor cells

exist in different phenotypes with distinct functional properties [1].

Clinically, tumors from different patients, whether leukemic or

solid, often exhibit significant heterogeneity in terms of morphol-

ogy, cell surface markers, genetic lesions, cell proliferation kinetics,

and response to therapy [2]. Therefore, it is of fundamental

importance to understand the molecular and cellular basis of the

heterogeneity. Currently there are two controversial models

describing the heterogeneity in tumor, the CSC model and the

stochastic model. The CSC model, also known as the hierarchy

model, suggests that the growth and progression of many cancers

are driven by small but distinctive subpopulations of CSCs, and

the tumor is a caricature of normal tissue development where stem

cells maintain normal tissue hierarchies [3]. The CSCs at the apex

of hierarchical structure can not only maintain themselves by self-

renewal, but also differentiate into NSCCs. In contrast, the

stochastic model, also known as clonal evolution model, predicts

that a tumor is biologically homogeneous and the behavior of the

cancer cells is randomly influenced by unpredicted intrinsic and/

or extrinsic factors [3].

The two models evoked great interests in both experimental and

theoretical studies. In experimental studies, although the mecha-

nism of the tumor heterogeneity is still unclear, there is strong

evidence that cancer is a cellular hierarchy with CSCs at the apex

[2,4–7], indicating that cancer therapy may require elimination of

CSCs [4,8]. These papers supported the CSC model and evoked

novel strategies on targeting CSCs to treat cancer [2,4–7].

However, several other papers showed that the phenotypic

plasticity within tumors may produce bidirectional inter-conver-

sion between CSCs and NSCCs, resulting in dynamic variation in

the relative abundance of CSCs [1,9–11]. Vesuna et al found that

transient expression of Twist can induce the stem cell phenotype in

multiple breast cell lines and that decreasing Twist expression

partially reverses the stem cell molecular signature[12]. Morel et al

reported that breast CSCs can be generated through EMT

cascade [13]. Liang et al suggested that CSCs are inducible by

increasing genomic instability in cancer cells [14]. Interestingly,

Chaffer et al reported that normal and neoplastic non-stem cells

can spontaneously convert to a stem-like state [9]. More

importantly, Iliopoulos et al reported that breast CSCs can be

induced from NSCCs via IL6 secretion and the two cell
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populations can reach dynamic equilibrium [1]. Recently, Gupta

et al described a model that phenotypic equilibrium in populations

of cancer cells is achieved via stochastic state transitions [10]. Our

previous studies also showed the in situ transitions and phenotype

dynamic equilibrium between CSCs and NSCCs, either with or

without radiation treatment [11].

In theoretic studies, hot debate also has been stimulated among

different papers. Beretta et al analyzed asymptotic behavior of CSC

proportion and the case when there are no transitions from non-

stem to stem cell [15], showing the stability of CSCs percentage in

a mathematical way. Gupta et al developed a Markov model to

explain the phenomenon that a purified phenotype subpopulation

finally returns to equilibrium phenotypic proportions under the

condition that cells transit stochastically among different states

[10]. This model predicts that non-stem cells like basal and

luminal have a non-zero probability to become stem-like state.

Zapperi et al analyzed kinds of mathematical models and proposed

that imperfect sorting could be an alternative explanation for the

‘‘purified’’ subpopulation returning to equilibrium proportions

[16].

The CSC model and the stochastic model suggest different

clinical strategies of tumor therapy. Presently, the urgency lies in

how to improve both models to gain a better understanding of

tumor heterogeneity and the dynamic variations of different

subpopulations, specifically the CSCs and NSCCs in tumor. We

constructed a mathematic model based on parameters measured

from experiments, specifically the types and rates of divisions and

transitions. The results showed that the experimental dynamics

between CSC and NSCC subpopulations can be simulated via the

model, either with or without radiation treatment. Further analysis

demonstrated that the experimental detectable equilibrium CSC

proportion can be achieved only when the stochastic transitions

from NSCCs to CSCs occur, suggesting tumor heterogeneity may

exist in a model coordinating with both the CSC and the

stochastic concepts.

Equations and Assumptions

Previous studies suggested that CD133-positive cells are the

potential CSCs subpopulation in SW620 human colon cells

[11,17,18]. By means of in situ immunofluorescence, the division

types of CSCs and NSCCs through surface marker changes were

assayed. For CSCs, both symmetric and asymmetric divisions were

captured. That is, a CSC can divide into two CSCs (self-renewal),

two NSCCs (differentiation) as well as a CSC and a NSCC

(asymmetric division) (Fig. 1A). For NSCCs, only the symmetric

division type (proliferation) was captured, that is, a NSCC divides

into two NSCCs. Importantly, there are distinctive phenotype

transitions from NSCC to CSC independent of cell mitosis

(Fig.1A).

Major assumptions:

1. There are CSCs and NSCCs subpopulations in SW620 human

colon cancer cells [11].

2. A CSC can divide symmetrically into two CSCs (self-renewal)

or two NSCCs (differentiation) with probability PS or PD

respectively (Fig. 1A). In addition, a CSC can divide

asymmetrically into a CSC and a NSCC with probability PA

(PA = 12PS2PD) (Fig.1A). Different CSC division types have

the same mitosis speed denoted by KC.

3. A NSCC can divide into two NSCCs (proliferation) with rate of

KN (Fig.1A).

4. A NSCC can convert into a CSC with rate of KT (Fig. 1A) [11].

5. NSCC has limited proliferate potential and could go through

senescence with lifespan of M generation [19,20]. The Mth

generation dies with a rate of d (Fig. 1B). The value of d and M

are simply set to be 1 and 50 as suggested previously [21].

The schematic of the model is shown in Fig. 1B. According to

the assumptions listed above, the dynamics between CSCs and

NSCCs can be described with ordinary differential equations

(ODEs) (Equation (1)). In ODEs, we find that PS, PD and PA appear

in certain combinations. So these three parameters could be

incorporated into one parameter e~PS{PD.

dC

dt
~KT|

XM{1

i~1

NizKC|e|C

dN1

dt
~{KN|N1{KT|N1zKC| 1{eð Þ|C

::::

dNi

dt
~2|KN|Ni{1{KN|Ni{KT|Ni

::::

dNM

dt
~2|KN|NM{1{d|NM

ð1Þ

C denotes the number of CSCs and Ni denote the number of

NSCCs; i = 1, 2, …, M.

It is well known that radiation treatment can cause a lot of

damages in cells, among which DNA double strand breaks (DSBs)

are the most toxic [22]. Here we add death rates correlated with

DSBs dynamics into our model when cells were irradiated. After

radiation, the number of DSBs quickly increased and saturated in

the irradiated cells [23], then decreased due to DNA repair.

Therefore, based on DSBs’ dynamics [24,25], the death rate could

be described as

1

2
m kDð Þ2exp ({2rt)

k denotes DSB’s production on average per unit dose. D denotes

dose. r is repair rate of DSBs, rC and rN represent repair rate of

CSC and NSCC respectively. m stands for lethal mis-repair rate of

per DSB pair. In present model, mC and mN represent lethal mis-

repair rates of CSC and NSCC respectively (Details can be found

in Equations S1 in File S1).

Results

Parameters measured via in situ experiments
The probabilities of CSCs’ division types and percentage of

transition of NSCCs were determined using in situ immunofluo-

rescence (Fig. 1). To be consistent with experiment results of

population dynamics, we estimated KT, KN and KC by calculating

the quantity change of sorted CSCs and NSCCs and percentage of

NSCCs’ transition in one day. Because CSCs and NSCCs’ cell

cycles are both approximately one day, the division of newly born

NSCCs in sorted CSCs population contributes little to quantity

change in one day and the division of new CSCs in sorted NSCCs

is not significant (Equations used in the estimation are shown in

Equations S2 in File S1). The values of these parameters are

shown in Table 1.

A Model Reconcile Hierarchical/Stochastic Concepts
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After radiation treatment, the average of DSB’s production in a

cell is reported to be 25–35/Gy [26]. And r is calculated from half-

life of DSBs or foci and its order of magnitude is ,10/day [23,27].

Since CSC has higher ability to repair DNA damage [28], the

assumption that rC.rN is made. Here we set rN = 10 and rC = 15.

The survival fractions (S) of CSCs (SC) and NSCCs (SN) under 2 Gy

radiation treatment are measured from the experiments. There-

fore, the lethal mis-repair rate of CSCs (mC) and NSCCs (mN) can

be calculated by following equation (Equation (2)),

ð?

0

1

2
m kDð Þ2exp ({2rt)dt~1{S ð2Þ

As shown in Table 2, the value of k, D, rN, rC, SC, SN, mC and mN

are 25, 2, 10, 15, 95.0%, 43.0%, 0.0012 and 0.0092 respectively.

Figure 1. Divisions and transitions of CSCs/NSCCs as well as kinetics and scheme of the model. (A). Typical division types of CSCs/NSCCs
and transition from NSCC to CSC. Scale bar equals 50 mm. (a–b) Typical in situ division type of a NSCC (white arrow) and transition from a NSCC to a
CSC (yellow arrow); (c–d). Typical in situ symmetric divisions of CSCs: self-renewal (one CSC divides into two CSCs) and differentiation (One CSC
divides into two NSCCs); NSCC (white arrow), CSC (yellow arrow). (e–f). Typical in situ asymmetric division of CSC (One CSC divide into one CSC and
one NSCC); NSCC (white arrow), CSC (yellow arrow). (i). Kinetic equations that correspond to the phenomena in a and b. (ii) Kinetic equations that
correspond to the phenomena in c and d. (iii)Kinetic equation that corresponds to the phenomenon in e and f. (B). Scheme of the model based on
the experimental results.
doi:10.1371/journal.pone.0084654.g001

Table 1. Parameters collected from in situ experiments.

Parameter Symbol value

self-renewal probability of a CSC (a CSC divides into two CSCs) PS 0.77760.075

asymmetric division probability of a CSC (a CSC divides into one CSC and one NSCC) PA 0.16460.060

differentiation probability of a CSC (a CSC divides into two NSCCs) PD 0.05960.017

the rate of a NSCC converts into a CSC (day21) KT 0.269

proliferation rate of a NSCC (day21) (the rate of a NSCC divides into two NSCCs) KN 0.659

CSC mitosis speed (day21) KC 0.849

doi:10.1371/journal.pone.0084654.t001

A Model Reconcile Hierarchical/Stochastic Concepts

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e84654



Simulation of long-term dynamic variations between CSC
and NSCC subpopulations

Based on the parameters, we then analyzed the dynamics of the

CSC proportion (define as CPM{1

i~1

NizC

) under different initial

conditions via the mathematical model (simulation of cell number

variation is shown in Table S1 in File S1 and Fig. S1).

Theoretically, it is shown that the CSC proportion finally

reaches a steady value no matter what the initial condition is

(Fig. 2A). Comparing simulation results with experimental data

reported previously [11], it is clear that the steady value computed

by this model is close to the experimental results(Fig. 2B),

demonstrating parameters getting from the in situ immunofluores-

cence can predict the tendency of the dynamics between CSCs

and NSCCs subpopulation(experiment data are shown in Tables

S2–S3 in File S1). In addition, purified NSCCs and CSCs sorted

from SW620 cell line by FACS were cultured, and the CSC

proportions at day 26 post inoculation were tested. As shown in

Fig. 2C, CSC proportions of different initial cultures reach the

same steady value which equals the CSC proportion in unsorted

SW620 cells.

Parameter sensitivity analysis
The responses of CSC proportion to the change of parameters

at equilibrium are analyzed (parameters are shown in Table 1).

Regularly, each parameter is increased or decreased by one

percent and the change of the CSC proportion at equilibrium is

calculated as reported previously [29]. M is an integer, so the

change of M is plus or minus 1. As shown in Fig. S2, when KT, KN,

KC and e are increased by 1 percent, the CSC proportion at the

equilibrium would increase 0.3%, decrease 0.5%, increase 0.2%

and increase 1.1% respectively. Among the parameters, M is an

insensitive parameter, which is set to be 50 as suggested previously

[21]. According to calculation, M is an insensitive parameter in a

large range. So the choice of M’s value places little influence on

simulation of equilibrium. Other sensitive parameters including e

(e = PS2PD), KN, KT and KC are all measured in experiments

Test the parameters and the dynamics between CSC and
NSCC subpopulations via cellular automaton method

To further validate the parameters and the dynamics between

CSCs and NSCCs, we then studied the dynamics between CSC

and NSCC subpopulations with the parameters via cellular

automaton method. Cellular automaton is based on behavior of

individual cell and interaction between individuals. It is widely

used for modeling multi-cellular biological systems including

tumor. It could reflect the discrete property of tumor which is

neglected in the ODE method[30]. By using cell automaton

method, a better understanding of how tumor grows in

microscopic scale can be obtained[31]. As the concept of CSC

comes out, cellular automaton method is used for simulation of

CSCs [32–36].

The calculation scheme can be found in Fig.3A. In each time

step, A NSCC decides whether to die or whether to transform into

a CSC. NSCCs and CSCs progress one step in their cell cycles

respectively. A cell will divide into two cells when it finishes one

cell cycle. If there is no vacant site for the cell to divide, it would

become quiescent. If there is space for the cell to divide, for a CSC,

it would decide division type by chance; for a NSCC, it would

divide and both the daughter cells’ generations increase by 1.

As shown in Fig.3C, with the parameters, the simulation shows

consistency with the experiment data and the CSC proportion

from each group also reached the steady value, further indicating

those parameters collected from the experiments are reliable. In

addition, the results of cellular automaton method provide more

detailed information of the dynamics. During the proliferation,

CSCs and NSCCs may firstly form colonies, and then expand

around (Video S1-2). Finally, CSCs and NSCCs scattered

uniformly throughout the whole area. It is possible that all off-

springs of a CSC or a NSCC are CSCs and NSCCs for several

generations. If these CSCs or NSCCs connect with other CSCs or

NSCCs respectively, they become aggregations in certain areas

(Fig.3B).

Simulation of long-term dynamic variations between CSC
and NSCC subpopulations after radiation treatment

The dynamic variations between CSCs and NSCCs after

radiation treatment are simulated with several additional param-

eters were then performed (Table 2) (simulation of cell number

variation is shown in Table S4 in File S1and Fig. S3). The results

showed that the model simulation gives an acceptable prediction

on experimental results as we previously reported [11]. As shown

in Fig. 4B, CSC proportions of all groups from different initial

proportions can finally reach the same steady value as the cases

without radiation, indicating short term radiation cannot disturb

the long term dynamic equilibrium between the CSCs and

NSCCs. Interestingly, in the mixture of 70% CSCs and 30%

NSCCs group, simulation shows that CSC proportion rises in the

beginning quickly and falls down in two days (Fig. 4C). This is also

in accordance with the experimental results as we reported

previously [11].

Imperfect sorting cannot explain the dynamic
equilibrium between NSCCs and CSCs

The dynamic equilibrium between CSCs and NSCCs is an

interesting phenomenon [1,9–11]. This phenomenon, which is

recently reported by several papers, may have profound impacts

on the understanding of tumor heterogeneity as well as clinical

therapy strategies[10]. Analysis of the phenomenon also showed

that, a stable equilibrium CSC proportion between 0 and 1 is

easily to achieve if there exist transitions from NSCCs to CSCs

(KT=0). If KT equals 0, the non-zero equilibrium CSC proportion

exists only under the condition that KC|ewK ’
N , that is, the net

proliferation rate of CSCs is higher than that of NSCCs (details

can be found in Discussion S1 in File S1 and Fig. S4), which is also

not the case in our experiments and other reports [2,37].

An alternative explanation for dynamic equilibrium suggested

by Zapperi et al is that this phenomena might due to the imperfect

sorting of the cells via flow cytometry instead of the transitions

Table 2. Parameters under irradiation surroundings.

Parameter Symbol value

DSBs’ production on average per unit dose (Gy21) k 25

Dose of irradiation (Gy) D 2

DSBs repair rate of NSCC (day21) rN 10

DSBs repair rate of CSC (day21) rC 15

survival fraction of CSCs after 2Gy irradiation SC 95.0%

survival fraction of NSCCs after 2Gy irradiation SN 43.0%

lethal mis-repair rate of CSC (day21) mC 0.0012

lethal mis-repair rate of NSCC (day21) mN 0.0092

doi:10.1371/journal.pone.0084654.t002
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from NSCCs to CSCs. The imperfect sorting is unavoidable in the

experiments, resulting in some cells into the wrong group as a

minority (Fig.5A). As shown in Discussion S1 in File S1,

dR

dt
~ K ’

N{KC

� �
|R2z KC|e{K ’

N{KT

� �
|RzKT :

R is the CSC proportion in the whole population.

If KT is 0,
dR

dt
~ K ’

N{KC

� �
|R2z KC|e{K ’

N

� �
|R. Under

the situation of imperfect sorting, R is very low in sorted NSCCs at

the beginning. So
dR

dt
nearly equals zero. So the increase of R will

be insignificant in the first several days. According to our

experiment data,
dR

dt
is larger than 0.1 in the first two days. If R

is 0.02 at the beginning, KC|e{K ’
N should be larger than 5. This

is against experiment records on cell proliferation. However, if KT

is not 0,
dR

dt
is approximately equal to KT at the beginning. The

increase of R will be more close to our experiment data.

To better illustrate this probability, we analyzed theoretically in

our model with sorting error of CSCs and NSCCs as h percent

(normally h#2 according to the instructions of the flow cytometry).

If there are no transitions from NSCCs to CSCs (KT = 0), the

model cannot fit experimental data of CSC proportion dynamics

gained from experiments with h. Simulated annealing algorithm is

used to fit our experiment data whose initial condition is

‘‘purified’’ CSCs, because this process could be achieved with

KT = 0. Then we get 50 parameter combinations of KC, KN and e.

As shown in Fig.5B, the results showed that, although minority

CSCs will lead the population to stable equilibrium CSC

proportion and these parameters fit the experiment data of

purified CSCs precisely, none of these parameter combinations

could fit experiment data of purified NSCCs well. As shown in

Fig.5B, the differences between simulation and experiment results

lie in time span for reaching the equilibrium. This value is largely

dependent on M. Thus, to get the curve that is similar with

experiment data, M should be around 5 or less. This is obviously

against the experimental data[21,38]. Therefore, imperfect sorting

cannot explain the dynamic equilibrium between CSCs and

NSCCs.

Figure 2. Experiments procedures, results and the simulations of long-term dynamics between CSC and NSCC subpopulations. (A).
Diagram of experiment procedures; (B). Comparison between simulation results and experiment results; (C). Experimental results of long-term
equilibrium CSC proportions from initial purified CSCs and NSCCs.
doi:10.1371/journal.pone.0084654.g002
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Discussion

Tumor heterogeneity indicates important implications for

successful cancer therapies [2]. Currently there are two models

describing the heterogeneity in tumor, the stochastic and CSC

models. The essential difference between them is that every cell or

just a distinct subset tumor cells have the potential to behave like a

CSC [2]. To clarify the two concepts, we started from the CSC

concept with sorting the CSC and NSCC subpopulations and

culturing them separately. Then we measured the probabilities of

CSCs’ division types and transitions of NSCCs via in situ

immunofluorescence as described previously [11,39,40]. Based

on the parameters measured from the experiments (Fig. 1 and

Table 1), we constructed a mathematic model coordinating with

both CSC and stochastic concepts. The results showed that the

model can simulate the tendency of experimental dynamics of

NSCC and CSC subpopulations, either with or without radiation

treatment (Fig.2 and Fig. 4).

The stochastic model predicts that a tumor is biologically

homogeneous and the behavior of the cancer cells is randomly

influenced by unpredicted intrinsic and/or extrinsic factors[3].

However, there were increasing evidences supported the existence

of CSCs in the past two decades[4]. Traditionally, stochastic

models usually define several mutation phenotypes in tumor and

the transition rates between these phenotypes. These transitions

are usually unidirectional, from the benign types to invasive types

[41,42]. However, our in situ experimental results showed that the

transitions between CSCs and NSCCs are definitely not unidi-

rectional (Fig.1A), In contrast, NSCCs can transit into CSCs

independent of cell mitosis and, CSCs can generate NSCCs via

differentiation as well as asymmetric division dependent of cell

mitosis (Fig.1A). In addition, genetic instability is one of the most

important rules in stochastic model. Through accumulated genetic

or epigenetic changes, susceptible phenotype could become

resistant phenotype. In the perspective of colony, tumor evolves

to become more resistant to therapy [42].

Nevertheless, the advent of CSCs reveals that CSCs is the

engine of tumor growth and the resistance to standard chemo- and

radio- therapy [5–7,43], showing a more organized hierarchical

structure than that indicated by stochastic model. The CSC model

suggests that the growth and progression of tumors are driven by

small but distinctive subpopulations of CSCs [3]. However, several

recent papers and current experiments clearly showed the

existence of the de novo generation of CSCs from NSCCs (Fig.1)

[1,9–11]. The transitions from NSCCs to CSCs indicated that

CSC model is not enough to explain the tumor heterogeneity and,

Figure 3. The long-term dynamics between CSC and NSCC subpopulations via cellular automaton simulation method. (A). Calculation
scheme for cellular automaton method. (B). Typical result of simulation with cellular automaton method (initial condition is that all the cells are
NSCCs). Red: CSC; Blue: NSCC; Black: vacant lattice. (C). Comparison between simulation results with cellular automaton method and experimental
results.
doi:10.1371/journal.pone.0084654.g003

A Model Reconcile Hierarchical/Stochastic Concepts
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Figure 4. Radiation experiments procedures and simulations of long-term dynamics between CSC and NSCC subpopulations. (A).
Diagram of experiment procedures with radiation treatment; (B). Comparison between simulation and experiment results in 0–24 day (radiation is
applied when t is 0 day); (C). Amplified image of the results from irradiated 70% CSC group (0–2d) (radiation is applied when t is 0 day).
doi:10.1371/journal.pone.0084654.g004

Figure 5. Impact on the long-term dynamics between CSC and NSCC subpopulations with sorting error. (A). Diagram of sorting error in
the experiments; (B). Comparison between simulation (KT = 0) and experiment results.
doi:10.1371/journal.pone.0084654.g005

A Model Reconcile Hierarchical/Stochastic Concepts
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essentially supported the concept of stochastic model. Theoreti-

cally, if there are no transitions from NSCCs to CSCs (KT = 0), our

model is just the case of CSC model. However, under the initial

condition of purified NSCCs, if the transitions do not existed, the

CSC proportion in the culture will always be zero. This is obvious

not the case observed in our experiments as well as several other

reports (Fig.2B and Fig.3C) [1,9–11]. Therefore, CSC model

could not explain the phenomena observed in experiments. As

shown in the part of results (Fig. 5), imperfect sorting cannot make

up this flaw of CSC model.

It is interesting that we started from the CSC model but got the

results with features of both the CSC and stochastic concepts

(Fig.1A), showing existence of both distinctive CSC/NSCC

subpopulations and the stochastic transitions from NSCCs to CSCs.

Materials and Methods

Cell culture
Human colon cancer SW620 cells were purchased from Cell

Resource Center (IBMS, CAMS/PUMC, Beijing, China) characterized

by STR Profiling. Cells were cultured in Dulbecco’s modified Eagle’s

medium, supplemented with 10% fetal bovine serum, 100 units/ml

penicillin, and 100 mg/ml streptomycin at 37 uC in 5% CO2.

Cell staining and flow cytometry
Matched subpopulations were separated as described previously

[39,40]. In brief, cells were stained at a concentration of 107 cells

per 100 ml of buffer. Anti-CD133/1(AC133)-PE (MiltenyiBiotec)

antibody was used for flow cytometric sorting/assay. For all

experiments, samples were sorted on a BD FACS Aria II and

analyzed on a BD LSR II flow cytometer using BD FACS Diva

Software (BD Bioscience). Side scatter and forward scatter profiles

were used to eliminate debris and cell doublets.

In situ immunofluorescence
Details of in situ immunofluorescence of and chip design are

shown in our previous paper [11]. In brief, purified NSCCs and

CSCs were stained with the mouse monoclonal antibody against

human CD133 antigen coupled with R-phycoerythrin (CD133/

1(AC133)-PE from Miltenyi Biotec) together with the DNA-

binding dye Hoechst 33342 respectively. After degassing the chip,

25 ml cell (CSCs or NSCCs) suspension were pipetted into the

reservoir. The cell suspension was aspired into the cell culture

rooms because of the negative pressure. After loading of the

sample, the cells in the reservoir were removed and 35 ml of

medium was added and cultured normally. After 2 h incubation,

cells were photographed for the first time as described below. For

immunofluroscence staining of cells at defined time points such as

12 h or 24 h, media in reservoir was removed and 20 ml medium

with appropriate concentration of CD133/1(AC133)-PE (Miltenyi

Biotec) was added. After incubation, the medium with CD133/

1(AC133)-PE in reservoir was removed and 35 ml fresh medium

was added and incubated in dark for washing the cells. Cells were

washed twice and were immediately photographed.

Simulated annealing algorithm
Simulated annealing algorithm is a Monte-Carlo algorithm that

is often used for optimization problems. The initial parameters are

generated randomly and the candidate parameters are also

generated randomly by certain rules. These parameters were then

used to solve Equation (1). In simulated annealing, we temporarily

accept a worse combination of parameters with chance to decrease

the risk of local optimization. As temperature falls down, near

global optimal solutions would be derived [44]. In fitting process, a

parameter combination is accepted ultimately if g(simulation-data)2

is smaller than threshold value. Simulation denotes results calculated

by the parameter combination and data denotes experiment

results. The computational code can be found in Code in File S1.

Cellular automaton method
In cellular automaton method, cells are defined as agents with

properties including division, transition and death. There are two

kinds of agents: CSC and NSCC. NSCC can perform the behaviors

including division, transition and death. CSC can execute symmetry

and asymmetry divisions. The agents’ behaviors are quantified by

parameters which have been used in Equation (1). Each cell agent

occupies a regular lattice with dimension of 10 mm610 mm. In this

model, 2006200 lattices were defined. A lattice is set to

accommodate one cell at most at the same time. Therefore, a cell

could divide into two cells unless there is at least one vacant site in its

neighborhood (von Neumann neighborhood)[45].

Supporting Information

Figure S1 Calculation of cell number of different initial

conditions(t-log10(cell number)).

(TIF)

Figure S2 Parameters sensitivities of CSC proportion at

equilibrium. Blue bars represent changes of CSC proportion at

equilibrium when corresponding parameters are increased. Red

bars represent changes of CSC proportion at equilibrium when

corresponding parameters are decreased.

(TIF)

Figure S3 Calculation of cell number of different initial

conditions under radiaion(t-log10(cell number)).

(TIF)

Figure S4 Phase portrait of analysis on equilibrium. R denotes

the proportion of CSCs in the whole population. Solid circle

stands for stable equilibrium, hollow circle stands for unstable

equilibrium, and half-solid-half-hollow circle stands for half stable

equilibrium.

(TIF)

File S1 Supporting code, discussion, equations, and tables.

Table S1, Simulation of cell number. Table S2, Experiment data

for Figure 2B: sorted NSCCs. Table S3, Experiment data for

Figure 2B: sorted CSCs. Table S4, Simulation of cell number

(Radiation).

(DOC)

Video S1 An example of CSCs’ growth behavior with cellular

automaton method. Red: CSC; Blue: NSCC; Black: vacant lattice.

(AVI)

Video S2 An example of NSCCs’ growth behavior with cellular

automaton method. Red: CSC; Blue: NSCC; Black: vacant lattice.

(AVI)
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