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Summary
Recurrent event data frequently arise in longitudinal studies when study subjects possibly
experience more than one event during the observation period. Often, such recurrent events can be
categorized. However, part of the categorization may be missing due to technical difficulties. If
the event types are missing completely at random, then a complete case analysis may provide
consistent estimates of regression parameters in certain regression models, but estimates of the
baseline event rates are generally biased. Previous work on nonparametric estimation of these
rates has utilized parametric missingness models. In this paper, we develop fully nonparametric
methods in which the missingness mechanism is completely unspecified. Consistency and
asymptotic normality of the nonparametric estimators of the mean event functions accommodate
nonparametric estimators of the event category probabilities, which converge more slowly than the
parametric rate. Plug-in variance estimators are provided and perform well in simulation studies,
where complete case estimators may exhibit large biases and parametric estimators generally have
a larger mean squared error when the model is misspecified. The proposed methods are applied to
data from a cystic fibrosis registry.
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Cystic fibrosis; Local polynomial regression; Nelson–Aalen estimation; Pseudomonas aeruginosa
infection; Rate proportion

1. Introduction
Recurrent event data frequently occur in biomedical studies where subjects may suffer from
repeated symptoms, infections or hospitalizations. Such data also arise in industrial
manufacturing when tested units or equipment may experience multiple failures and repairs.
Often, such recurrent events can be categorized. Taking cystic fibrosis for example, patients
may experience repeated Pseudomonas aeruginosa infections in early childhood and later
acquire other mutated types of infection, which also occur recurrently even after aggressive
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antibiotic use (Li et al., 2005). However, the identification of the event category may not be
complete due to technical difficulties. As demonstrated in § 5, such missingness poses
challenges for the analysis of the rates of particular event types.

A common approach for the analysis of recurrent events is based on a rate function. In
contrast to an intensity function approach, which conditions on all previous information, a
rate function approach conditions only on the current value of covariates (Pepe & Cai, 1993;
Lin et al., 2000; Cook & Lawless, 2007; Cook et al., 2009). Complete case analyses that
censor missing event types lead to underestimation of either the intensity or the rate function
(Schaubel & Cai, 2006). Cai & Schaubel (2004) studied a proportional rate model for
multiple recurrent event processes, with unbiased estimation of the regression parameters
but not the baseline rate function obtained with missingness completely at random. Schaubel
& Cai (2006) later proposed an estimation procedure that is valid under weaker missingness
assumptions and yields unbiased estimates of the baseline rate function. Parametric models
were used to estimate the missingness probabilities, which were then used as weights in the
usual rate model estimating equation. Chen & Cook (2009) specified a parametric frailty
model to characterize dependence amongst the events and employed maximum likelihood
analysis, which requires correct specification of rate models for all event types, as well as of
the frailty distribution. In this paper, we consider nonparametric estimation of the rate
function without specifying parametric models for the missingness or imposing restrictions
on the models for other event types.

To formalize the data set-up, suppose that there are n independent subjects with K recurrent
event categories. Let  denote the total number of category k events occurring before
time t for subject i, such that  and  for k ≠ ℓ. The mean
function  is continuous with a smooth derivative rk(t) = dμk(t)/dt. Let Ci
denote the censoring time for subject i. The observed number of events is given by

, where a ∧ b denotes the minimum of a and b. Assuming Ci is
independent of  for each i and k, we have E{Nik(t) | Yi (t)} = Yi (t)μk(t) with Yi (t) = I (Ci
≥ t) indicating whether subject i is at risk for any event type.

With event categories always being observed, a Nelson–Aalen-type estimator (Nelson,
1988), defined by

(1)

is consistent for μk(t) for each k, where  denotes the total number of
subjects who are at risk at time t. The variance of  can be consistently estimated by

In the previous literature, this estimator was studied only for events of a single type
(Andersen et al., 1993; Lawless & Nadeau, 1995; Cook et al., 1996; Chiang et al., 2005).
With multiple event types, one may choose to explicitly model the dependence amongst the
events, e.g., using a mixed Poisson process (Abu-Libdeh et al., 1990) or to construct
marginal models that may be fitted separately (Cai & Schaubel, 2004). Intuitively,  should
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behave like estimators with a single type, since the estimator is calculated separately for
each k.

The estimator (1) cannot be computed when event category information is missing. Naively
censoring such events in a complete case analysis leads to underestimation. On the other

hand, even with such missingness, the overall event process  is
observable. Using this information and information on events with known event types, one
may estimate the probabilities of different event types conditionally on the observed data.
These probabilities may be incorporated as weights in (1), yielding valid inferences.
Schaubel & Cai (2006) employed a fully parametric logit model for the event category
probabilities. When the model is misspecified, the resulting estimate for μk(t) could be
biased. In this paper, we develop a fully nonparametric method for estimating μk(t) that is
able to estimate the probability of an event being type k without any model assumption. The
event category probabilities cannot be estimated at the usual parametric rate, which greatly
complicates the analysis of the weighted version of (1). We show that the resulting estimator
is root-n consistent and asymptotically normal, with variance which may be estimated using
a simple plug-in formula.

2. Estimation methods
Let δi (t) ∈ {1,…, K } denote the type of the event that occurs to subject i at time t, and let
δik(t) = I{δi (t) = k} be an indicator function that indicates the category. Let Ri (t) = 1 when
the event category is observed and Ri (t) = 0 otherwise. When some of the event categories
are missing, a complete case analysis based on events with known event types, which is
defined by

will underestimate μk(t) even when the event category is missing completely at random.

Note that dNik(t) = δik(t) dNi·(t), since dNik(t) dNiℓ(t) = 0 for k ≠ ℓ. Thus, dNik(t) = Ri (t)
dNik(t) + {1 − Ri (t)} δik(t) dNi·(t), and  in (1) can be written as

(2)

Since δik(t) is unobservable when Ri (t) = 0, the complete case estimator 
underestimates the truth due to ignorance of the second part in (2). A prediction of δik(t),
based on observable data, could be inserted to estimate the unknown part and correct the
underestimation of .

Assume that πi (t) = E{Ri (t) | dNik(t) = 1} is the same for each k. One can show that

LIN et al. Page 3

Biometrika. Author manuscript; available in PMC 2014 January 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



for k = 1,…, K, which equals . Thus, if one can estimate pk(t) based on the
rate functions rk(t), a consistent estimator may be derived by inserting in the estimated
probabilities for the missing δik(t) in (2). However, it is not clear how to estimate the rate
function rk(t) when events with missing type are present in the data. Interestingly, without
estimating rk(t) for each k, one may estimate pk(t), a rate proportion, by utilizing the events
with known type, i.e., from a complete case analysis.

One can show that the limiting processes of  and its derivatives, respectively, are

where  and . One
may utilize  to estimate the rate proportion pk(t), using the fact that

That is, although the complete case estimator itself underestimates the true underlying rate
function, it can otherwise consistently estimate the probability of an observed event being
type k. We hereafter refer to this approach as the rate proportion method, since the
probability is simply a proportion of the overall rate.

To estimate pk(t), we propose a nonparametric estimator for θk(t) = log{pk(t)/ pK (t)} via a

local likelihood method and estimate pk(t) through . For

any time t0 ∈ [0, τ], define the νth derivative of θk(t) as . One may
expand θk(t) as

if t is in the neighbourhood of t0, say, t ∈ [t0 − h, t0 + h] with bandwidth h. Let

, βk = (β0k, …, βqk)T, and . The local log-

likelihood for  is defined by

with

LIN et al. Page 4

Biometrika. Author manuscript; available in PMC 2014 January 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where (·) = (·/ h)/ h with (·) being a kernel function; τ is a constant that satisfies pr(Ci ≥
τ) > 0 for each i. By theory of local polynomial modelling (Fan & Gijbels, 1996), we can

approximate θk(t) by , where β̂k = (β̂0k,…, β ^qk)T maximizes
the local likelihood ℓ(β). Consequently, an estimator for θk(t0) is simply the local intercept
β̂0k, and by moving t0 within [0, τ], we can obtain functional estimates for θk(t).

Our goal, however, is to replace δik(t) in (2) with an estimate of pk(t) by

where θ̂ = (β̂01,…, β̂0(K−1))T with β ^0k (k = 1,…, K − 1) being local likelihood estimates at t,
and β ^0K ≡ 0. Our estimator of the mean function by the rate proportion method is

(3)

with consistent variance estimator

(4)

where φ̂ik(t; θ) is defined in Theorem 1 in § 3 and pk(t) is estimated only when an event with
unknown category occurred at t.

3. Asymptotic properties

Let A(υ) be a column vector that satisfies  and A(υ)⊗2 = A(υ) A(υ)T.

Take  for k = 1,…, K … 1. In
addition, let {(K − 1) × (q + 1)}-square matrix ℍ denote blockdiag{H,…, H} with H =
diag{1, h, …, hq}, and take β̂* = ℍβ ^ and , where β0 is the true value of β. Let

 and .

We first provide the following lemma showing the consistency and large sample normality
of the local likelihood estimator, which can be derived from a local polynomial method (Fan
& Gijbels, 1996).

Lemma 1
Assume that the regularity conditions in the Appendix hold. Given t0 ∈ [0, τ], we have
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in distribution, where , with

, Ωk(t0) is a (K − 1)-column vector with ρk(t0) = pk(t0){1 − pk(t0)} in the
kth element and ρkℓ(t0) = − pk(t0) pℓ(t0) in the ℓth element, for ℓ ≠ k; (t0) consists of
diagonal block elements (k = 1,…, K … 1), and off-diagonal block elements = , k ≠
ℓ, where  = ρk(t0) f (t0) ∫ A(υ)⊗2 (υ) dυ and = ρkℓ(t0) f (t0) ∫ A(υ)⊗2 (υ) dυ; (t0),
the limiting variance matrix of the score function, consists of block elements = ρk(t0) f (t0)
∫A(υ)⊗2 (υ)2 dυ, and  = = ρkℓ(t0) f (t0) ∫ A(υ)⊗2 (υ)2 dυ, for k ≠ ℓ.

In the special case with q = 1 and K = 2, Lemma 1 can be simplified to the following
corollary.

Corollary 1
Under the conditions of Lemma 1, we have

in distribution, where the bias  and the variance

 with μ2 = ∫ υ2 (υ) dυ, ν0 = ∫ (υ)2 dυ, and ν2 = ∫
υ2 (υ)2 dυ. Furthermore,

in distribution, where σ2(t0) = ν0ρ1(t0)−1 f(t0)−1.

When q = 1 and K = 2, the theoretical optimal bandwidth for estimating θ1(·) can be derived
by minimizing the asymptotic integrated mean squared error ∫ {b(s)2 + σ2(s)/(nh)}ω(s) ds
with some weighting function ω. One can show that

For arbitrary K ≥2, one can show that the optimal choice of the bandwidth for θk(·) is of
order n−1/(2q+3) for q ≥0. This is a critical result for the proof of the root-n weak convergence
rate for , due to the slower convergence rate of the local polynomial estimator θ̂
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Large sample properties of  are summarized in the following theorem, whose proof is
given in the Appendix.

Theorem 1

Under the conditions of Lemma 1, the rate proportion estimator  is uniformly

consistent for μk(t) in t ∈ [0, τ], and  converges weakly to a Gaussian
process with mean zero and covariance function Vk(s, t), s, t ∈ [0, τ], which can be
consistently estimated by

(5)

where

with Ω̂ k(s) being a consistent estimate of Ωk(s) obtained by replacing pk(s) with p̂k(s; θ) for

k =1,…, K − 1,  with (q + 1)-column vectors e1 = (1, 0,…, 0)T, b̂ (s) being
an estimate of the bias term b(s), and

The summation of the first term in φ̂ik(t; θ) will be dominated by the summation of the
second term. Hence the naive variance estimator for , defined by

is applicable when the sample size is large, without considering the variation contributed by
the local likelihood estimates. That is, the limiting variance equals that from an estimator in
which the event category probabilities are known. This differs from the case where
parametric missingness models are fitted (Schaubel & Cai, 2006), where the resulting
variance estimators depend on the variability in the parametric model estimates.

Observe, however, that the weak convergence rate of the two summation terms can be very
close, e.g., O(n−3/5) versus O(n−1/2), when applying the local linear model. The naive
variance estimator will likely underestimate the true variance when the sample size is
relatively small, while the proposed variance estimator in (5) incorporates the variability of
the local polynomial estimate. Specifically, one can estimate the bias term b(s) by using a
higher order polynomial. For example, in the special case with q = 1 and K = 2, the bias term
depends on the second derivative of θ1(t), which can be estimated by 2β̂21 in a local cubic

regression for θ1(t). In short, we denote , as in (4).
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4. Simulation studies
In this section, simulation experiments are presented to demonstrate finite sample properties
of our proposed estimation procedures. Three methods were evaluated. In the analysis of
event category always being observed, we include every event in the estimation to serve as a
reference for comparison. This kind of analysis is not feasible in practice with missing
category data. Another method is the weighted estimating equations method (Schaubel &
Cai, 2006) with a parametric logit model for the probability of a target category. A biased
estimate may be anticipated when the true model is misspecified by the parametric model.
Our proposed method, however, aims to provide consistent and robust estimates.

We consider three scenarios. In the first and second scenarios, we considered two types of
recurrent events in 200 subjects. Let λ1(t) = 1, λ2(t) = t, and λ3(t) = t2/3. We first generated
event processes with intensity functions Gr01λ1(t) and Gr02λ2(t), where the shared random
variable G was sampled from a Gamma(1/α, α) with E(G) = 1 and var(G) = α. The mean
functions we aim to estimate, therefore, are μ1(t) = r01t and μ2(t) = r02t2/2. In this setting the
parametric logistic model in the weighted estimating equations method may correctly
specify the model for pk(t) if one uses log(t) as a covariate since log{p1(t)/ p2(t)} = log(r01/
r02) − log(t). However, in a second scenario, if the second process is generated by an
intensity function Gr02{λ1(t) + λ2(t) + λ3(t)} with a mean function μ2(t) = r02(t + t2/2 + t3/9),
the parametric model may be off the truth if one uses t as a covariate, especially when t is
large. In the third scenario, we consider three types of recurrent events when n = 50 or 200
with intensity functions Gr01λ1(t), Gr02{λ1(t) + λ2(t)}, and Gr02λ3(t), where G = log(W)/
exp(0·5) with W generated from a standard normal distribution.

The probability of having a missing category when an event occurred is

(6)

where zi (t) = {1, t, Ni·(t·), Zi }T with Ni·(t·) counting the total number of events before t; Zi =
1 if i is odd, and 0 otherwise. In the simulation we set κ= (κ0, κt, κn, κz)T, with κt = −0·1, κn
= 0·05, and κz = 0 or log(8), in which κz ≠ 0 indicated missing due to covariates or missing
at random in Little & Rubin (2002). Various values of κ0 were set to create different amount
of events with missing category in order to systematically explore the effects of missingness,
for which estimators would have more variation when events with missing category
occurred more often. The simulation results shown in Tables 1 and 2 support this.

We assumed r01 = 0·75 or 1·25, r02 = 0·625, and the Gamma parameter α = 0·5 or 1 in the
first two scenarios, where a larger α represents higher dependence between event processes.
On average, we observed about 4 events per subject when μ2(t) = r02t2/2 and about 7 events
when μ2(t) = r02(t + t2/2 + t3/9). In the third scenario, we assumed r01 = 0·5 and r02 = 0·625,
which also results in about 7 events per subject. Censoring times were independently
generated by a uniform distribution between 0 and 5. All of our local likelihood estimation
was implemented using the Epanechnikov kernel (x) = 0·75(1 − x2), |x| < 1, and a local
linear model, i.e., q = 1. When K = 2, a nearest-neighbour method was used to calculate the
varying bandwidth and AIC (Akaike, 1974) was used as a bandwidth selection criteria.
These procedures can be implemented using an R (R Development Core Team, 2013)
package locfit (Loader, 2010). When K = 3, a fixed bandwidth proportional to n−1/5 was
applied. While log(t) was used in the first scenario for the correct model specification in the
weighted estimating equations method, covariates zi (t) in (6) were used in the other two
scenarios for the purpose of model misspecification.
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We first show graphic results for μ1(t) over the observation period with different
combinations of α and κz in Fig. 1 when μ2(t) = r02t2/2. In these figures, the solid lines

correspond to the true μ1(t) and grey areas represent , where 
is the empirical variance of the replicated estimates ; dotted lines show the average of

the replicated  and its  pointwise confidence limits, where  is

the average of the replicated variance estimates ; dashed lines show the average of the
replicated  based on the complete case analysis. Overall, the estimation by the complete
case analysis performs worse as the follow-up time t increases, due to more events with
missing category at the later part of the observation period. On the contrary, our proposed
estimator based on the rate proportion method is approximately unbiased. Also, the upper
and lower dotted lines cover the grey area. This means that the point estimator  is

approximately unbiased and that the variance estimator  approximates the asymptotic
variance well.

Table 1 shows the simulation results for μ1(t) = r01t at t = 3 when r01 = 0·75 in the first two
scenarios using  in (1), the rate proportion method  in (3), and the weighted
estimating equations method . We report the bias of the estimation, defined by the
average of the replicated estimates minus the true value, the empirical standard deviation

, defined by the sample standard deviation of the replicated estimates, the average of the

replicated standard deviation estimates , empirical coverage probability at a 0·95
nominal level, denoted by , and the relative mean squared error to the rate proportion

method, denoted by , where  and mr is defined
similarly. The empirical percentage of recurrent events with missing category is denoted by

. When μ2(t) = r02t2/2 and the weighted estimating equations method correctly specifies
the model, all of the three estimators have bias close to 0 but  has slightly larger
empirical variance that results in a larger mean squared error. However, the relative error is
rather moderate to  and minimal to . Hence our nonparametric estimator is very
competitive with the current existing parametric method even when the parametric method
correctly specifies the model. When μ2(t) = r02(t + t2/2 + t3/9) and the model was
misspecified by the parametric method, only  and  are consistent. The estimator

 is generally biased and has larger empirical variance than , resulting in a high
ratio of mean squared errors. Overall, the rate proportion method has comparable variation
to the analysis when the event category is always observed, has variance estimation close to
the empirical variance that results in good empirical coverage, and has substantially better
mean squared error when the true model is misspecified by the weighted estimating
equations method. Similar results can be seen in Table 2, where the relative mean squared
error is much greater in a later time when events with missing types occur more often.
Interestingly, the empirical variance Ṽ1 changes only slightly in both the rate proportion
method and the weighted estimating equations method when the missingness depends on the
covariate, so both estimators seem to be robust to the mechanics of missingness. However,
when the data have more events with missing category, both estimators have larger variation
but the rate proportion method performs better than the misspecified weighted estimating
equations method.

5. Cystic fibrosis registry data
Cystic fibrosis is the most common life-shortening genetic disorder in Caucasians, with an
incidence of approximately 1 in 3000 white live births (Kosorok et al., 1996). Chronic lung
disease in children can be characterized by recurrent infections of P. aeruginosa, the most
important pathogen that leads to the airway obstruction and lung function decay.
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Pseudomonas aeruginosa infection was found to be a major predictor of morbidity and
mortality (Kosorok et al., 2001). Young cystic fibrosis patients aged 1–5 years in 1990 with
positive respiratory cultures for P. aeruginosa have significantly higher death rates and
worse lung function during the following 8 years (Emerson et al., 2002). According to Li et
al. (2005), about 30% of newborn infants acquired nonmucoid type of infection in the first 6
months of life, with a mucoid type of infection prevailing after age 4 years. It is of interest to
characterize these patterns of infection in young cystic fibrosis patients.

The United States Cystic Fibrosis Foundation Patient Registry has documented the diagnosis
and follow-up of all known cystic fibrosis patients from 114 accredited centres since the
1970s. The quality of this database improved greatly in 1986 because of more consistent
reporting and quality control (FitzSimmons, 1993). In the 2007 registry data, there are 6585
subjects who were born after 1997 and have at least two follow-ups before the end of year
2007. The total length of follow-up is 27 412·7 person-years, averaging 4·2 years per
subject. In these follow-up years, there were 10 353 nonmucoid and 3190 mucoid P.
aeruginosa infections, along with 1339 events missing their category. Roughly, the
occurrence rates are 3·8 for nonmucoid type and 1·2 for mucoid type per 10 years, not
counting events with missing type. However, a patient may test positive for both nonmucoid
and mucoid types at the same visit. To simplify the analysis, we treat the event with both
types positive in the same visit as a third type of recurrent event process. Accordingly, there
are 1582 such events during the follow-ups.

A large percentage of infections have missing category, so our estimation methods are
preferable, as the complete case analysis that censors those events would have dramatic
underestimation. Figure 2, derived by the rate proportion method and complete case
analysis, reveals this. Particularly in nonmucoid type infections, there is substantial
discrepancy between our estimates and the complete case analysis after the first year of age.
In general, the two estimates diverge as age increases, partly due to more events with
missing type being recorded over time. Based on the rate proportion method, the average
number of nonmucoid type infections per patient is 2·4 by age 7, while that for mucoid type
infections is 0·4. The rate for having both types of infections is similar to the rate for the
mucoid type. Both increase more rapidly after age 7.

In Fig. 2, we also compare the estimation results between the rate proportion method and the
weighted estimating equations method. We define the relative difference as the percent
change of the weighted estimating equation estimates from the rate proportion estimates. In
the weighted estimating equations approach, we used patient’s gender and mode of
diagnosis as covariates.

The two methods produced similar results in estimating the nonmucoid P. aeruginosa
infection rate with the relative difference being less than 5% over the range of the 10-year
period. However, the infection rates of the mucoid type and of having both types in the same
visit were significantly underestimated by the weighted estimating equation approach. The
relative difference may reach as much as 50% in the first year of age.

6. Remarks
We assume that the observation probability πik(t) is the same for each event type, which may
not be realistic in practice when some types of events are more likely to have a missing
category. However, the observation probability may not be estimable due to lack of
information in those events with missing types. One possible generalization of our approach
is to assume that the observation probability is known a priori for each category. One can
show that, if πik(t) is different for each k, our current approach leads to the estimation of
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, which differs from pik(t) = E{δik | dNi·(t) = 1,
Ri(t) = 0, Yi(t)}, the unknown quantity in our mean function estimator. However, with

 and , one may estimate
pik(t) with the estimation of  and known πik(t).

In the rate proportion method, the local likelihood procedure yields a nonparametric
estimator via a regression model that uses time as a covariate. One may prefer to apply
different non-parametric regression methods for categorized outcomes, such as the
generalized additive model (Hastie & Tibshirani, 1990) or smoothing splines (Gu, 2002). It
will be of interest to develop asymptotic theory for estimates based on such approaches and
compare the performance across different nonparametric regression methods.
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Appendix
We first provide the following regularity conditions.

Condition A1. Variables {Ni1(·), …, NiK(·)} (i = 1, …, n) are independent and
identically distributed.

Condition A2. The expected number of subjects at risk

 for every t ∈ [0, τ].

Condition A3. The total number of events Ni·(τ) < η < ∞.

Condition A4. For t ∈ [0, τ], observation probability πi(t) = E{Ri(t)|dNik(t) = 1} is the
same for every k.

Condition A5. The likelihood function ℓ(β*) is bounded and twice differentiable. The
Hessian matrix ℓ̈(β*) = ∂2ℓ(β*)/∂β*∂β*T is negative definite and invertible.

Condition A6. The function θk(·) for each k ∈ {1, …, K} has a continuous (q + 1)th
derivative for q > 0.

Condition A7. The kernel function (·) has a bounded and symmetric density with a
compact support, and satisfies ∫ υ (υ) dυ = ∫ υ3 (υ) dυ = 0.

Condition A8. Assume nh → ∞ as h → 0 and n → ∞.

Conditions A1–A3 are regularity conditions for recurrent event processes. We require data
from the subjects to be independent and identically distributed in Condition A1. Our
estimation, however, accommodates multiple dependent recurrent event processes.
Condition A4 assumes that each type of event has the same probability for the category
being missing. Conditions A5–A8 are otherwise regularity conditions for the large sample
properties of the local likelihood estimates.

Proof of Theorem 1

To show the consistency of , we decompose  as

 with
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Let . First, we write

Then, expanding  around θ = (θ1, …, θK − 1)T, we have

It can be shown that  converges in probability to

Since the bias term b(t) converges uniformly in probability to 0 when h → 0, we can

conclude that  converges in probability to 0, uniformly in t. With 

uniformly in t, we can prove the uniform consistency of  by the fact that 
uniformly converge to μk(t).

To prove the large sample normality we need to obtain the rate of the weak convergence

when inserting in the local polynomial estimate. One can show that  has the same
weak convergence rate as

(A1)

Recall that the local polynomial estimate θ̂(s) is O(n−1/(2q+3)) when using the optimal
bandwidth. Under the smoothness assumption of θ, one can show that (A1) is

O(n−(q+2)/(2q+3)), which is faster than O(n−1/2). That means the sequence of  will be

dominated by the sequence of , which has a O(n−1/2) weak
convergence rate.

Combined with the asymptotic equivalency of  and

, where
, one can show that

n1/2ωk(t; θ̂) is asymptotically equivalent to , where
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Notice that φik(t; θ0) (i = 1, …, n) are independent and identically distributed zero-mean

variables, so  converges to a multivariate normal distribution with
mean zero and covariance Vk(s, t) = E{φ1k(s; θ0)φ1k(t; θ0)} for s, t ∈ [0, τ]. Hence n1/2ωk(t;
θ̂) converges weakly to a Gaussian process by the functional central limit theorem (Pollard,
1990), as the φik(t; θ0) is composed of functions that are monotone in t, i.e., φik(t; θ0) is
manageable and n1/2ωk(t; θ0) is tight.

LIN et al. Page 14

Biometrika. Author manuscript; available in PMC 2014 January 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Mean function estimation of the truth (solid) by the rate proportion method with 95%
confidence interval (dot) and complete case analysis (dash) under different simulation
scenarios, with grey areas showing the truth ±1·96×(empirical standard errors).
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Fig. 2.
The upper panels show the mean function estimation of P. aeruginosa infections by the rate
proportion method (dash) with 95% pointwise confidence interval (dot) and complete case
analysis (solid); the lower panels present the relative difference between the rate proportion
method and the weighted estimating equations method (solid) with the dashed line
representing a reference line of zero difference.
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