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Abstract
We study a marginal empirical likelihood approach in scenarios when the number of variables
grows exponentially with the sample size. The marginal empirical likelihood ratios as functions of
the parameters of interest are systematically examined, and we find that the marginal empirical
likelihood ratio evaluated at zero can be used to differentiate whether an explanatory variable is
contributing to a response variable or not. Based on this finding, we propose a unified feature
screening procedure for linear models and the generalized linear models. Different from most
existing feature screening approaches that rely on the magnitudes of some marginal estimators to
identify true signals, the proposed screening approach is capable of further incorporating the level
of uncertainties of such estimators. Such a merit inherits the self-studentization property of the
empirical likelihood approach, and extends the insights of existing feature screening methods.
Moreover, we show that our screening approach is less restrictive to distributional assumptions,
and can be conveniently adapted to be applied in a broad range of scenarios such as models
specified using general moment conditions. Our theoretical results and extensive numerical
examples by simulations and data analysis demonstrate the merits of the marginal empirical
likelihood approach.
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1. Introduction
High-dimensional data are more frequently encountered in current practical problems of
finance, biomedical sciences, geological studies and many more areas. Statistical methods
for high-dimensional data analysis have received increasing interests to deal with large
volume of data containing considerably many features; see Bühlmann and van de Geer
(2011), Hastie, Tibshirani and Friedman (2009) and Fan and Lv (2010) for overviews. A
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fundamental objective of statistical analysis with high-dimensional data is to identify
relevant features, so that effective models can be subsequently constructed and applied to
solve practical problems.

Recently, independence feature screening methods have been considered, see, for example,
Fan and Lv (2008), Fan and Song (2010) and Fan, Feng and Song (2011) for linear models,
generalized linear models and nonparametric additive models, respectively. Fan and Lv
(2008) and Fan and Song (2010) performed screening by ranking the absolute values of
marginal estimates of model coefficients, and Fan, Feng and Song (2011) carried out
screening by ranking integrated squared marginal nonparametric curve estimates. Fan and
Song (2010) also discussed independence screening by examining the magnitudes of the
likelihood ratios. More recently, Wang (2012) considered a sure independence screening by
a factor profiling approach; Xue and Zou (2011) studied sure independence screening and
sparse signal recovery; see also Zhu et al. (2011) and Li, Zhong and Zhu (2012) for recent
development using model-free approaches for feature screening, Li et al. (2012) for a robust
rank correcation based approach, and Zhao and Li (2012) for an estimating equation based
feature screening approach.

The empirical likelihood approach [Owen (1988, 2001)] is demonstrated effective in
scenarios with less restrictive distributional assumptions for statistical inferences; see Qin
and Lawless (1994), Newey and Smith (2004) and reference therein. We refer to Chen and
Van Keilegom (2009) as a review and discussion of recent development in the empirical
likelihood approach. The scope of the empirical likelihood approach recently has also been
extended to deal with high-dimensional data; see Hjort, McKeague and Van Keilegom
(2009), Chen, Peng and Qin (2009), Tang and Leng (2010), Leng and Tang (2012), and
Chang, Chen and Chen (2013). Though demonstrated effective in statistical inferences, the
empirical likelihood approach encounters substantial difficulty when data dimensionality is
high. More specifically, the data dimensionality p cannot exceed the sample size n in the
conventional empirical likelihood construction. In addition, p can be at most o(n1/2) or even
slower under which asymptotic properties are established [Chang, Chen and Chen (2013),
Chen, Peng and Qin (2009), Hjort, McKeague and Van Keilegom (2009), Leng and Tang
(2012), Tang and Leng (2010)]. Therefore, to practically more effectively apply the
empirical likelihood approach, a pre-screening procedure is necessary to reduce the
candidates of target features.

In this study, we systematically examine the properties of a marginal empirical likelihood
approach where the available features are assessed one at a time individually. The marginal
empirical likelihood approach only involves univariate optimizations, so that it provides a
convenient device for both theoretical analysis and practical implementation. Our analysis
reveals the probabilistic behavior of the marginal empirical likelihood ratios as functions of
the parameters of interest that can be evaluated at arbitrary values, which itself is a problem
of individual interest because existing studies of the empirical likelihood approach generally
focus on its properties when evaluated at the truth, or at values in a small neighborhood of
the truth. Based on our finding, we propose to conduct feature screening by using the
marginal empirical likelihood ratio evaluated at zero. We find that a unified screening
procedure can be applied in both linear models and generalized linear models. We also
demonstrate how the marginal empirical likelihood approach can be conveniently adapted to
solve a broad range of problems for models specified by general moment conditions. Hence,
the marginal empirical likelihood approach provides a general and adaptive procedure for
solving a broad class of practical problems for feature screening. Our theoretical analyses
show that the proposed screening procedure based on the marginal empirical likelihood
approach is selection consistent—that is, being able to identify the features that contribute to
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the response variable when the number of explanatory variables p grows exponentially with
sample size n.

Our study contributes to the sure independence feature screening for high-dimensional data
analysis from the following two substantial aspects. First of all, a fundamental difference of
our approach to all existing approaches is that the marginal empirical likelihood ratio
statistic is a self-studentized quantity [Owen (2001)] while other existing screening methods
generally rely on the ranking of features based on magnitudes of some marginal estimators.
Therefore, our approach is able to incorporate additionally the level of uncertainties
associated with the estimators to conduct feature screening. This clearly extends the scope of
existing feature screening approaches by considering more aspects of marginal statistical
approaches. We show in our simulation studies that when heterogeneity exists in the
conditional variance, our approach performs much better than a least-squares based
approach. Second, our screening procedure inherits the non-parametric merits of the
empirical likelihood approach. Specifically, our approach requires no strict distributional
assumptions such as normally distributed errors in the linear models, or exponential family
distributed response in the generalized linear models. This generalizes the scope and
applicability of our approach. As a result, we show that the marginal empirical likelihood
approach provides a unified framework for feature screening in linear regression models and
generalized linear models, and can be conveniently applied for solving a broad class of
general problems.

The rest of this paper is organized as follows. We elaborate the method of the marginal
empirical likelihood approach in Section 2. Properties of the proposed approach are given in
Section 3. Section 4 extends the marginal empirical likelihood approach to a broad
framework including models specified by general moment conditions, and presents an
iterative sure screening procedure using profile empirical likelihood. Numerical examples
are given in Section 5. We conclude with some discussions in Section 6. All technical details
are contained in the supplementary material of this paper [Chang, Tang and Wu (2013)].

2. Methodology
2.1. Marginal empirical likelihood for linear models

Let us motivate the marginal empirical likelihood approach by first considering the multiple
linear regression model

(2.1)

where X = (X1, …, Xp)T is the vector of explanatory variables, ε is the random error with
zero mean, and β = (β1,…, βp)T is the vector of unknown parameters. Hereinafter, we also
use β to denote the truth of the parameter whenever no confusion arises. Without loss of
generality, we assume hereinafter that the explanatory variables are standardized such that 

(Xj) = 0 and  (j = 1,…, p). For effective and interpretable practical applications,
one may reasonably expect that among the large number of explanatory variables, only a
small fraction of them contribute to the response variable. We therefore denote by  = {1 ≤
j ≤ p :βj ≠ 0} the collection of the effective explanatory variables in the true sparse model
whose size is characterized by its cardinality s = | |. Here we assume that s is much
smaller than p, reflecting the case in many practical applications like in finance, biology and
clinical studies.

In the recent literature of high-dimensional data analysis, various marginal approaches have
been applied for locating the true model ; see, for example, Fan and Lv (2008), Fan and
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Song (2010) and Fan, Feng and Song (2011). Among those approaches, a popular way is to
assess the marginal contribution from a given explanatory variable Xj. Commonly applied
criteria for measuring the marginal contribution are the magnitudes of some marginal
estimators [Fan, Feng and Song (2011), Fan and Lv (2008), Fan and Song (2010)].
Subsequently, the candidate models are chosen from the top ranked explanatory variables.

To apply a marginal empirical likelihood approach for the linear regression model (2.1), let
us consider the marginal moment condition of the least squares estimator:

(2.2)

where  is interpreted as the marginal contribution of covariate Xj to Y. From (2.2), we can

see that  is the covariance between Xj and Y so that  is equivalent to that

Y and Xj are marginally uncorrelated. Here we note the remarkable difference between 

and βj where the latter is the truth of the parameter in (2.1). In general,  unless 

(XiXj) = 0 for all i ≠ j. In addition to that from βj in the model (2.1),  also contains
aggregated contribution from other components that may be correlated with Xj. Thus, the
correlation level among covariates has significant impact on the performance of a screening
procedure based on (2.2); more discussions on this are given in a later section containing the
main results.

A marginal empirical likelihood for linear models can be constructed as follows. Note that

, therefore (2.2) is equivalent to

(2.3)

Let  be collected independent data, gij(β) = XijYi−β (j = 1,…, p) and Xij means
the j th component of the ith observation Xi. Based on (2.3), we define the following
marginal empirical likelihood:

(2.4)

for j = 1,…, p. For any given β in the convex hull of , the marginal empirical
likelihood ratio is defined as

(2.5)

where λ is the Lagrange multiplier satisfying

(2.6)
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2.2. Extended coverage to generalized linear models
A merit of the marginal empirical likelihood approach is that the formulation by (2.4) and
(2.5) only requires the moment condition (2.3), rather than specific distributional assumption
of ε in model (2.1). This entitles our approach robustness against the violation of
distributional model assumptions, and thus it can be extended and adapted to a broader
framework. Now we elaborate how the above marginal empirical likelihood approach can be
equally applied when the response variable Y is in the exponential family with the density
function taking the canonical form [McCullagh and Nelder (1989)]:

(2.7)

for some suitable known functions b(·), c(·) and canonical parameter θ. Further extensions of
the marginal empirical likelihood approach are discussed in a later section. We refer to
Kolaczyk (1994) and Chen and Cui (2003) for conventional applications of the empirical
likelihood to generalized linear models. Following the convention of generalized linear
models, we denote the mean function by μ = (Y |X) = b′(θ) where θ is modeled by a linear
function β0 + XTβ with β = (β1,…, βp)T, and use V(μ) to denote the variance of Y expressed
as a function of μ.

For any j = 1,…, p, the moment condition based on the marginal likelihood approach in Fan
and Song (2010) for βj is

(2.8)

where  is the implied mean function that is modeled marginally only

using Xj. Here the  is again interpreted as the marginal contribution of Xj to the response
variable Y ; see also Fan and Song (2010). By the property of the exponential family

distribution,  and V(μ) = b″(θ). Then (2.8) becomes

(2.9)

For linear models, , then b′ (θ) = θ, so that (2.9) becomes  by
noting that β0 = 0 in the linear model case, which is exactly (2.2). Hence, (2.9) is a natural
extension of (2.2) in the generalized linear models.

One way to apply the marginal approach can be generalizing the definition in (2.4) to be gij
(β) = Xij{Yi − b′(β0 + βXij)} (j = 1,…, p). However, such a modification is actually not

necessary. To see this, we note that when the marginal contribution , then the
marginal moment condition (2.9) becomes [Xj {Y − b′(β0)}] = 0. Hence, it implies that the
covariance between Xj and Y is 0, which exactly shares the same implication of (2.3) as in
the linear models. From this perspective, (2.9) and (2.3) are essentially equivalent.
Additionally, the response variable in practice can always be centered to have zero mean.
This fact eliminates the concern on the intercept β0 in the generalized linear models when
considering a marginal empirical likelihood approach. As a result, we conclude that a
unified marginal empirical likelihood construction (2.4) with the same gij (β) = XijYi −β can
be equally applied for both linear models and generalized linear models with centered
response variable Y. The implication of this unified construction is also intuitively very clear
by interpreting β as the covariance between a covariate and the response variable.

Chang et al. Page 5

Ann Stat. Author manuscript; available in PMC 2014 January 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Furthermore, we note that the distributional assumption (2.7) is actually not required in our
marginal empirical likelihood approach. Therefore our approach is not restricted to the
exponential family (2.7). Since we only require the marginal moment condition (2.9), our
approach can be applied with the quasi-likelihood approach and it also works with
misspecified variance functions [McCullagh and Nelder (1989)].

The marginal empirical likelihood ratio (2.5) with gij(β) = XijYi −β evaluated at β = 0—that
is, ℓj (0)—has a very clear practical interpretation by noting that it can be used to test the

null hypothesis . By noting additionally the intuitively clear fact that ℓj (0) should

not be large if , we can see that ℓj (0) can be used as a device for feature screening.
More specifically, we have the following procedure:

Step 1: Evaluating ℓj (0) for all j = 1,…, p, where ℓj (·) is defined in (2.5) with gij (β) =

XijYi − β. If 0 is not in the convex hull of , we define ℓj (0)=∞ as a strong
evidence of significance in predicting Y using Xj.

Step 2: Given a threshold level γn, select a set of variables by

We specify in the next section the requirement for γn so that the screening procedure is
consistent. On the other hand, however, explicitly identifying γn in practice is generally
difficult because it involves unknown constants. Thus, a screening procedure can be
practically implemented in a way such that  recruits candidate features until certain size
such as n1/2 is achieved.

We remark that the evaluation of ℓj (β) in (2.5) in practice is actually very easy by noting
that all optimizations involved are univariate, which is very convenient for practical
applications. On the other hand, our procedure only needs to evaluate the marginal empirical

likelihood ratio (2.5) at β = 0 and avoids the estimation of  when conducting the feature
screening.

3. Main results
Now we present main results for the marginal empirical likelihood ratio in (2.5) with the
unified specification gij (β) = XijYi − β that are generally applicable for both linear models
and generalized linear models. In our discussion hereinafter, let ρj = (XjY). If ρj = 0, it is
well known that ℓj (0) is asymptotically chi-square distributed with 1 degree of freedom
[Owen (1988, 2001)]. If ρj ≠ 0, however, the properties of ℓj (0) is generally less clear,
which is also a question of independent interest. Specifically, if β = ρj +τσn−1/2 where σ2 =

var(XjY), it can be shown following the same argument of Owen (1988) that 
as n→∞ under some regularity conditions where τ2 is a noncentrality parameter. But if β −
ρj converges to zero at a rate slower than n−1/2, the exact diverging rate of ℓj(β) is less clear
in existing literature.

We first present a general result that shows that the empirical likelihood ratio ℓj(β) is no
longer Op(1) when β −ρj converges to 0 but n1/2(β −ρj) diverges.
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Proposition 1—Suppose that U1,…, Un are independent and identically distributed
random variables with (|Ui |ν) <∞ for some ν ≥ 3. Replacing gij (β) in (2.5) and (2.6) by Ui

− μ for all i = 1,…, n, we obtain ℓ(μ). If |μ − μ0| = O(n−w) for some , then

where μ0 = (Ui) and σ2 = {(Ui −μ0)2}.

We note that Chen, Gao and Tang (2008) contains a related result showing that the empirical
likelihood ratio is diverging when evaluated at values far enough from the truth. Our
Proposition 1 contains the specific diverging rate of the empirical likelihood ratio.
Proposition 1 implies that if β − ρj converges to zero at a rate slower than n−1/2, ℓj (β) =
Op{n(β − ρj)2}. On the other hand, if β − ρj does not weaken to zero, our Theorem 1
presented later shows that ℓj(β) has high probability to take large value. On the other hand,
as clearly shown in our proof of Proposition 1 given in Chang, Tang and Wu (2013), the
statistics ℓj (0) is self-studentized, and hence it incorporates the level of uncertainties from
using the finite sample moment conditions. Such a feature is desirable because in practice
levels of uncertainties corresponding to different covariates can be different when
contributing to the response variable of interest. This may confound the ranking for feature
screening based on marginal estimators themselves without considering their standard
errors, not mentioning incorporating the level of uncertainties is difficult especially when
handling high-dimensional statistical problems.

An effective marginal screening procedure requires two conditions: (i) if j ∈ , then ρj
takes nonnegligible value; and (ii) if j ∉ , then ρj takes negligible value. Actually, the first
requirement is closely related to recruiting the true signals that contribute to the response,
and the second one affects the size of selected variable set that may contain false signals.
Fan and Lv (2008) shows that under the identification condition minj∈  |ρj| ≥ fn > 0 for
some function fn, the first requirement is fulfilled. A common assumption for fn is fn =
O(n−κ) for some .

Our next theoretical analysis imposes the following two assumptions:

A.1: The random variable Y has bounded variance and there exists a positive constant c1
such that

for some .

A.2: There are positive constants K1, K2, γ1 and γ2 such that

Assumption A.1 can be viewed as a requirement for the minimal signal strength, and we call
it the identification condition for j ∈ . For linear models, the assumption A.1 is same as
condition 3 in Fan and Lv (2008) that is commonly assumed in sure independence feature
screening. For generalized linear models, Fan and Song (2010) imposes the identification
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condition as minj∈ |cov(b′(XTβ), Xj)| ≥ c1n−κ. By noticing that cov(b′(XTβ), Xj) = (XjY),
their identification condition for j ∈  is also same as A.1. Since we impose no
distributional assumptions, A.2 is assumed to ensure the large deviation results that are used
to get the exponential convergence rate. The first part of A.2 is same as the first part of
condition D in Fan and Song (2010). For linear regression model, the second part of
condition D in Fan and Song (2010) is equivalent to that XTβ satisfies the Cramér condition
such that there exists a positive constant H such that {exp(tXTβ)} <∞ for any |t |<H. If the
error ε is independent of covariates and satisfies the Cramér condition, then we can obtain
that the variable Y also satisfies the Cramér condition. From Lemma 2.2 in Petrov (1995), a
random variable W satisfies Cramér condition is equivalent to that there are positive
constants b1 and b2 such that ℙ{|W| ≥ u} ≤ b1 exp(−b2u) for any u > 0. Therefore, our
assumption here is actually weaker than that in Fan and Song (2010). On the other hand, A.2
is also a general technical assumption in the literature of large derivations. For example, γ1 =
2 if Xj’s follow normal distribution or sub-Gaussian distribution, and γ1=∞ if Xj’s have
compact support.

We now establish the following general result for the distribution of empirical likelihood
ratio which is the foundation for our future theoretical results.

Theorem 1—Suppose that U1,…, Un are independent and identically distributed random
variables. Assume that there exist three positive constants K̃1, K̃2 and γ such that ℙ{|Ui|>u}

≤ K̃1 exp(−K̃2uγ) for all u>0. Define μ0 = (Ui), , H = 21+δ and ,
where σ2 = {(Ui − μ0)2} and K >σ is a sufficiently large positive constant depending only
on K̃1, K̃2, γ and μ0, then for L → ∞, there exists a positive constant C only depending on
K̃1, K̃2 and γ such that

where ℓ(μ) is defined in Proposition 1.

The proof of Theorem 1 is given in Chang, Tang and Wu (2013), where the main idea is
applying large deviation theory [Petrov (1995), Saulis and Statulevičius (1991)].

Theorem 1 reveals the magnitude of the empirical likelihood ratio statistic evaluated at
arbitrary values. When μ −μ0 does not diminish to 0, Theorem 1 implies that the empirical
likelihood ratio statistic diverges with large probability where the diverging rate
synthetically depends on the sample size n, some diverging L and the deviation of μ from the
truth. Here L is a general technical device whose diverging rate is arbitrary. As a direct
result of Theorem 1, we have the following proposition for ℓj (0).

Proposition 2—Under assumptions A.1 and A.2, there exists a positive constant C1
depending only on K1, K2, γ1 and γ2 appeared in assumption A.2 such that for any j ∈ 
and L→∞,
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where  and .

Proposition 2 is a uniform result for all features contributing in the true model. Specifically,
with large probability and uniformly for all j ∈ , the diverging rate of ℓj (0) is not slower
than n1−2κL−2. From Proposition 1, if | (XjY)| = O(n−w) for some  and some j ∈

, then . This can be viewed as a requirement such that the signal strength
cannot diminish to 0 at a too fast rate. Therefore, n1/2−κL−1→∞ as n→∞ is required for
sure independence screening. By choosing L = n1/2−κ−τ for some , we obtain
the following corollary more specifically summarizing that the set  can be distinguished
by examining the marginal empirical likelihood ratio ℓj (0) (j = 1,…, p).

Corollary 1—Under assumptions A.1 and A.2, there exists a positive constant C1
depending only on K1, K2, γ1 and γ2 appeared in assumption A.2 such that, for any

,

where  and .

Summarizing above results, we formally establish the screening properties of the marginal
empirical likelihood approach.

Theorem 2—Under assumptions A.1 and A.2, there exists a positive constant C1
depending only on K1, K2, γ1 and γ2 appeared in assumption A.2 such that, for any

 and ,

where  and .

Theorem 2 implies the sure screening property for our procedure with nonpolynomial
dimensionality:

When the covariates and error are normal, γ1 = 2 and γ2 = 2. Then γ = 1, δ = 1 and log p =
o(n1/2−κ) which is weaker than that in Fan and Lv (2008) where log p = o(n1−2κ) is allowed.
This can be viewed as a price paid for allowing nonnormal covariate and more general error
distribution. Furthermore, we compare our result and that in Fan and Song (2010). The
Lemma 1 in Fan and Song (2010) means that γ2 = 1. The corresponding parameters under

their this setting are  and , respectively. Then, we can handle the
nonpolynomial dimensionality
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in this setting, which is actually a stronger result than that in Fan and Song (2010) where log
p = o(n(1−2κ)γ1/A) and A = max{γ1 + 4, 3γ1 +2}.

Now we investigate how large the set  is. This question is closely related to the asymptotic
property of ℓj (0) for j ∉ . Essentially, we need to know the magnitudes of ℓj (0) for j ∉

. We first consider the simple case ρj = 0 for any j ∉  and have the following result.

Proposition 3—Under assumptions A.1 and A.2, if ρj = 0, there is a positive constant C2
depending only on K1, K2, γ1 and γ2 appeared in assumption A.2 such that, for any

,

where .

The assumption ρj = 0 for any j ∉  can be guaranteed by the partial orthogonality
condition, that is, {Xj :j ∉ } is independent of {Xj : j ∈ }. The orthogonality condition
is essentially the assumption made in Huang, Horowitz and Ma (2008) who showed the
model selection consistency in the case with the ordinary linear model and bridge
regression. This proposition gives the property of ℓj (0) for any j ∉  which can be used to

establish the theoretical result for the size of  where . Note that

then

By Proposition 3, we obtain the following theorem.

Theorem 3—Under assumptions A.1 and A.2, if ρj = 0 for any j ∉ , then there exists a
positive constant C2 depending only on K1, K2, γ1 and γ2 appeared in assumption A.2 such

that, for any  and ,
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where .

From Theorem 3, we have ℙ{| | > s} ≤ p exp{−C2n(2τ)^(γ/6)^(γ/(γ+2))} which means that the
event {| | ≤ s} occurs with probability approaching to 1 if log p = o(n(2τ)^(γ/6)^(γ/(γ+2))). On
the other hand, following Theorem 2, we have ℙ{  ⊂ } → 1 provided log p =
o(n((1−2κ−2τ)γ/2)^(1−2κ)). Combining these two results together, we can obtain that

and

This property shows the selection consistency of our procedure. In a more general case
without partial orthogonality condition, we could consider the size of the set  under the
setting

which is an assumption imposed in Fan and Song (2010).

Proposition 4—Under assumptions A.1 and A.2, if maxj∉  |ρj| = O(n−η) where η > κ

and  for some c2 > 0, there exists a positive constant C3 depending
only on K1, K2, γ1 and γ2 appeared in assumption A.2 and c2 such that, for any j ∉  and

,

where .
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If ρj = 0 for any j ∉ , then η = ∞. Hence, this proposition reduces to Proposition 3.
Following the same argument between Proposition 3 and Theorem 3, we can obtain the
following theorem related to the size of .

Theorem 4—Under assumptions A.1 and A.2, if maxj ∉  |ρj| = O(n−η) where η > κ and

 for some c2 > 0, then there exists a positive constant C3 only
depending on K1, K2, γ1 and γ2 appeared in assumption A.2 and c2 such that, for any

 and ,

where .

In summary, our results show that the marginal empirical likelihood approach has a very
good control of the size of the recruited variables. With large probability, the set of the
recruited variables is not larger than the true contributing explanatory variables. As shown
later in our simulation results, the marginal empirical likelihood approach perform very well
in terms of the set of false selected variables by the marginal empirical likelihood approach.

4. Extensions
4.1. A broad framework

The marginal empirical likelihood can be applied in a general framework besides the linear
models and generalized linear models. Based on general estimating equations approach
[Hansen (1982), Qin and Lawless (1994)], we can also apply the screening procedure based
on the marginal empirical likelihood. We will demonstrate that the marginal empirical
likelihood approach provides an effective device to combine information that can be used to
enhance the performance of a screening procedure.

Let Zi ∈ ℝd (i = 1, …, n) be generic observations, β = (β1, …, βp)T ∈ ℝp be parameter of
interest and g(Z; β) = (g1(Z; β), …, gr(Z; β))T be the r-dimensional estimating function such
that {g(Z; β)} = 0. Let  = {1 ≤ j ≤ p : βj ≠ 0} be the true model with size | | = s. We
are interested in how to construct a sure feature screening procedure to recover  in the
general estimating equation setting. To motivate the marginal empirical likelihood approach,
let us consider the estimating function evaluated at

In practice, many components in g(Z; β(j)) do not involve the unknown parameter; see, for
example, the estimating function constructed from the least-squares method and our
example given later. Therefore, we denote by
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an rj (rj ≥ 1)-dimensional estimating function collecting the components in g(Z; β(j)) that
depend on the unknown parameter. Usually rj > 1 is small and not all components of Z are
involved in g(j)(Z; β). A remarkable advantage of this broad framework is that it provides a
device for feature screening using more flexibly constructed conditions so that additional
data information can be more effectively incorporated.

Correspondingly, we define the marginal empirical likelihood for β as

(4.1)

Then screening can be done based on the ranking of ELj(0) or equivalently using the
corresponding marginal empirical likelihood ratio evaluated at 0—that is, ℓj(0). The steps of
the procedure are the same as those described earlier. A concrete example of this scenario is
given as follows.

Example (Quadratic inference function (QIF) approach [Qu, Lindsay and Li
(2000)])—Longitudinal data arise commonly in biomedical research with repeated
measurements from the same subject or within the same cluster. Let Yit and Xit(i = 1, …, n, t
= 1, …, mi) be the response and covariates of the ith subject measured at time t. Let

 where β ∈ ℝp is the parameter of interest. Incorporating the
dependence among the repeated measurements is essential for efficient inference. Liang and

Zeger (1986) proposed to estimate β by solving . Here for the ith

subject, Yi = (Yi1, …, Yimi)
T, μi = (μi1, …, μimi)

T,  and , where vi is a
diagonal matrix of the conditional variances of subject i and R is a working correlation
matrix that may depend on some unknown parameter. This approach uses estimating

function , where  and r =

p. More recently, Qu, Lindsay and Li (2000) proposed to model R−1 by , where
M1, …, Mm are known matrices and a1, …, am are unknown constants. Then β can be
estimated by the quadratic inference functions approach [Qu, Lindsay and Li (2000)] that
uses

(4.2)

This falls into our framework with r > p when m > 1, and with r = p if m = 1. When applying
the marginal approach, we note that g(j)(Z; β) is an m-dimensional estimating function. The
marginal screening by empirical likelihood can be conveniently applied to this scenario, and
we note that the existing independence screening methods cannot be directly applied when
m > 1.

Chang et al. Page 13

Ann Stat. Author manuscript; available in PMC 2014 January 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In a concurrent and independent work, Zhao and Li (2012) considered feature screening
using estimating functions when r = p. By using our notations, their approach are based on
g(j)(Z; 0)—the marginal estimating function evaluated at 0. Their screening procedure are
based on ranking the absolute value of g(j)(Z; 0) for j = 1, …, p. Our approach is different as
seen from the above marginal empirical likelihood construction. In addition, analogous to
that in linear models and generalized linear models, the marginal empirical likelihood
constructed from using the marginal estimating function is also capable of incorporating the
level of uncertainties associated with finite sample estimating functions.

We now characterize the properties of the screening procedure in the framework of models
specified by estimating equations. For any vector a =(a1, …, aq)T ∈ ℝq, we use ||a||∞ =

maxi=1, …, q |aq| and  to denote its L∞ and L2 norms, respectively.
Aiming to establish the theoretical results, we need the following two assumptions.

A.3: There exists a positive constant c3 such that

for some .

A.4: There are positive constants K3, K4 and γ3 such that

for each j = 1, …, p and any u > 0.

Assumption A.3 is a general identification condition for the set  when considering the
broad framework of models specified by general estimating equations. It means that the
weakest signals reflected by || {g(j)(Z; 0)}||∞ (j ∈ ) cannot vanish at a rate faster than
n−1/2. Assumption A.3 is not stringent, and it reduces to A.1 in special cases of linear models
and generalized linear models. A similar assumption is also made in Zhao and Li (2012).
Assumption A.4, which is a counterpart of A.2 in general cases, is required for establishing
exponential inequality when analyzing large deviations. Zhao and Li (2012) assumed
boundness of all components in g(j)(Z; 0), which implies A.4.

Theorem 5—Under assumptions A.3–A.4, there exists a positive constant C4 depending

only on K3, K4 and γ3 appeared in assumption A.4 such that, for any  and

,

where .

This theorem is a natural extension of Theorem 2 in the broad framework for models
specified by general estimating equations. In special cases, we have considered for linear
models and generalized linear models, g(j)(Z; 0) = Xj Y(j = 1, …, p), and γ3 in assumption A.

4 is equal to  where γ1 and γ2 are specified in A.2.
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Let

We now consider the size of  in the setting

This specification also reduces to those considered in special cases of linear models and
generalized linear models. The counterpart of Theorem 4 for establishing the selection
consistency is given as follows.

Theorem 6—Under assumptions A.3 and A.4, if maxj ∉  ||uj||∞ = O(n−η) where η > κ
and minj ∉  λmin( {g(j)(Z; 0)g(j)(Z; 0)T}) ≥ c4 for some c4 > 0, where λmin(A) means the
smallest eigenvalue of A, then there exists a positive constant C5 depending only on K3, K4

and γ3 appeared in assumption A.4 and c4 such that, for any and, γn=c3,n2τ

Combining the Theorems 5 and 6, we can see that the screening procedure using the
marginal empirical likelihood ratio is valid in a broad framework for identifying the set of
the effective features.

4.2. Iterative screening procedure
As we can see from the main results, the proposed marginal empirical likelihood screening
procedure works ideally for the case with explanatory variables that are independent of each
other. To deal with challenging situations with correlated explanatory variables, we propose
to use the following iterative sure independence screening procedure.

Step 1: Rank explanatory variables according to ℓj(0) by (2.5) and select top ranked
explanatory variables with largest values of ℓj(0)’s until some desirable number of
features are included. Denote the set of select explanatory variables by .

Step 1′: Apply penalized empirical likelihood [Leng and Tang (2012), Tang and Leng
(2010)] to explanatory variables in  and denote the final model by .

Step 2: Let  ⊂{1, …, p} be the selected model at the kth step. At the kth iteration, for
each j ∉ , denote by
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the empirical likelihood for the combined covariates, and denote by

the profile empirical likelihood evaluated at μ. Rank explanatory variable j in 

according to  and select the top ranked until some desirable number of features
are included. Denote the selected set by .

Step 2′: Apply penalized empirical likelihood to explanatory variables in  ∪  and
denote the final model by .

Step 3: Repeat steps 2 and 2′ when either  = or the size of  reaches a pre-
specified number.

The above iterative screening procedure incorporates the profile empirical likelihood. The
rationale behind it is to capture the joint impact that may be invisible using the marginal
screening procedure if correlations exist among those covariates. Our iterative screening
procedure shares some similar features of the analogous ones in Fan and Lv (2008) and Fan
and Song (2010). However, on the other hand, the iterative procedure using the profile
empirical likelihood ratio shares the feature of the marginal empirical likelihood approach
by incorporating the level of uncertainties. In addition, we note that the above iterative
procedure is generally applicable in a broad framework.

5. Numerical examples
In this section, we use five simulation examples and a real data example to demonstrate the
performance of the proposed empirical likelihood-based screening procedure (denoted by
EL-SIS) and corresponding iterative procedure (denoted by EL-ISIS). Depending on the
example setting, we compare it with the screening methods proposed in Fan and Lv (2008)
(denoted by LS-SIS and LS-ISIS) and Fan and Song (2010) (denoted by GLM-SIS and
GLM-ISIS) for linear regression models and generalized linear models, respectively.
Whenever appropriate, we compare to the robust rank correlation based screening (RRC-SIS
and RRC-ISIS) studied by Li et al. (2012). For all simulation examples, we begin with p =
1000 explanatory variables and screen to a much smaller number d of explanatory variables.
The respective SCAD penalized variable selection is further applied to these selected
explanatory variables to get the corresponding final model. Results over 200 repetitions are
reported. For each case, we report the number of repetitions that each important explanatory
variable is selected in the final model and also the average number of unimportant
explanatory variables being selected.

Example 1—This example has a very standard setting with three important explanatory
variables and is taken from Fan and Lv (2008). Covariates are generated as Xj ~ N(0, 1) and
cov(Xj, Xj′) = 1 if j = j′ and 0.3 otherwise. The response is generated as Y = 5X1 + 5X2 + 5X3
+ ε with error being independent of the explanatory variables. We consider three different
error distribution N(0, 1), N(0, 22), and t4 for ε. Random samples of size n = 100 are used
and we set d = ⌊n/(2 log n)⌋ = 10, where ⌊a⌋ denotes the largest integer that is less than or
equal to a. Results over 200 repetitions are reported in Table 1, where we report the number
of repetitions that each of the important explanatory variables X1, X2 and X3 is selected. For
unimportant explanatory variables, Table 1 reports their average number of repetitions for
each being selected. It shows that the proposed empirical likelihood-based screening
methods perform very competitively when compared to the least squares-based screening or
the robust rank correlation-based screening.
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Example 2—The second example is also from Fan and Lv (2008) and has a hidden
important explanatory variable, which is important but marginally uncorrelated with the
response. This example is to illustrate that the proposed iterative empirical likelihood-based
screening works effectively in such challenging cases. Covariates are generated as Xj ~ N(0,

1) and cov(Xj, Xj′) = 1 if j = j′ and 0.3 otherwise except  for j ≠ 4. The

response is generated as  with ε being independent of
explanatory variables. We consider three different error distribution N(0, 1), N(0, 22), and t4.
Results over 200 repetitions with n = 100 and d = ⌊n/(2 log n)⌋ = 10 are reported in Table 2.
It shows that the empirical likelihood-based screening is challenged by the hidden important
explanatory variable X4 but the corresponding iterative screening can easily pick it up.
Overall the performance of the empirical likelihood-based screening methods is very similar
to that of the least squares-based screening methods and is better than the robust rank
correlation-based screening. Note that iterative version of the robust rank correlation-based
screening is residual-based. This explains the improvement of the robust rank correlation-
based screening.

Example 3—The performances of the empirical likelihood-based screening and the least
squares-based screening methods are very similar in the previous two examples. It is known
that the empirical likelihood approach requires a less restrictive distributional assumption.
We next use a heteroscedastic example to show the advantage of the empirical likelihood-
based screening. Explanatory variables are generated as Xj ~ N(0, 1) with cov(Xj, Xj′) = 0 for

j ≠ j′. The response is generated as  with independent
ε ~ N(0, 1) and c > 0 controls the signal level. Results over 200 repetitions with n = 70 and d
= ⌊n/(2 log n)⌋ = 8 are reported in Table 3 for three different values of c. It shows that the
performance of the least squares-based screening is severely affected by the
heteroscedasticity especially when the signal level is low. On the other hand, the proposed
empirical likelihood-based screening works much better and similarly as the robust rank
correlation-based screening.

Example 4—We now consider an example with the extended scope. In this example, we
generate data from the longitudinal data example as in Section 4.2 with m = 4 means 4
repeated measurements generated. In particular, the following model is generated:

Here Xil is generated from multivariate normal N(0, Σ) with Σ = (σjk)j,k=1, …, p and σjk =
0.5|j−k|. The error vector εi = (εi1, …, εim)T is generated from multivariate normal
distribution with unit variance. The correlation structure of ε is specified as AR(1) with
parameter 0.8; see Diggle et al. (2002) for reference for the correlation structure. The first
five components of the true β is set to be c · (2.0, −2.0, 0, 0, 2.0)T where c is used to control
the signal strength, and all other components of β are zero. We use two sets of basis matrices
in (4.2). We take M1 = I as the identity matrix. The second basis matrix M2 is a matrix with
two main off-diagonals being 1 and 0 elsewhere corresponding to the AR(1) working
correlation [Qu, Lindsay and Li (2000)]. We then apply the marginal empirical likelihood
procedure as in Section 4 using the marginal estimating function of (4.2). Here we note that
the marginal estimating function is 4-dimensional. By ignoring the correlation structure of
the longitudinal data, the least squares-based screening and robust rank correlation-based
screening procedures can be applied. Results over 200 repetitions with n = 60 and d = 15 are
reported in Table 4. From Table 4, we clearly see that the marginal empirical likelihood
approach works much better than the alternative ones, especially when signal is relatively
weak. The improvement can be seen as the results of incorporating additional data structural
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information. Hence, we demonstrate an advantage of the marginal empirical likelihood
approach of being adaptive and flexible.

In the review process, one referee pointed out that our comparison to the LS-SIS is not fair
as it is based on the ordinary least squares. It is more reasonable to compare to a weighted
least squares-based screening by adjusting to correlation among longitudinal observations.
To address this issue, we implement this weighted least squares-based screening by using
the R package “geepack,” which can estimate both the correlation structure and regression
parameter once a parametric form of the correlation structure is specified. Table 4 is updated
accordingly with GEE-SIS denoting this weighted least squares-based screening method. It
shows that our newly proposed EL-SIS still does better than the GEE-SIS even though a
correct parametric correlation structure, AR(1), is specified.

Example 5—This is an extension of Example 2 to the case with a binary response using
logistic regression. Covariates are generated as Xj ~ N(0, 1) and cov(Xj, Xj′) = 1 if j = j′ and

0.3 otherwise except  for j ≠ 4. The binary response is generated from
Bernoulli distribution with success probability given by

. Results over 200 repetitions with n = 400 and
d = 10 are reported in Table 5. A similar performance pattern is observed. For this example,
the result for the iterative version of the robust rank correlation-based screening is not
presented since it is not clear how to define a residual-based iterative procedure.

A real data example—Glioblastoma is the most common primary malignant brain tumor
of adults and one of the most lethal of all cancers [Horvath et al. (2006)]. The median
survival of glioblastoma patients is 15 months from the time of diagnosis. We next apply our
proposed methods to a microarray gene expression dataset of glioblastoma patients reported
in Horvath et al. (2006). The dataset has been analyzed by Pan, Xie and Shen (2010) and Li
and Li (2008) among many others. Drawn from two different studies, the data consist of two
independent sets. We use the set with 50 samples. We use the log survival time, measured in
years, as the response. The second sample with a outlier response is excluded and the other
49 samples are used in our analysis. Explanatory variables are gene expression profiles of
1523 genes measured on Affymetrix HG-U133A arrays.

We apply the least squares-based and empirical likelihood-based screening methods with d
= 6. LS-SIS selects “GSN”, “FOS”, “COL11A1”, “AVPR1A”, “SELE”, and “TBL1X” as
important gene explanatory variables while EL-SIS selects “GSN”, “JAK2”, “COL11A1”,
“CDK6”, “ADCYAP1R1”, and “TBL1X”. Note that they select some common genes
(“GSN” and “COL11A1”) and some different genes. LS-ISIS selects “GSN”, “COL11A1”,
“THBS1”, “SELE”, “TBL1X”, and “GCGR”. EL-ISIS selects “DUSP7”, “COL11A1”,
“BST1”, “ADCYAP1R1”, “TBL1X”, and “GCGR”. Similarly two genes (“TBL1X” and
“GCGR”) are recruited by the iterative screening methods based on both the least squares
and empirical likelihood. The robust rank correlation-based screening performs similarly
with 2–3 overlapping genes.

6. Discussion
Screening based on marginal model fitting has enjoyed great popularity in the recent
literature. However, most, if not all, of the marginal screening methods studied thus far are
based on some restrictive distributional assumptions. Yet these assumptions may not be
realistic in applications. Thus motivated we propose a new screening method based on
marginal empirical likelihood, which is known to be less restrictive. It has been
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demonstrated to be effective using both theoretical sure screening property and numerical
evidences. Further extensions using empirical likelihood are being investigated.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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