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Reservoir computing is a novel bio-inspired computing method, capable of solving complex tasks in a
computationally efficient way. It has recently been successfully implemented using delayed feedback
systems, allowing to reduce the hardware complexity of brain-inspired computers drastically. In this
approach, the pre-processing procedure relies on the definition of a temporal mask which serves as a scaled
time-mutiplexing of the input. Originally, random masks had been chosen, motivated by the random
connectivity in reservoirs. This random generation can sometimes fail. Moreover, for hardware
implementations random generation is not ideal due to its complexity and the requirement for trial and
error. We outline a procedure to reliably construct an optimal mask pattern in terms of multipurpose
performance, derived from the concept of maximum length sequences. Not only does this ensure the
creation of the shortest possible mask that leads to maximum variability in the reservoir states for the given
reservoir, it also allows for an interpretation of the statistical significance of the provided training samples
for the task at hand.

R
eservoir Computing is a recently introduced paradigm in the field of machine learning1–4. Similar to
traditional neural network approaches, an input signal is injected into a network of artificial neurons or
nodes, where it is nonlinearly transformed. In this way, the neural network maps the input onto a high-

dimensional space, rendering it more suitable for classification. The projection of the input signal onto the high-
dimensional state space facilitates classification into different categories drastically compared to using the original
inputs. While in traditional neural networks one network does the high-dimensional projection and is being
adapted to perform the classification, in reservoir computing the network doing the projection is unaltered and
only the readout weights are modified for classification. Consequently, the artificial neural network is split into
three separate layers: the input layer, the reservoir layer and the output layer, as illustrated in Fig. 1(a). Exchange
of information between and within these layers is defined in the form of weighted connections, resulting in a
global network architecture. Each layer handles its specific task in the network. The input layer provides the
interface between the real-world signal and the network, while the reservoir layer projects the signal onto a
network state better suited for classification. The reasoning behind this is that in a high-dimensional space,
constructed by the many nodes in the reservoir, it becomes exponentially more likely that variables with similar
features cluster together and can be separated by hyperplanes. Variables that cannot be linearly separated in a low-
dimensional space, might be perfectly linearly separable in a high-dimensional space. The interpretation of the
high-dimensional mapping and the final classification step is performed by the third layer, the output layer. It is
here that the final output series is generated, after a procedure which is called training. The training procedure will
determine the correct set of weights for the output layer by using examples of the problem to be solved that are fed
to the network. A framework has been proposed to define the computational capacity of these systems and to a-
priori evaluate their suitability for a range of tasks5. It was shown that this entire network structure, with
sometimes many hundreds or thousands of nodes, can often be replaced by only one single nonlinear node
and a delay line6, as illustrated in Fig. 1(b). Since the training of the system is performed in the output layer only, it
does not alter the dynamics of the reservoir itself. This means that the exact implementation of the reservoir is not
constrained to a random network of nodes. Appeltant et al. implemented the reservoir layer employing one
nonlinear node that performs the transformation and a delayed-feedback line to spatially map temporal informa-
tion. Along the delay line one can define virtual nodes, playing a role similar to the many nodes present in a
traditional network approach. They correspond in fact to a subdivision of the delay line, containing a delayed
version of the nonlinear node output. By exploiting the dynamical properties of the system, in particular the
different time scales, a virtual interconnection structure can be created, without providing many physical con-
nections between all the virtual nodes. The inertia of the system can introduce coupling between neighbouring
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virtual nodes, while the delayed-feedback line accounts for a strong
self-coupling of every node with its older version. When tapping the
delay line at the positions of the virtual nodes, the corresponding
vector represents the reservoir state. The training procedure is chosen
identical to the one used for traditional network approaches of res-
ervoir computing. It was demonstrated that for a number of bench-
mark tasks the obtained results are comparable or even better than the
ones yielded by a large network of randomly interconnected nodes.
The fact that not the entire complexity of a random network is needed,
but that also simpler architectures suffice to achieve good performance
was also shown in7. The delayed-feedback concept drastically simpli-
fies the hardware implementation and was later extended to electro-
optics8,9 and even to ultra-fast all-optical implementations10. The fact
that the input for the virtual nodes needs to be injected in the system
via the one nonlinear node, requires, however, pre-processing of the
input (time-multiplexing), referred to as masking.

The masking procedure serves two purposes: sequentializing the
input and maximizing the effectively used dimensionality of the
system. In a traditional network approach all the nodes in the res-
ervoir can be addressed directly via the direct connections from the
input layer to the reservoir layer. In the delayed feedback approach
the input signal passes through the nonlinear node first, where it
undergoes nonlinear transformation and then propagates through
the delay line to the virtual nodes. Providing the input signal, with the
proper input scaling, to the corresponding virtual node is achieved by
time multiplexing the input. Therefore, also the input scaling needs
to be imprinted on the input before injection. The result is a piece-
wise constant input series, with constant intervals corresponding to
the separation between the virtual nodes in the delay line.

The delayed coupling in the system provides an infinite-dimen-
sional state space. However, without applying different scaling fac-
tors to all the different nodes, the available dimensions are not
optimally explored in the reservoir state space. Very similar inputs
would result in very similar outputs, which would not span a high-
dimensional state space. When using a large number of nodes, the
mask containing the scaling factors can often be chosen randomly.
For a smaller set of nodes this choice can give bad results and a
procedure to reliably assign mask values, such that a maximum
diversity in reservoir states is created, is highly desired. Certainly,
in some situations one could test different random masks if one only
has a single task at hand. Rodan et al7. already stated that using
aperiodic sequences in the input weights deterministically generated
from e.g. a chaotic time series could outperform random drawings.
Nevertheless, such an approach remains largely heuristic. In this
paper, we aim to build a versatile system with good performance
regardless of the task or changes in system parameters. The tech-
nique presented here, based on insight into the dynamical behaviour
of delayed feedback systems, is able to construct the shortest possible
mask with excellent performance.

Results
Here we outline the pre-processing procedure for a scalar input, but
the concept can be readily transferred to a vector input with multiple

channels. The goal is to time-multiplex the scaled inputs for the
different virtual nodes into one input stream, which then can be
injected in the physically present nonlinear node. Any input value
u(k), originating from a discrete input series or from sampling a
continuous input stream, is held constant during the interval t, the
delay time of the system. This ensures that the same input value will
be fed to the corresponding virtual nodes in the delay line. This
piecewise constant function I(t) with the value I(t) 5 u(k) for t g
[(k 2 1)t, kt] is subsequently divided into N sub-intervals of length h,
defining the separation of the virtual nodes. Every interval represents
the properly scaled input segment to be fed to one virtual node. For
every interval of length h, the separation between the virtual nodes,
the input value is multiplied with the scaling factor wi of the corres-
ponding virtual node i, creating the masked input series J(t) as fol-
lows

J tk,ið Þ~I tk,ið Þ:wi, ð1Þ

with tk,i denoting the time corresponding to input k and virtual node
i. This can also be expressed as tk,i g [(k 2 1)t 1 (i 2 1)h, (k 2 1)t 1

ih]. The relation between t, h and N is given by t 5 N ? h.
The importance of the ratio between the time scale h and the

characteristic time scale T of the nonlinear node was pointed out
before6. Only by choosing h smaller than T, the node will always be
residing in a transient regime, necessary for efficient computational
ability. This choice, however, also imposes a constraint on the exact
sequence of the scaling factors. The state of a virtual node is deter-
mined by the injected input value, by the feedback coming from the
delay line, and through inertia by the states of its adjacent neighbour-
ing nodes. If h is chosen to be equal to T/ , with [N0, it is reasonable
to assume that the state of virtual node i is determined by the states of
virtual nodes i 2 1, i 2 2,…, i 2 , i 2 m, with m close to . In the
following, we refer to m as the relevant sequence length. Hence, the
exact mask sequence is a crucial ingredient in creating diversity in
the different reservoir states and fully exploiting the high-dimension-
ality of the system. This concept is schematically depicted in Fig. 2.

Sufficient diversity can be reached by generating very long mask
sequences, containing many possible combinations of the different
mask values. However, in terms of efficiency and to perform the
training procedure in a not too high-dimensional state space result-
ing in statistical limitations, it is desirable to construct a mask in the
shortest possible way (the smallest possible number of virtual nodes)
that contains a maximum of variations in the mask sequences of
length m. When the number of virtual nodes decreases, the length
of the delay line also decreases, since they are coupled by the relation
t 5 Nh. A shorter delay time results in faster information processing.

As an example we consider the situation in which the state of a
virtual node is determined by its proper input and the value of only
one neighbouring virtual node. To ensure maximum variation in all
the obtained virtual node states, all possible sequences of 2 mask
values - the virtual node under consideration and its neighbour -
need to be present in the mask: 00 01 10 11. However, it becomes
clear that the last block, 11, is already present in the combination of
block 2 and 3. Hence, the state found for virtual node 5 would be

Figure 1 | Layered representation of a reservoir computing setup. (a) traditional network approach (b) delayed feedback approach with masking

procedure.
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identical to the state of virtual node 8. Instead of explicitly including
these 4 blocks in the mask realization, we generate a sequence con-
taining all possible transitions from one mask value to another
exactly once: 00110. This mask is shorter and avoids any redundancy
in mask value sequences. While for m 5 2 this is straightforward, it
becomes more involved to construct these sequences for larger m.

In order to ensure that the dimensionality of the system is always
fully explored in the shortest possible way, we outline a method that
guarantees an optimal choice for the mask values. We conjecture that
the series of mask values should contain all possible patterns, given a
certain sequence length m of the pattern. If (following the example of
Fig. 2) the node state is strongly dependent on the states that were
obtained for the 4 previous adjacent virtual nodes, we believe no
more information can be extracted than given by all possible
length-4 sequences of the two mask values. Moreover, in order to
construct the most efficient mask, we assume all of them should
occur exactly once. This can be done by using a modification of what
is called maximum length sequences. In maximum length sequences,
a series of values is generated that contains all but one possible bit
patterns of an m-bit block in a ring structure. Only the all-zero
sequence is not included. For detailed descriptions on theory around
and construction of these sequences we refer to literature11–13. Here,
only binary masks are considered, but the approach might be
extended to multi-level masks using m-ary maximum length
sequences14.

Since, in the case of the constructed masks, all bit patterns need to
be present for one input step of length t, the ring structure is not
applicable here. In general, when all possible realizations of m bits are
required in the mask, the minimal mask length is exactly 2m 1 m 2 1.
This extra length of m bits, as compared to the length of 2m 2 1 for a
pure maximum length sequence, originates from adding one 0 (the
combination with m zeros is not present in a maximum length
sequence) and from adding the last m 2 1 bits of the sequence to
the beginning of the series (because the mask is not a ring structure
for one input step).

The key idea of our procedure is not to do a numerical optimiza-
tion of the reservoir for a certain task, but to realize an optimality in
terms of diversity of m-bit sequences, therefore obtaining a versatile,
not task-specific, high-dimensional projection. An efficient training
algorithm requires every feature to be present in the training data
only once. Given a relevant sequence length m (fully determined by
the choice of the time scale h) we guarantee that all state-space
directions are maximally explored. Every possible sequence is pre-
sent in the constructed mask, leading to a maximum variety in the
reservoir states. By employing maximum length sequences, this con-
cept is implemented in a way that is completely independent of the
chosen nonlinearity or benchmark. Still, the best-performing ran-
dom masks will be able to match the optimal masks in terms of
performance. However, our technique is not only oriented towards

increasing performance, its goal is also to eliminate the standard
deviation on performance. For every result generated with a random
mask, one needs to perform several runs of the experiment to have an
indication whether the chosen mask is a good or a bad performer. We
have eliminated this trial and error, which is also detrimental for
hardware implementations, and we guarantee that the constructed
mask is among the best performing ones, even with one single run.
The difference in standard deviation becomes even of more import-
ant when going to shorter mask sequences. In delayed-feedback
reservoir computing the time needed to process a signal is related
to the length of the mask, hence shorter masks result in faster
information processing. Also, constructing the mask such that it
optimally explores the full dimensionality of the system, ensures
good performance for any task or any parameter set, allowing for
versatility.

Here, a delayed-feedback Mackey-Glass oscillator15 is used, ori-
ginally introduced as a model of blood cell regulation, but other
nonlinear nodes are expected to perform similarly. The equation of
the system for this nonlinearity type is

_x tð Þ~{x tð Þzg
x t{tð Þz J tð Þ

1z x t{tð Þz J tð Þ½ �p
, ð2Þ

with _x representing the derivative of x with respect to time, g the
feedback strength, the input scaling for masked input J, and t the
delay time. Eq. (2) is numerically integrated using Heun’s method
with a time step of 0.1. By replacing the values 0 and 1 of the previous
section with the low and high value of the binary mask, respectively,
we can construct a mask with all possible mask value sequences of
length m present. For both tasks the reservoir responses to 4 input
samples of length 4000 each were collected and the training was
performed using a Moore-Penrose pseudo inverse and 2-fold
cross-validation. Overfitting is avoided using Tikhonov regulariza-
tion and all the reported errors are test errors.

To validate the strategy, two benchmark tasks are solved. Using
these optimal masks, a performance plot is shown for the Mackey-
Glass nonlinearity in Fig. 3(a), where the number of virtual nodes is
varied and the performance on the NARMA10 task is quantified via
the NRMSE. The NARMA10 task is a nonlinear system modelling
task which was orginally introduced in16 and which is commonly
used in the field of reservoir computing. The parameters of the
Mackey Glass system are chosen close to the optimal settings for this
task: g 5 0.5, 5 0.001, p 5 1 and h 5 0.2, while the two mask values
are 61. The value of t is determined by the relation t 5 Nh, with N
being the number of virtual nodes. For all experiments these para-
meter settings correspond to a zero steady-state solution in absence
of the input. The green dots represent the scoring of 100 constructed
optimal masks, while the black dots mark the scoring of 100 ran-
domly chosen binary masks. The random masks could include the

Figure 2 | (a) A general scheme of the masked input to be fed to the system is shown. (b) A zoom of the last masked input step is depicted. The state of the

present virtual node (dashed arrow) depends in an exponentially decreasing way on the states of previous virtual nodes (solid arrows) The number of

relevant nodes to significantly determine a state is called the relevant sequence length m. The black line represents the masked input and the red

line the response of the nonlinear node.
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constructed mask sequence, as well as the sequence with all mask
values being identical, corresponding to the case of no masking. The
latter realization scores worse than a purely linear reservoir. This
illustrates that the total standard deviation for the random masks
can be very large and is much larger than shown here. First, it can be
noted that for the obtained NRMSE a saturation can be observed
when increasing the number of virtual nodes up to 263 (8-bit
sequences) or more. Second, a higher virtual node number results
in a smaller standard deviation on the performance. This complies
with the fact that the virtual node separation is chosen to be 0.2,
corresponding to 5 virtual nodes per characteristic time scale of
the nonlinear node. The response time of the node corresponds to
5 virtual nodes, hence it is reasonable to assume that combinations
with a total length of a little more than the response time are signifi-
cant to determine the state of a virtual node. Any older state has no
significant influence on the present node state and cannot create
more variation in the reservoir states. For smaller virtual node num-
bers, not all possible bit combinations of 8 or more bits are present.
For some of the randomly chosen masks there are more relevant
sequences lacking than for others, resulting in a larger standard
deviation on the error. When increasing the number of nodes, all
standard deviation on the performance disappears since all possible
mask value patterns are included and even a certain redundancy is
introduced. We remark that the average performance is very com-
parable for random and constructed masks, but in the case of the
constructed masks the obtained performance is more consistent. The
results are not only of excellent quality, but they are also reliable,
eliminating the need for trial and error in the selection of the mask, as
done otherwise.

In Fig. 3(b) the performance of the optimal masks is shown for two
values of h, the virtual node separation. The green points denote the
score of the system for h 5 0.2 and the black points for h 5 1. Here,
the importance of the sequence length is clearly illustrated. The
standard deviation on the values obtained for h 5 1 is significantly
lower, because adjacent virtual node contribute less to the creation of
a virtual node state. Only the very nearest neighbours play a role.
When all possible patterns of longer sequence lengths are included as
well, no real improvement can be achieved in terms of standard
deviation. The relevant combinations of mask values are already
present. The choice of h determines the connectivity in the system,
leading to a certain error that can be achieved (for this task h 5 0.2 is
optimal). This explains why the optimal NRMSE is higher for all
sequences for h 5 1. Once the desired virtual node separation is
selected, our procedure constructs an optimal mask, such that the
system’s high-dimensionality is fully explored and a minimum value
of t can be determined, which yields a maximum variability in the

virtual node states. Choosing h and the sequence length m go hand in
hand. Therefore, the effort for optimising the reservoir can now be
greatly reduced.

In Fig. 4 only the standard deviation on performance is shown, for
a situation similar to that one of Fig. 3(a). The black crosses, indi-
cating the standard deviation on performance found for random
masks, are systematically positioned at higher values than the green
plusses, corresponding to the standard deviation found for optimal
masks, constructed using maximum length sequences. We remark
that the standard deviation shown for the random masks is based on
the relatively wellperforming masks of Fig. 3. They do not include
possible random realizations with alternating or all-identical mask
patterns, which would significantly increase the standard deviation.

When the same approach is applied to the Santa Fe Laser time
series prediction task, a similar performance on virtual node number
is found, as shown in Fig. 5. Again, the number of virtual nodes is
varied, but this time the performance is shown as an NMSE. The
black data points denote the error of the randomly chosen masks and
the green data points represent the corresponding errors for the
optimal masks. Here, saturation of the performance already occurs
for 36 virtual nodes. It is observed that for this benchmark the stand-
ard deviation is slightly larger and more importantly, a mask con-
sisting of only short patterns is sufficient. The standard deviation

Figure 3 | Performance plot NARMA10 for a Mackey-Glass nonlinearity type with parameter settings: g 5 0.5, 5 0.001 and p 5 1. (a) Random and

constructed optimal masks for h 5 0.2: the black points denote the scoring of the random masks, while the green points indicate the NRMSE obtained for

constructed optimal masks. (b) Constructed optimal masks for different h: the green points denote the scoring of the constructed optimal masks

for h 5 0.2, while the black points indicate the NRMSE obtained for the same optimal masks for h 5 1. In both plots 100 masks were generated for every

node number.

Figure 4 | Plot of the standard deviation on performance for NARMA10
with a Mackey-Glass nonlinearity type with parameter settings: g 5 0.5,
5 0.001, p 5 1 and h 5 0.2. The black crosses denote the standard

deviation on performance of the random masks, while the green plusses

indicate the obtained standard deviation for constructed optimal masks.

For every virtual node number 100 masks were generated.
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hardly decreases when working with higher node numbers, on the
contrary, the standard deviation increases again for 520 nodes. This
can be explained by the fact that for this task two different effects are
observed. The standard deviation decreases with the number of vir-
tual nodes because of variability in the reservoir states, but for high
node numbers the standard deviation increases due to the statistical
insufficiency of the training procedure. When scaling up the dimen-
sionality, i.e the number of virtual nodes used for training, the train-
ing samples to be considered should scale up in length as well. While
for the NARMA10 task the training samples can be chosen arbitrarily
long, this is not the case for the Santa Fe task. The number of samples
is fixed and, as can be deduced from the results in Fig. 5, not sufficient
for 520 nodes or more. In case a random mask would have been used,
no distinction could have been made between the standard deviation
due to the quality of the randomly drawn values of the mask and the
standard deviation due to training statistics. Through optimally con-
structing the mask based on the sequence length one can conclusively
estimate the limits of the training data by evaluating the remaining
spread. Only for the optimized masks it would disappear for a suf-
ficient m and a sufficient set of training data.

Discussion
We have introduced a method to pre-process the input of a delayed-
feedback reservoir such that the high-dimensionality of the system is
optimally explored in the sense that a maximum variability is created
in the reservoir states, while reducing the number of virtual nodes to
a minimum. Next to faster signal processing, another advantage is
the elimination of the standard deviation on the performance due to
the specific mask realization. This implies that there is no need for
trial and error during selection of the mask, which is particularly
important when realizing full hardware implementations of the con-
cept. The only resulting variance in performance is due to the train-
ing samples and the training algorithm itself. Hence, this method
allows us in addition to detect training samples that are not statist-

ically significant for solving the task at hand, a conclusion that can
never be drawn with certainty for random masks.
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Figure 5 | Performance plot for the Santa Fe laser prediction task for
random and optimal masks. A Mackey-Glass nonlinearity type is used,

with parameter settings: g 5 0.5, 5 0.001, p 5 1 and h 5 0.2. The black

points denote the scoring of the random masks, while the green points

indicate the NMSE obtained for optimal masks. For every scanned node

number 100 masks were generated.
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