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Abstract

The estimation of HIV incidence from cross-sectional surveys using tests for recent infection has attracted much interest.
It is increasingly recognized that the lack of high performance recent infection tests is hindering the implementation of
this surveillance approach. With growing funding opportunities, test developers are currently trying to fill this gap.
However, there is a lack of consensus and clear guidance for developers on the evaluation and optimization of candidate
tests. A fundamental shift from conventional thinking about test performance is needed: away from metrics relevant in
typical public health settings where the detection of a condition in individuals is of primary interest (sensitivity,
specificity, and predictive values) and toward metrics that are appropriate when estimating a population-level pa-
rameter such as incidence (accuracy and precision). The inappropriate use of individual-level diagnostics performance
measures could lead to spurious assessments and suboptimal designs of tests for incidence estimation. In some contexts,
such as population-level application to HIV incidence, bias of estimates is essentially negligible, and all that remains is
the maximization of precision. The maximization of the precision of incidence estimates provides a completely general
criterion for test developers to assess and optimize test designs. Summarizing the test dynamics into the properties
relevant for incidence estimation, high precision estimates are obtained when (1) the mean duration of recent infection is
large, and (2) the false-recent rate is small. The optimal trade-off between these two test properties will produce the
highest precision, and therefore the most epidemiologically useful incidence estimates.

The measurement of HIV incidence, the rate of new
infections, is essential in most surveillance and inter-

vention contexts. Recognizing the practical challenges pre-
sented by longitudinal studies, the estimation of incidence
from cross-sectional surveys using tests for recent infection
has attracted considerable interest.1–7 However, the perfor-
mance, characterization, and optimization of a test that aims
to categorize infections as ‘‘recent’’ or ‘‘nonrecent,’’ specifi-
cally for population-level surveillance, requires a shift from
conventional diagnostic thinking about test performance.

When individual-level detection of a condition is of primary
interest, sensitivity, specificity, and predictive values are ap-
propriate metrics of performance. These metrics improve as
intersubject variability decreases. However, when estimating
a population-level summary parameter, such as incidence, the
appropriate performance metrics are accuracy and precision
of the statistic measured. Biomarker-based cross-sectional
incidence estimation utilizes information on the average be-
havior of biomarkers, and is relatively insensitive to the var-

iability underlying this averaging. While the appropriate
optimization of tests for recent infection has been noted
in passing,3–7 there is neither consensus nor guidance for
developers.

As with any diagnostic, elements of a test for recent infec-
tion may be adjusted to alter its performance. In the context of
HIV recent infection tests, typically some quantitative host or
viral biomarkers are measured, and the infection is catego-
rized as ‘‘recent’’ or ‘‘nonrecent’’ by reference to thresholds.1–3

For example, the widely used BED assay measures the pro-
portion of HIV-specific immunoglobulin G (IgG) antibodies in
total IgG, and a measurement below some threshold classifies
the infection as ‘‘recent.’’8 While a test may be composed of
many elements that can be varied, from the underlying bio-
logical processes measured to the assay platforms and specific
kits, ultimately the optimization will involve the fine-tuning
of thresholds.

It is increasingly recognized that the lack of high perfor-
mance recent infection tests poses a major obstacle to the
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widespread implementation of cross-sectional incidence sur-
veillance.5,7 The World Health Organization (WHO) has
maintained a WHO Working Group on HIV Incidence Assays
since 2006, the Consortium for the Evaluation and Perfor-
mance of HIV Incidence Assays (CEPHIA) was established in
2010, and both the Bill and Melinda Gates Foundation and the
National Institutes of Health have provided substantial
funding for the development of better tests.9–13 Given the
current surge in the development of candidate tests for recent
infection, it is important to have clarity and consensus on
robust metrics of performance, and in particular to avoid the
pitfalls of traditional diagnostic thinking.

Prevalence, the fraction of a population with a condition,
can at times substantially inform us about incidence. For ex-
ample, for transient conditions, such as influenza, it is well
known that near demographic equilibrium:

Incidence � Prevalence=Mean duration of condition (1)

where incidence is expressed as a rate of cases per person
time in the entire population, not just per person time at risk.
However, when a condition is enduring, and survival in the
state is poorly known and evolving, as is the case with HIV,
prevalence becomes uninformative about incidence. In this
case, it makes sense to find ways of defining and detecting a
robust early phase postinfection, and using a more refined
version of the above heuristic to infer incidence from the
prevalence of ‘‘recent’’ infection.

Under simplistic assumptions, HIV incidence, expressed as
a rate of infections per person time at risk, is then formally
estimated, in a cross-sectional setting, by14

Î¼ p
R

p�O
(2)

where pR and p– are the proportions of ‘‘recently’’ infected
and HIV-negative subjects in the sample and U is the mean
duration of recent infection. Currently available, and perhaps
all conceivable, tests for recent infection present a subtle
problem in that some individuals who have been infected for
long periods of time may nevertheless yield spurious ‘‘recent’’
results.15–17 With some simplifying assumptions (which are
often not numerically catastrophic) it has been shown how
this ‘‘false-recent’’ phenomenon can be intuitively understood
as requiring a ‘‘subtraction’’ of the estimated number of ‘‘false-
recent’’ results from the observed number of ‘‘recent’’
results.18–21

More recently, a very general analysis has been obtained
by introducing a convenience recency time cut-off, T (pre-
sumed to be 1 year for the purposes of model scenarios
throughout this article), which represents the time, postin-
fection, after which a ‘‘recent’’ test result is a ‘‘false-recent’’
result.21 The test properties then are (1) a false-recent rate, bT,
which is the (population-dependent) proportion of those
individuals infected for more than time T who produce
‘‘recent’’ test results, and (2) a somewhat subtly defined
mean duration of recent infection, UT, which is the average
time spent ‘‘recently’’ infected while infected for less than
T.21 Note that 1 - bT is the (population-dependent) speci-
ficity of the test if it aimed to identify infections that have
occurred within the preceding period T. This leads to the
following incidence estimator21:

ÎT ¼
p

R
� bTpþ

p� (OT � bTT)
(3)

which depends on the proportions of subjects in the sample
who are classified as ‘‘recently’’ infected ( pR), HIV-positive
( p + ), and HIV-negative ( p - = 1 - p + ), and the test properties
(UT and bT) for a chosen recency time cut-off T. When there are
no ‘‘false-recent’’ results (bT = 0), Eq. (3) reduces to Eq. (2). In
terms of epidemiological and demographic context, the ap-
plicability of Eq. (3) requires only that the susceptible popu-
lation not vary substantially over a period of duration T.21 In
terms of the biomarkers underlying the recency test, these
should mainly capture stable biological, as opposed to envi-
ronmentally dependent, factors over the period T postinfec-
tion (UT should not vary significantly by context, but be a true
property of the test).21 It is understood that bT will have
contextual variability.21

Uncertainty in the incidence estimate arises from statistical
fluctuations of the proportions of subjects in the sample in the
various classes, as well as uncertain test properties. The un-
certainty in the incidence estimate, described here by its co-
efficient of variation (ratio of standard deviation to mean), c,
can be approximated using the delta method21:

c2 � 1

nPþ

1

P�
þ PRPNR

(PR� bTPþ )2

 !
þ r2

ÔT

1

OT � bTT

� �2

þ r2
b̂T

PNROT �PR(T�OT)

(PR� bTPþ )(OT � bTT)

� �2
(4)

where PR and PNR are the proportions of ‘‘recently’’ and
‘‘nonrecently’’ infected individuals in the study population;
P + = PR + PNR and P– = 1 - P + are the proportions of HIV-
positive and HIV-negative individuals in the population; and
rÔT

and rb̂T
are the uncertainties (standard deviations) with

which the test properties UT and bT are measured. It is cer-
tainly possible that the normality assumptions intrinsic to
deriving Eq. (4) could be violated in practice, in which case the
same underlying theory can be used as a basis for a numeri-
cally more complex calculation of the variance of incidence
estimates, such as by bootstrap resampling methods.22 Whe-
ther or not Eq. (4) is used to estimate the coefficient of varia-
tion is not fundamental to the present discussion about
optimization.

The familiar statistical objective when estimating any pa-
rameter is to find a sample statistic that estimates the pa-
rameter with the greatest accuracy (least bias) and greatest
precision (smallest variance). As shown in the general deri-
vation of Eq. (3),21 the bias is negligible compared to variance
in the epidemiologically/demographically relevant regime,
using any reasonable test for recent infection. The remaining
goal is therefore the minimization of variance. The apparent
bias reported by other researchers23 is a result of an alternative
summary parameterization of biomarker dynamics, which
declares the false-recent rate to be zero. This leads to a
mean duration of recent infection that is complex, context-
dependent, and difficult to estimate, and hence produces a
similarly context-dependent implicit weighting over histori-
cal incidence.

To minimize variance, the state of ‘‘recent’’ infection should
not be too transient, so that a realistically sized cross-sectional
survey can capture a sufficient number of ‘‘recent’’ cases for
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the estimation of the ‘‘recent’’ proportion to be statistically
robust. The larger the adjustment for ‘‘false-recent’’ results,
the greater the overall uncertainty arising from fluctuations of
the sample proportions. The two test properties cannot be
independently adjusted, as increases in the mean duration of
recent infection typically also increase the false-recent rate.
Hence, the central goal of test design is an optimal balance
between these two properties. An ideal test would have a
near-zero false-recent rate and a mean duration of recent in-
fection of the order of a year (considering a setting where we
are interested in the average incidence over approximately the
last year).

Figure 1 illustrates this trade-off between the mean dura-
tion of recent infection, UT, and false-recent rate, bT. The
contours show the coefficient of variation (CoV) of the inci-
dence estimate, in an example context (epidemiological and
demographic equilibrium of 1% per annum HIV incidence
and 10% HIV prevalence; UT and bT estimated with a 5% and
30% CoV, respectively; and incidence measured in a cross-
sectional survey of 5,000 subjects). The CoV is shown as a
function of the mean duration of recent infection and false-
recent rate. Moving to the right (to a large mean duration of
recent infection) and down (to a low false-recent rate) in the
contour plot, the CoV of the incidence estimate decreases (i.e.,
precision increases). For a test to begin to move into a regime
of usefulness, the mean duration of recent infection should be
at least 6 months and the false-recent rate below 2%.4,5,12 In
the context captured in Fig. 1, this implies a CoV of the inci-
dence estimate of 30%, which implies that we can be 95%
confident of estimating the true incidence of 1% per annum as
a point estimate between 0.4% and 1.6% per annum.

To illustrate the optimization of test design in a very sim-
plistic scenario, consider a biomarker where the reading at a
time t after infection (years) is y(t) = 1 - exp(–2t) + 0.2e, where
e is standard normal noise and all individuals survive for 10

years after infection. Readings below some chosen recency
threshold indicate ‘‘recent’’ infection. Here, the only source of
variability is noise in the biomarker, while in reality there is
often substantial intersubject variability and effects due to
immune system decline and treatment. Nevertheless, this
simple model captures the same trade-off, that increasing the
recency threshold increases both the mean duration of recent
infection and false-recent rate, that would be observed with
more complex biomarker dynamics. In Fig. 2, we demonstrate
the variation of the precision of incidence estimates, with
changes in the recency threshold. Again, the precision is
quantified for a chosen context (epidemiological and demo-
graphic equilibrium of 1% per annum HIV incidence and 10%
HIV prevalence; UT and bT exactly known; and a cross-
sectional survey size of 10,000 subjects). Note that bT depends
on the survival dynamics and the epidemiological and
demographic history of the population (up until the maxi-
mum postinfection survival time). A tool to calculate the
CoV of incidence estimates is available (www.incidence-
estimation.com/page/tools).

Unfortunately, there is no single test design that will be
optimal in all settings. This is because uncertainty is deter-
mined by both the dynamics of the recent infection test as well
as the context-specific epidemiological and demographic dy-
namics (captured by incidence and prevalence). Therefore, a
range of anticipated contexts should be considered in evalu-
ating a candidate test or in fine-tuning test properties. This
context-specific performance may be discouraging and re-
grettably complicated, but it is not unique to this surveillance
application: even in a conventional simplistic diagnostics
setting, the sensitivity and specificity of a test, if these can be
assumed to be context-independent, must be combined with a
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FIG. 1. Test performance as a function of test properties.
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(%), as a function of the mean duration of recent infection, UT
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FIG. 2. Optimal threshold for a test for recent infection based
on a single biomarker. The coefficient of variation (CoV) of the
incidence estimate (%), as a function of the recency threshold:
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contextual prevalence to determine the predictive value per-
formance of the test.

The minimization of the variance of the incidence estimate,
or maximization of precision, by trading the mean duration of
recent infection off against the false-recent rate, provides a
completely general criterion for optimizing test design, re-
gardless of the complexity of the test. For example, there is a
trend toward devising a dichotomous test for recent infection
based on multiple biomarkers, where various approaches for
combining the individual biomarker results could be em-
ployed (for example, the final classification could be based on
whether the sum of the biomarkers readings is below a single
threshold or on the number of individual readings below
biomarker-specific thresholds). The optimal test design and
thresholds are those that provide the lowest variance in inci-
dence estimates across intended contexts.

Obtaining the most precise incidence estimates also consis-
tently captures the optimization that would be appropriate in
studies that aim to test for differences in incidence or identify
risk factors for HIV acquisition. Statistical tests for differences
between groups (for example, capturing different ages, gen-
ders, or social and sexual behaviors) are more highly powered
when incidence is more precisely estimated in each group.

Much of the literature introducing new tests for recent in-
fection has attempted to assess their utility in terms of sensi-
tivity and specificity.24–30 As would be appropriate in the
more familiar diagnostic applications, values close to 100%
have been regarded as realistic targets, with these two mea-
sures summarized into, for example, receiver operating
characteristic (ROC) curves and the overall classification ac-
curacy. This line of thinking runs into three major obstacles.
(1) Any workable definition of sensitivity and specificity re-
quires a notion of ‘‘recent’’ infection defined by a strict threshold
on time since infection and a fully specified distribution of
times since infection in a population. (2) Even if thus defined,
sensitivity and specificity cannot be accurately estimated from
interval censored seroconverter data sets. (3) Intersubject vari-
ability of infection-related biomarkers naturally increases with
time postinfection, and therefore diagnostic optimization will
tend to motivate for a category of ‘‘recent’’ restricted to the lower
variability period close to infection, whereas incidence estima-
tion requires the most enduring notion of ‘‘recent’’ infection that
does not bring a substantial false-recent rate.

In a clinical setting there may be substantial value in having
some evidence of time since infection, at the time of HIV di-
agnosis. This opens up a multitude of new questions beyond
the scope of this discussion. Most importantly, there needs to
be further work to support reporting and interpretation of in-
dividual biomarker values beyond a ‘‘recent’’ or ‘‘nonrecent’’
categorical result, and so in this context the optimization of a
test may not be the fine-tuning of a recency threshold.

Any evaluation and optimization of a test for recent infec-
tion should be based on the specific purpose for which the test
is to be used, with the current work focusing on incidence
estimation. The goal of HIV incidence estimation from cross-
sectional surveys, using tests for recent infection, has attracted
the interest of test developers. However, the assessment and
optimization of these tests, for purposes of estimating a
population-level average, require a fundamental shift from
traditional criteria for measuring performance. In this article
we have laid out the relevant performance metric of such tests,
namely the precision of incidence estimates produced in an

intended context. The central goal of the test developer, then,
is the minimization of the variance of incidence estimates
through a trade-off between the mean duration of recent in-
fection and false-recent rate. A test performance calculator is
available at www.incidence-estimation.com/page/tools.
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