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Although heavy alcohol consumption has deleterious effects 
on heart health, moderate drinking is thought to have 
cardioprotective effects, reducing the risk of coronary 
artery disease and improving prognosis after a myocardial 
infarction. It still is unclear, however, if this effect can be 
achieved with all types of alcoholic beverages and results 
from the alcohol itself, from other compounds found in 
alcoholic beverages, or both. For example, the polyphenolic 
compound resveratrol, which is found particularly in red 
wine, can reduce the risk of atherosclerosis; however, it is 
not clear if the resveratrol levels present in wine are 
sufficient to achieve this result. Alcohol itself contributes to 
cardioprotection through several mechanisms. For example, it 
can improve the cholesterol profile, increasing the levels of 
“good” cholesterol and reducing the levels of “bad” cholesterol. 
Alcohol also may contribute to blood clot dissolution and may 
induce a phenomenon called pre­conditioning, whereby 
exposure to moderate alcohol levels (like short bouts of blood 
supply disruption [i.e., ischemia]), and result in reduced 
damage to the heart tissue after subsequent prolonged 
ischemia. Finally, the enzyme aldehyde dehydrogenase 
(ALDH) 2, which is involved in alcohol metabolism, also 
may contribute to alcohol­related cardioprotection by 
metabolizing other harmful aldehydes that could damage the 
heart muscle. KEY WORDS: Alcohol consumption; light drinking; 
moderate drinking; effects and consequences of alcohol and other 
drug use; beneficial moderate alcohol consumption; risk and 
protective factors; risk­benefit; cardiovascular system; 
cardioprotection; wine; red wine; French Paradox; cholesterol; 
resveratrol; aldehyde dehydrogenase 2 

Although the deleterious effects of chronic heavy alcohol 
consumption on the cardiovascular system—including 
hypertension, cardiomyopathy,1 

have been documented as early as the la
(Bollinger 1884), interest in possible be
moderate drinking only arose about tw
November 1991, CBS correspondent 
sented a segment during the news show

and arrhythmias— 
te 19th century 
neficial effects of 
o decades ago. In 
Morley Safer pre­

 “60 Minutes” that 
discussed what became known as the “French Paradox”— 
the fact that the French, despite their life style of eating diets 
high in saturated fats and having a very high rate of smok­
ing, only suffer about one­quarter the rate of coronary heart 
disease (CHD) compared with the U.S. population. The 
news segment attributed this to the French people’s con­
sumption of wine, especially red wine. As a result of the 
broadcast, wine sales in the United States skyrocketed, and 
interest in research on the cardiovascular effects of alcohol 

increased. Thus, the National Institute on Alcohol Abuse 
and Alcoholism (NIAAA) issued several requests for research 
in this area, initiating serious investigation of this issue. 
Epidemiological studies performed in various countries 

over the last decades have described the relationship 
between alcohol intake and mortality as a J­shaped 
curve—that is, light­to­moderate drinking is associated 
with decreased mortality, whereas heavy alcohol intake 
has a detrimental effect. Moderate drinking in the United 
States is defined as no more than one drink per day for 
women and no more than two drinks per day for men. 
(For more information, see the textbox.) Thus, light­to­
moderate drinking consistently has been associated with 
a reduced risk of coronary artery disease and death com­
pared with abstinence (e.g., Fuchs et al. 1995; Lindeman 
et al. 1999; Mukamal et al. 2010; Renaud et al. 1999). 
This observation has led to several questions, including 
the following: 

•	 What is the effect of variations in drinking patterns (i.e., 
quantity and frequency of drinking, binge drinking)? 

•	 Does the observed beneficial effect result from the alcohol 
itself or from other compounds in alcoholic beverages? 

•	 What are the mechanisms underlying such effects? 

This review briefly addresses the first two questions, 
before expanding more extensively on the third question 
regarding the mechanism of cardioprotection, of which 
much has been learned in the past 10 years. The article 
will focus on recent data identifying a phenomenon called 
ethanol­induced preconditioning as well as on an unex­
pected player in alcohol­induced cardioprotection, the 
alcohol­metabolizing mitochondrial enzyme aldehyde 
dehydrogenase 2 (ALDH2). 

Alcohol—Friend or Foe? 

The World Health Organization (WHO) has estimated 
that every American over 15 years of age consumes more 
than 6.1 liters of pure alcohol (i.e., ethanol) per year (WHO 
2007). Whereas excessive ethanol consumption has a neg­
ative impact on health, acute and chronic moderate con­
sumption appears to have beneficial effects, especially on 

1 For a definition of this and other technical terms, see the glossary, pp. 161–164. 
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the heart (Gaziano et al. 2000; Renaud et al. 1998; Rimm 
et al. 1991; Stampfer et al. 1988; Thun et al. 1997; also 
see the textbox). Specifically, patients who consume mod­
erate amounts of alcohol before and after 
an acute heart attack (i.e., myocardial infarction) have 
an improved prognosis (Chen et al. 1999b; Krenz et al. 
2001a; Mukamal et al. 2001; Muntwyler et al. 1998). 
In addition to causing beneficial changes in lipid levels 
in the blood (see Renaud and de Lorgeril 1992; Rimm 
et al. 1999), alcohol produces protective effects through a 
phenomenon called preconditioning (Chen et al. 1999b; 
Guiraud et al. 2004; Krenz et al. 2001a; Miyamae et al. 
1997). Both of these mechanisms will be discussed in 
more detail in the section “Mechanisms of Alcohol­
Induced Cardioprotection.” 

Alcohol Consumption Levels and Their 
Relationship With Heart Health 

Animal studies have found that blood alcohol levels of 10 
to 17 mM ethanol induce cardioprotection against dam­
age caused by insufficient blood supply (i.e., ischemic 
damage) (Miyamae et al. 1998a, b). Similar alcohol levels 
are found in humans after consumption of 1 to 2 glasses 
of wine, cans of beer, or shots of liquor, and they there­
fore can be considered physiological. In the United States, 
consumption of no more than one drink per day for 
women and no more than two drinks per day for men is 
considered moderate drinking. Consumption at these levels 
appears beneficial to human health. Conversely, substan­
tially higher levels of consumption are considered exces­
sive and are associated with many health risks, including 
cardiac damage and heart failure. However, the definition 
of moderate and excessive drinking varies between coun­
tries, and the definition of what constitutes moderate 
versus excessive alcohol consumption therefore must be 
clarified, particularly when comparing different studies. 

Influence of Quantity and Frequency of Drinking 

To date, most epidemiological studies analyzing associa­
tions between beneficial or detrimental effects and drink­
ing levels have used average volume of alcohol consump­
tion as a measure. However, little research has investigated 
the effects of specific drinking pattern (i.e., the quantity 
and frequency of drinking), such as binge drinking. Yet 
this distinction is crucial in dissecting the effects of mod­
erate drinking, because the health effects of an average 
consumption of seven drinks per week (or one drink per 
day) can differ vastly depending on whether the drinker 
really has one drink on every day of the week or consumes 
all seven drinks in one sitting on a Saturday night (i.e., 
is a binge drinker). Thus, studies found out that binge 
drinking seems to be more hazardous to cardiovascular 

health (Pletcher et al. 2005). Furthermore, Knupfer and 
colleagues (1987) reported that most light drinkers do not 
drink daily, and most daily drinkers are not moderate 
drinkers, further emphasizing the need to differentiate 
between drinking patterns. For more information on the 
relationship between various dimensions of alcohol con­
sumption and outcome, the reader is referred to Rehm 
and colleagues (2010); in addition, van de Wiel and 
Lange (2008) have discussed the importance of measuring 
quantity and frequency of alcohol consumption. 

Does Type of Beverage Play a Role? 
Although a beneficial effect of moderate drinking repeat­
edly has been shown, questions remain whether the effect 
differs between types of beverages and whether it is the 
alcohol itself or other compounds found in the beverages 
that are responsible for these effects. The majority of epi­
demiological studies have pooled data for all types of alco­
holic beverages when reporting beneficial effects of mod­
erate consumption; however, some studies also have pro­
vided beverage­specific risk estimates for CHD. For exam­
ple, Grønbaek and colleagues (2000, 2004) reported that 
wine intake may have a more beneficial effect on all­cause 
mortality than other alcoholic beverages, with a relative 
risk of death of 0.66 for light wine drinkers compared 
with 0.90 for light drinkers who avoided wine. A meta­
analysis of the effects of wine and beer consumption (Di 
Castelnuovo et al. 2002) indicated that consumption of 
red wine lead to a greater reduction in risk of CHD (32 
percent) than did beer consumption (22 percent). In 
contrast, an advisory by the American Heart Association 
(Goldberg et al. 2001) indicated no distinguishable effect 
of wine from other alcoholic beverages. Finally, some 
studies have attributed the apparent beneficial effects 
of wine consumption to the fact that wine drinking was 
significantly associated with a higher socioeconomic status 
and lifestyle (Mortensen et al. 2001) and a healthier diet 
(Tronneland et al. 1999), which might have conferred 
cardioprotection. 
Similarly, disagreement still exists regarding the com­

pounds responsible for the beneficial effects. Some investi­
gators have attributed the added “bonus” effect of wine 
to the presence of antioxidants and polyphenolic com­
pounds, such as resveratrol. For example, Opie and 
Lecour (2007) claimed that red wine potentially has bene­
ficial effects beyond alcohol. Conversely, Belleville (2002) 
maintained that “alcohol per se rather than compounds 
specific to certain beverages reduces mortality risk.”(p. 
173) The potential role of resveratrol is explored in the 
following section. 

Alcohol, Resveratrol, and Sirtuins 

Resveratrol is a polyphenolic compound (see figure 1) 
with antifungal properties that primarily is present in the 
skin of grapes. It is renowned for its beneficial effects on 
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atherosclerosis and cancer (for a review, see Vidavalur et 
al. 2006). Moreover, resveratrol and other polyphenols in 
wine have been claimed to have a positive synergistic effect 
with alcohol on some risk factors for atherosclerosis (for a 
review, see Cooper et al. 2004). Based on in vitro studies, 
it has been advocated that polyphenols in wine can reduce 
risk of atherosclerosis through several mechanisms: 

• They prevent the blood­clot–promoting (i.e., prothrombotic) 
effects of a cholesterol­rich diet (De Curtis et al. 2005); 

• They reduce the susceptibility of low­density lipoprotein 
(LDL; “bad” cholesterol”) to chemical modification (i.e., 
oxidation) that initiates the formation of atherosclerotic 
plaque; 

• They enhance endothelium­dependent relaxation of the 
blood vessels, which reduces the risk of blood vessel 
obstruction (Carrero et al. 1998; Deckert et al. 2002; 
Wallerath et al. 2003); and 

• They inhibit platelet aggregation (de Lange et al. 2007). 

In all of these studies, however, the concentrations of 
polyphenols used were several magnitudes higher than 
those encountered after human alcohol consumption, 
limiting their generalizability. 
In addition to resveratrol, white wine also is rich in 

two other phenolic compounds, called tyrosol and 
hydroxytyrosol. These agents also may confer cardiopro­
tection (Dudley et al. 2008). 

Mechanism of Action of Resveratrol. The key molecular 
targets for resveratrol are the sirtuins, a family of enzymes 
(SIRT1 through SIRT7) that remove an acetyl chemical 
group from (i.e., deacylate) the acetylated forms of the 
amino acid lysine found in some proteins. Sirtuins serve 
as sensors for cellular energy availability. Recent studies by 
Zhang and colleagues (2008) demonstrated that SIRT1 
produced by endothelial cells has antiatherosclerotic 
effects because in a certain strain of mice it attenuates the 
formation of atherosclerotic plaque in the aorta induced 
by a high­fat diet. In addition, SIRT1 suppresses the 
development of atherosclerosis by enhancing the activity 
of an enzyme called endothelial nitric oxide synthase 
(eNOS)2 and by suppressing inflammation and reactive 
oxygen species (Brandes 2008; Borradaile et al. 2009). 
Consequently, SIRT1 activators, such as resveratrol, can 
produce cardioprotection. 
Resveratrol likely activates SIRT1 by altering the 

enzyme’s structure (i.e., conformation) so that a molecule 
required for deacetylation can bind more easily to SIRT1. 
However, there still is some debate if the resveratrol can 
directly activate SIRT1 or if additional compounds are 

2 eNOS is an enzyme that produces nitric oxide in the blood vessels; appropriate amounts of nitric 
oxide help protect organs from damage caused by insufficient blood supply. 

required (Borra et al. 2005; Kaeberlein et al. 2005). The 
crucial role of SIRT1 in heart health was demonstrated in 
studies showing that hearts from diabetic mice produced 
less SIRT1 protein, impairing the heart muscle’s ability to 
contract and leading to heart failure (Dong and Ren 2007). 
Other studies have demonstrated that resveratrol can 

inhibit platelet aggregation and has antioxidant effects 
on cholesterol metabolism (for a review, see Markus and 
Morris 2008). Thus, resveratrol has been advocated for 
heart health. However, it still is unclear whether the 
amount present in wine is enough to confer cardioprotec­
tion, and this issue merits proper clinical investigation. 

Figure 1 Molecular structure of resveratrol. Resveratrol is a 
polyphenol—that is, it contains several ring­like molecular 
building blocks known as phenols. 

Mechanisms of Alcohol­Induced 
Cardioprotection 

The apparent cardioprotective effect of moderate alcohol 
consumption observed in epidemiological studies has 
spurred biochemical studies to determine whether the 
alcohol (i.e., ethanol) itself confers these effects and to 
understand the molecular mechanisms underlying it. 
Several mechanisms have been proposed, including the fol­
lowing (for more information, see Lakshman et al. 2009): 

• Increase in high­density lipoprotein (HDL) cholesterol 
(i.e., “good” cholesterol); 

• Increased fibrinolysis; and 

• Activation of protein kinase C epsilon (εPKC)­mediated 
preconditioning of the myocardium as a protective mech­
anism from injury induced by myocardial infarction. 

Effects on HDL and LDL Cholesterol 
Cholesterol is transported in the body by compounds 
known as lipoproteins. These can be classified according 
to their density, with LDL and HDL representing two of 
the groups. These groups differ in their functions in the 
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body (i.e., in the types of lipids they transport). Thus, 
LDLs transport cholesterol from the liver to the cells of 
the body, whereas HDL acts as a cholesterol scavenger, 
transporting it back to the liver where it is converted to 
bile acids and/or eliminated. Excessively high levels of 
cholesterol in the blood, reflected by lower­than­normal 
HDL levels and higher­than­normal LDL levels, are a risk 
factor for cardiovascular disease and atherosclerosis. Several 
epidemiological studies have shown that moderate drink­
ing is associated with higher concentrations of HDL 
cholesterol compared with abstinence (e.g., Bazzano et al. 
2008; Rimm et al. 1999). In fact, about 50 percent of the 
cardioprotective effect associated with moderate drinking 
was attributed to this increase in HDL cholesterol (Gaziano 
et al. 1993, Grønbaek et al. 2002) and a concurrent decrease 
in LDL cholesterol (Savolainen et al. 1995). 
The mechanisms by which HDL carries cholesterol to 

the liver is called reverse cholesterol transport (RCT). It 
involves three main steps: 

•	 HDL interacts with a receptor called ABCA1 on various 
cells, causing the release (i.e., efflux) of unesterified 
cholesterol from the cells. 

•	 The cholesterol is esterified by an enzyme called lecithin­
cholesterol acyltransferase (LCAT), leading to the matura­
tion of the newly produced HDL particles. 

•	 Mature HDL particles are removed from the circulation 
by binding to a receptor called SR­B1 that is found on 
the main type of liver cells (i.e., the hepatocytes). The 
HDL then is modified by the exchange of the esterified 
cholesterol for another lipid—a reaction that is mediated 
by an enzyme called cholesteryl ester transfer protein (CETP). 

The relationship between CETP function and atheroscle­
rosis risk is complex; however, it is clear that reduction in 
CETP activity results in an increase in HDL cholesterol 
levels. The alcohol­induced increase in HDL cholesterol 
also may be mediated at least in part by CETP because 
studies found that moderate drinking reduces CETP 
activity (Hagiage et al. 1992). Moreover, Hannuksela and 
colleagues (1994) and Fumeron and colleagues (1995) 
reported that heavy drinkers have lower CETP activity. 
Finally, Valimaki and colleagues (1993) found that CETP 
activity was low in alcoholic women but increased after 
cessation of drinking. 
More recently, other functions of HDL have been 

reported, including anti­inflammatory and antioxidant 
properties, raising the possibility that some of the 
antiatherosclerotic effect of HDL may be attributed to 
functions beyond RCT. Some research in this area has 
focused on an HDL­associated enzyme called paraox­
onase­1 (PON1) that protects LDL from oxidative 
modification and is central to the anti­inflammatory 
and antioxidative properties of HDL. Oxidation of LDL 
currently is believed to be central to the initiation and 

progression of atherosclerosis (Mackness et al. 2000). 
Consequently, an increase in PON1 activity would be 
expected to decrease inflammation and atherosclerosis. 
Studies in rats found that moderate but not high doses of 
alcohol increased PON1 activity in the blood and liver by 
20 to 25 percent as well as increased the levels of PON1 
mRNA in the liver by 59 percent (Rao et al. 2003). In 
humans, daily moderate consumption of beer, wine, or 
spirits also resulted in higher PON1 activity compared 
with consumption of water, and this increase correlated 
with concomitant increases in HDL cholesterol and one 
of its major components, apolipoprotein A1 (Sierksma et 
al. 2002; van der Gaag 1999; van Tol and Hendriks 
2001). Thus, the antiatherosclerotic effects of moderate 
alcohol consumption also may be mediated by alcohol’s 
effects on PON1. 

Effects on Fibrinolysis 
Blood clots, which can lead to obstruction of blood vessels 
and ischemia, are formed by the clumping together of cer­
tain blood cells (i.e., platelets) and a protein called fibrin, 
which is produced from a precursor called fibrinogen. The 
dissolution of these clots normally is achieved through a 
process called fibrinolysis. This process is mediated by an 
enzyme called plasmin that cuts the blood clot in various 
places. However, plasmin is found in the body only as an 
inactive precursor molecule, plasminogen. The conversion 
of plasminogen to plasmin is stimulated by various com­
pounds, including tissue plasminogen activator (t­PA) and 
urokinase­type PA (u­PA), and is inhibited by a com­
pound known as PA inhibitor type 1 (PAI1). 
Moderate alcohol consumption can mediate additional 

cardioprotection by promoting the dissolution of blood 
clots through its actions on one or more of the compo­
nents of the fibrinolytic system (i.e., t­PA, u­PA, PAI1, 
and fibrinogen). For example, Ridker and colleagues 
(1994) demonstrated an association between alcohol con­
sumption and t­PA levels in healthy volunteers; moreover, 
t­PA levels were significantly higher in drinkers than in 
nondrinkers. In addition, studies on cultured cells obtained 
from the human umbilical vein showed that small doses 
of ethanol (less than 0.1 percent volume/volume) increased 
the cells’ fibrinolytic activity and that this effect was closely 
associated with the altered expression of t­PA, u­PA, and 
PAI1 (Aikens et al. 1997; Grenett et al. 1998). 

Preconditioning 

Preconditioning is a phenomenon first observed in the 
setting of disrupted blood supply (i.e., ischemia). 
Researchers found that if they exposed tissue or an organ 
to short bouts of ischemia, the tissue or organ subsequently 
could survive even prolonged ischemia that normally 
would have had a damaging effect (Murry et al. 1986). 
Several studies (Chen et al. 1999b; Guiraud et al. 2004; 
Krenz et al. 2001a; Miyamae et al. 1997) have demon­
strated that alcohol exerts its cardioprotective effects in 
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part by inducing preconditioning­like mechanisms. Thus, 
treatment of isolated heart muscle cells (i.e., cardiomy­
ocytes) or isolated hearts with 50 mM ethanol diminished 
injury associated with subsequent prolonged ischemia and 
improved cardiac function (Chen et al. 1999b; Hale and 
Kloner 2001; Krenz et al. 2001a). Other studies (Bellows 
et al. 1996; Hale and Kloner 2001; Itoya et al. 1998), 
however, did not show cardioprotective effects following 
acute alcohol treatment. These conflicting reports likely 
result from differences in the timing and dose of alcohol 
treatment, which appear to influence alcohol­induced 
protection. For example, alcohol administration before 
prolonged ischemia is more protective if there is a delay 
between alcohol exposure and the ischemic injury, as 
shown in both experimental models (Krenz et al. 2001b, 
2002a, b) and in clinical studies (Mukamal and 
Mittleman 2001; Niccoli et al. 2008). 
More than 10 years ago, several studies demonstrated 

that the protective effects of alcohol administration 
require activation of the enzyme εPKC (Miyamae et al. 
1998b). Protein kinases are enzymes that add a phosphate 
group to other proteins. This phosphorylation can change 
the protein’s activity, location in the cell, or association 
with other proteins. Accordingly, protein phosphorylation 
by kinases (and also dephosphorylation by other enzymes) 
plays important roles in many regulatory and signaling 
processes. Numerous protein kinases have been identified 
that can be classified according to the specific amino acids 
in their target proteins to which they add the phosphate 
group. For example, the PKC family of protein kinases, 
which consists of more than 10 members, adds the phos­
phate to the amino acids serine and threonine. 
The role of εPKC in alcohol­induced preconditioning 

was demonstrated in guinea pigs that were exposed to 
ethanol (i.e., 25 to 50 mM) in their drinking water for 
several weeks, resulting in blood alcohol levels of about 
1 percent (10 mg/ml). When hearts isolated from these 
animals were subjected to global ischemia, cardiac damage 
was reduced by about 50 percent and cardiac functions 
were improved correspondingly compared with hearts 
from control animals (Miyamae et al. 1998b). Moreover, 
sustained activation of εPKC was found in the hearts of 
the alcohol­exposed animals (Miyamae et al. 1998b). The 
delayed protective effects of acute alcohol exposure also 
involve actions of another member of the PKC family 
called PKC delta ( PKC), which stimulates the release 
of adenosine, resulting in εPKC activation (Chen and 
Mochly­Rosen 2001; Inagaki and Mochly­Rosen 2005). 
The observed role of the different PKCs depends on the 
experimental system used. Thus, treatment of rats with 
alcohol levels of more than 1.5 g/kg body weight induced 
the activation of the damage­associated PKC in the 
animals (Chen and Mochly­Rosen 2001; Inagaki and 
Mochly­Rosen 2005). Conversely, treatment of isolated 
cardiomyocytes and isolated hearts with low amounts of 
alcohol (0.5 g/kg, or 10 mM) induced activation of εPKC 
and cardiac protection (Chen et al. 1999b; Miyamae et al. 

1998b; Zhou et al. 2002). However, the specific protein(s) 
that are phosphorylated by εPKC following acute alcohol 
treatment have not yet been identified. 

Role of Mitochondrial Aldehyde 
Dehydrogenase 2 

Following ischemic preconditioning as described above, 
researchers have observed that several proteins in the 
mitochondria, the cell’s “power plants,” also are phospho­
rylated by εPKC. These proteins include the mitochon­
drial ATP­sensitive K+ channel (Costa et al. 2005; Jaburek 
et al. 2006), cytochrome­c oxidase (complex IV; COIV) 
(Guo et al. 2007), and the permeability transition pore 
(MPTP) (Juhaszova et al. 2004). However, it is not clear 
whether these proteins have any role in alcohol­mediated 
preconditioning (Krenz et al. 2001a, 2002a). 
Chen and colleagues (2008) used an unbiased approach 

to identify all proteins in heart cells that were phosphory­
lated (and thereby activated) under conditions inducing 
cardiac cytoprotection (i.e., after exposure to alcohol or 
direct activation of εPKC). To their surprise, one of the 
proteins they identified was mitochondrial ALDH2, 
which, as described below, plays a pivotal role in alcohol 
metabolism. In addition, both ALDH2 phosphorylation 
and cytoprotection induced by alcohol or direct εPKC 
activation could be inhibited by first treating the hearts 
with an εPKC­selective inhibitor. Finally, ALDH2 activity 
was inversely correlated with infarct size. These data 
together suggested that ALDH2 activation is required for 
cardioprotection, leading to the question, What of mecha­
nism(s) underlie this relationship? 
The ALDH2 enzyme, which consists of four identical 

subunits and is located in the interior of the mitochondria 
(Goedde and Agarwal 1990), mediates the rate­limiting 
step in ethanol metabolism—the conversion of toxic 
acetaldehyde (which is produced from ethanol by the 
enzyme alcohol dehydrogenase) into nontoxic acetate 
(Zakhari 2006). Several variants of this enzyme exist and 
one of them, called ALDH2*2, is inactive—that is, it can­
not metabolize acetaldehyde. In this variant, a mutation 
in the gene encoding the protein causes the exchange of a 
single amino acid from a glutamine to lysine in the region 
where the four subunits interact with each other (Larson 
et al. 2005). The prevalence of this inactive variant differs 
significantly among ethnic groups. For example, approxi­
mately 40 percent of east Asians carry at least one copy 
of the gene encoding the defective ALDH2*2 variant. In 
people who carry two copies of the defective gene (i.e., 
who are homozygous for ALDH2*2/*2), the activity of 
the ALDH enzyme is reduced by more than 95 percent 
compared with people who are homozygous for the nor­
mal, active form of the enzyme (i.e., ALDH2*1). Even in 
people who carry only one copy of the mutant gene and 
one copy of the normal gene (i.e., who are heterozygous 
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ALDH2*1/*2) the activity of the resulting enzyme only is 
about 40 percent of the normal ALDH2. 
The ALDH2 protein a person produces determines to 

some extent how much alcohol he or she will drink. 
Presence of even one mutant gene leads to reduced 
acetaldehyde metabolism and acetaldehyde accumulation, 
which results in highly unpleasant effects, such as facial 
flushing, increased heart rate, palpitation, and dizziness 
(Luu et al. 1995; Takeshita and Morimoto 1999). As a 
result, people carrying one or two copies of the defective 
gene tend to drink less alcohol, and ALDH2*2/*2 
homozygotes are less likely to be alcoholics (Higuchi et 
al. 1994). Similarly, the presence of another less active 
variant, ALDH2*A, which is found in Jewish people of 
Ashkenazi descent, also is associated with reduced alcohol 
consumption (Fischer et al. 2007). In heterozygous people 
with only one defective ALDH2*2 gene, however, the 
potential deterring effect on excessive ethanol consump­
tion appears not to be strong enough to fully prevent 
drinking or alcoholism. In fact, social pressure and changes 
in cultural acceptance in recent years are thought to 
contribute to the dramatic rise in alcoholism among 
ALDH2*2/*1 heterozygotes in Asia (Chen et al. 1999a; 
Higuchi et al. 1994; Yokoyama et al. 2002), even though 
these people still experience substantial and dose­dependent 
acetaldehyde accumulation and the resulting effects. 
The assumption that ALDH2 may play a role in cardio­

protection from myocardial infarctions has been supported 
by studies comparing the effect of 0.5 g/kg ethanol on 
ALDH2*1/*1 homozygotes and ALDH2*1/*2 heterozy­
gotes. The investigators found that presence of the defec­
tive variant was associated with a higher incidence of 
ischemia/reperfusion injury (Jo et al. 2007). Therefore, 
it is important to further explore the connection between 
ALDH2 activity and cardiac protection from ischemia 
and to determine how people with the mutant ALDH2*2 
variant can be protected. 
However, it is important to note that the reported tight 

correlation between cardiac protection and ALDH2 activ­
ity does not prove that ALDH2 is indeed critical to the 
process. To demonstrate that ALDH2 activation is suffi­
cient to induce cytoprotection, researchers needed a direct 
and specific agonist of this enzyme—that is, a molecule 
that could activate ALDH2 and induce the same cardio­
protective effects without the presence of alcohol. A high­
throughput screening of a large number of small molecules 
identified a class of structurally similar compounds called 
Aldas (for aldehyde dehydrogenase activator), including 
one called Alda­1.3 This molecule activates the defective 
ALDH2 enzyme by acting as a structural chaperone. The 
study demonstrated that ALDH2 activation by Alda­1 
reduced infarct size by 60 percent in vivo (Chen et al. 2008). 

3 The chemical name for Alda­1 is N­(1,3­benzodioxol­5­ylmethyl)­2,6­dichlorobenzamide; other 
ALDH2 activators have a similar structure except that the chloride atoms on the benzamide ring are 
substituted by bromide or fluoride. 

As mentioned earlier, ALDH2 had been identified as a 
candidate involved in cardioprotection by screening for 
proteins that were phosphorylated by εPKC or in 
response to alcohol treatment, suggesting that ALDH2 
activation was the result of alcohol­induced εPKC activa­
tion. If this was the case, then alcohol’s cardioprotective 
effect should be absent in genetically modified mice that 
lacked εPKC (i.e., εPKC­null mice). Consistent with this 
hypothesis, studies exposing hearts from εPKC­null mice 
to ischemia and reperfusion found that these hearts were 
not protected by alcohol but were protected by pretreat­
ment with Alda­1 (Churchill et al. 2009). These data sug­
gest that ALDH2 activation results from ethanol­induced 
εPKC activation and that direct activation of ALDH2 by 
Alda­1 was sufficient to confer cardioprotection in the 
absence of εPKC. Furthermore, the ability of Alda­1 to 
protect εPKC­null mice (which cannot be preconditioned 
by either mild ischemia or ethanol [Gray et al. 2004]) 
made it unlikely that Aldas work simply by mimicking 
the process of preconditioning (i.e., by delivering a mild 
toxic insult to the heart prior to ischemia onset). 

How does ALDH2 Contribute to Cardioprotection? 
According to a recent commentary (Karliner 2009), toxic 
aldehydes and their modulation by ALDH2 play a central 
role in cardiac injury following acute myocardial infarc­
tion. For example, increased expression of ALDH2 was 
found to attenuate acetaldehyde­induced cardiomyocyte 
injury (Li et al. 2006). But why does a decrease in 
ALDH2 activity contribute to ischemic damage, and how 
does ALDH2 activation by moderate alcohol consump­
tion result in cardiac protection? ALDH2 metabolizes 
not only acetaldehyde, but also other short­ and long­
chain aliphatic and aromatic aldehydes (Reichard et al. 
2000; Vasiliou and Nebert 2005; Vasiliou et al. 2004; also 
see figure 2). These aldehydes often are produced by the 
interactions of reactive oxygen species (ROS) with the 
lipids found in the membranes surrounding the cell. 
One common aldehyde formed this way is 4­hydroxy­2­
nonenal (4HNE), which is metabolized by ALDH2; it 
has been implicated in tissue damage after cardiac 
ischemia (Lucas and Szweda 1998). 4HNE (as well as 
other aldehydes that accumulate during ischemia) are very 
reactive and form reaction products (i.e., adducts) with 
other macromolecules in the cell (e.g., proteins or DNA); 
these adducts then can interfere with normal cell function 
(see figure 2). For example, 4HNE adducts inhibit cell 
components called proteasomes that are responsible for 
the elimination of proteins that are damaged or no longer 
needed (Farout et al. 2006; Ferrington and Kapphahn 
2004). In addition, 4HNE adducts interfere with the 
mitochondria’s ability to produce the energy­storing 
compound adenosine triphosphate (ATP) (Yan and Sohal 
1998) and with mitochondrial integrity (Echtay and 
Brand 2007; Kristal et al. 1996). Therefore, rapid 
metabolism of these reactive aldehydes into nonreactive 
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acids likely is critical for protecting the heart muscle (i.e., 
myocardium) from the oxidative stress associated with 
cardiac ischemia. Indeed, Alda treatment (which activates 
ALDH2) prior to cardiac ischemia reduced formation of 
4HNE adducts in the ischemic hearts (Chen et al. 2008). 
Further, greater­than­normal production of aldehyde 
dehydrogenase­2 in mice reduced heart failure–like symptoms 
following chronic alcohol consumption. 

Alda­1 and ALDH2*2 

An important feature of Alda­1 is its ability to increase 
the activity of the inactive ALDH2 variant, ALDH2*2. 
Thus, studies found that Alda­1 increased the enzyme’s 
activity in ALDH2*2 homozygous animals by 900 per­
cent, resulting in about 40 percent of the activity of the 
normal enzyme (Chen et al. 2008). The ability of Alda­1 
to partially complement or restore the activity of ALDH2*2 
is striking because small molecules rarely can specifically 
reverse (i.e., rescue) a mutation in humans. Recently, 
Perez­Miller and colleagues (2010) examined the crystal 
structures of the complexes between Alda­1 and normal 
ALDH2 and between Alda­1 and mutant ALDH2*2. 
This structural comparison revealed that Alda­1 activates 
the normal enzyme and restores the activity of ALDH2*2 
by acting as a structural chaperone. Thus, Alda­1 binds 
to the “tunnel” formed by the enzyme’s four subunits, 
in which the acetaldehyde is converted into acetic acid. 
Binding of Alda­1 does not, as one might assume, block 
the access of acetaldehyde to the active site. Instead, it 
may protect critical cysteine amino acids within the tun­
nel from interacting with the acetaldehyde, which would 
lead to adduct formation and inactivation of ALDH2 (see 
figure 2, step 7) (Perez­Miller et al. 2010). These findings 
explain the data from a previous study, in which Alda­1 
prevented 4HNE­induced ALDH2 inactivation, and 
explain how a brief treatment with Alda­1 can reduce 
infarct size by about 60 percent in vivo (Chen et al. 2008). 
Finally, the structural analysis showed that in the case 

of the defective ALDH2*2, Alda­1 binding does not just 
simply increase the effective concentration of acetaldehyde 
within the active site; instead, it directly promotes the 
structural and functional rescue of ALDH2*2 (Perez­Miller 
et al. 2010). This rescue happens without Alda­1 directly 
interacting with the altered amino acid in ALDH2*2. 
Thus, it represents a new pharmacological agonist because 
it increases the interaction between the enzyme and the 
molecule it acts on (i.e., the aldehyde) and at the same time 
it protects the enzyme from aldehyde­induced inactivation. 

What Did We Learn From the French 
Paradox? 

Although the antioxidant activities of some ingredients 
in red wine (e.g., resveratrol) may have a role in the car­
dioprotective effect of moderate red wine consumption, 

ethanol itself also clearly initiates specific molecular events 
that lead to better handling of oxidative stress following 
myocardial infarction. The discussion here has focused on 
ethanol’s benefits in reducing arteriosclerotic plaques, 
reducing blood clotting, and protecting cardiac myocytes, 
thereby reducing the risk for CHD. Whether other 
components in alcoholic beverages also contribute to the 

Figure 2 Schematic demonstrating some of the steps leading 
to cellular damage as a result of reactive oxygen 
species (ROS). (1) ROS interact with lipids in the cell 
membrane, (2) resulting in the formation of the aldehyde 
4­hydroxynonenal (4HNE) (brown zigzag line). (3) Many 
proteins are inactivated as a result of 4HNE­induced 
adduct formation, and their removal by the proteasome 
(black and gray structure) is critical. However, 4HNE 
directly inactivates the proteasome (Farout et al. 2006). 
(4) Therefore, protein aggregates accumulate, further 
increasing oxidative stress in the cell. (5) Several mito­
chondrial proteins also are inactivated by 4HNE (Chen 
et al. 1995; Echtay and Brand 2007; Kristal et al. 1996) 
including those involved in electron transfer chain (ETC), 
(6) the citric acid cycle α­ketoglutarate dehydrogenase 
(KGDH), and (8) mitochondrial integrity. (9) This leads 
to increased mitochondria­induced ROS production, 
decreased ATP generation during reperfusion (Inagaki 
2003), and reduced repair of the cells from the oxidative 
damage. This, in turn, leads to further cardiac function 
loss. This schematic demonstrates a critical role for 
enzymes that remove the toxic aldehydes, such as the 
aldehyde dehydrogenase (ALDH)­1 enzyme, which is 
found in the fluid filling the cells (i.e., the cytosol), and 
the ALDH2 enzyme, which is found in the mitochondria. 
(7) However, these ALDHs are inactivated themselves by 
the toxic 4HNE (Doorn et al. 2006; Luckey et al. 1999). 
A compound that could protect ALDH from inactivation 
and decrease the amounts of aldehydes in the cell 
should protect from damage induced by ischemia and 
reperfusion and other oxidative stress­induced injuries. 
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cardioprotection remains to be determined. However, it 
is clear that moderate alcohol consumption reduces 
pathological processes associated with cardiac diseases. 
Nevertheless, the risk of excessive alcohol consumption 
and alcohol addiction make the medical use of this 
commonly used agent a challenge. ■ 
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