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ABSTRACT Imprinting is well-documented in both plant and animal species. In Drosophila, the Y chromo-
some is differently modified when transmitted through the male and female germlines. Here, we report
genome-wide gene expression effects resulting from reversed parent-of-origin of the X and Y chromo-
somes. We found that hundreds of genes are differentially expressed between adult male Drosophila
melanogaster that differ in the maternal and paternal origin of the sex chromosomes. Many of the differ-
entially regulated genes are expressed specifically in testis and midgut cells, suggesting that sex chromo-
some imprinting might globally impact gene expression in these tissues. In contrast, we observed much
fewer Y-linked parent-of-origin effects on genome-wide gene expression in females carrying a Y chromo-
some, indicating that gene expression in females is less sensitive to sex chromosome parent-of-origin.
Genes whose expression differs between females inheriting a maternal or paternal Y chromosome also
show sex chromosome parent-of-origin effects in males, but the direction of the effects on gene expression
(overexpression or underexpression) differ between the sexes. We suggest that passage of sex chromosome
chromatin through male meiosis may be required for wild-type function in F1 progeny, whereas disruption
of Y-chromosome function through passage in the female germline likely arises because the chromosome is
not adapted to the female germline environment.
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Genomic imprinting refers to epigenetic marks placed on genes due to
chromosomal transmission through the female and male germlines and
often results in gene expression differences between maternally and
paternally inherited alleles. Imprinting has been documented in insects,
plants, mammals, and nematode worms (Anaka et al. 2009; Golic et al.
1998; Lloyd et al. 1999; Maggert and Golic 2002; Renfree et al. 2013;
Sha and Fire 2005; Singh 1994) and is mediated by DNA methylation

and histone modifications established during oogenesis and spermato-
genesis (Sha 2008). In mammals, gynogenetic offspring are inviable
(McGrath and Solter 1984; Thomson and Solter 1988), indicating that
a balanced contribution of chromosomes of paternal and maternal
origin is required for development in these lineages. Although the
phenomenon is well-established in mammals, the extent of parent-
of-origin effects on genome-wide gene expression is a matter of recent
controversy (Babak et al. 2008; DeVeale et al. 2012; Gregg et al. 2010a,
2010b) because only �30 imprinted loci have been well-characterized
and these are mostly found at a few clusters in the genome.

In contrast to mammals, the evidence for genome-wide parent-
dependent allele-specific expression in Drosophila melanogaster is lim-
ited. First, both gynogenetic and androgenetic offspring are viable and
fertile in Drosophila (Fuyama 1984; Komma and Endow 1995). Sec-
ond, two recent surveys of allele-specific expression failed to identify
evidence of parent-of-origin effects on gene expression in Drosophila,
both among 24 genes assayed in D. melanogaster females (Wittkopp
et al. 2006) and genome-wide in female D. melanogaster/sechellia F1
hybrids (Coolon et al. 2012). Nevertheless, complex patterns of gene
expression inheritance have been documented in fruit flies, some of
which are consistent with parent-of-origin effects (Gibson et al. 2004).
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Most examples of imprinting in Drosophila involve epigenetic
effects on heterochromatin that result from transmission through
males or females and produce parent-of-origin effects on the expres-
sion of visible markers in or near the heterochromatic regions (Lloyd
2000; Maggert and Golic 2002). The link between imprinting and
heterochromatin in Drosophila is supported by the observation that
mutations in Su(var)3-9, a histone H3 methyl transferase, and hetero-
chromatin protein 1 (HP1), a major component of heterochromatin,
modify both imprinting and heterochromatin formation (Joanis and
Lloyd 2002). Heterochromatic regions of the genome may be partic-
ularly sensitive to the differences in chromatin state and nuclear com-
paction that result from oogenesis and spermatogenesis (Fitch et al.
1998). Additionally, differences in heterochromatic content between
male and female Drosophila, attributable to the presence of the 40-Mb
heterochromatic Y chromosome in males, may lead to sex-specific
gene regulation and chromosome conformation in both somatic
and germline cells. The presence of Y-chromosome heterochromatin
in males has been hypothesized to underlie differential sensitivity of
male and female Drosophila to mutations affecting HP1 (Liu et al.
2005) and male-specific modification of heterochromatin by muta-
tions affecting dosage compensation (Deng et al. 2009). Genetic differ-
ences in Y-linked heterochromatin content or satellite content have
also been shown to have regulatory consequences for many hundreds
if not thousands of autosomal and X-linked genes in males (Jiang et al.
2010; Lemos et al. 2008, 2010).

Various selective pressures have been proposed to explain the
evolution of allele-specific expression or silencing (Brandvain et al.
2011; Haig 1997; Haig and Wilczek 2006; Rice et al. 2008; Wilkins
2010). In particular, paternal X chromosomes are transmitted solely to
daughters. Hence, one route to achieve sex-specific expression would
be through epigenetic marks placed on the X chromosome during
spermatogenesis. Additionally, because X chromosomes are normally
not transmitted from a father to his sons, epigenetic states imposed by
spermatogenesis on X-linked chromatin could be incompatible with
normal male germline function in the next generation. Similarly,
because Y chromosomes are normally only found in males, they might
acquire aberrant epigenetic states when passaged through the female
germline.

To test for consequences of sex chromosome imprinting in Dro-
sophila, we assayed genome-wide gene expression in adult D. mela-
nogaster that have identical nuclear genotypes but differ only in the

parent-of-origin of their X and Y chromosomes. We used compound
X-X and X-Y chromosomes to generate three contrasts (Figure 1):
males that inherit a maternal X chromosome and a paternal Y chro-
mosome (XMYP) vs. males that inherit a paternal X and a maternal Y
(XPYM); males that inherit a maternal compound X-Y chromosome
and a paternal free Y (XYMYP) chromosome vs. a paternal X-Y and
a maternal free Y (XYPYM); and females that inherit a paternal com-
pound X-Y chromosome and a maternal free X chromosome
(XYPXM) vs. females that inherit a paternal X-Y and a maternal X
chromosome (XYMXP). All three contrasts compared flies that carry
genetically identical sex chromosomes that differ only in their parent-
of-origin, and they were tested in a common autosomal genetic back-
ground and under extensively controlled environmental conditions.
We found very few genes differentially expressed between XYPXM and
XYMXP females, consistent with other studies that found little evi-
dence for genome-wide imprinting in Drosophila females (Coolon
et al. 2012; Wittkopp et al. 2006), and we observed a significant
negative correlation between imprinting effects on these few genes
in males and females. However, we found that hundreds of genes
were significantly differentially expressed in both male contrasts.
Genes downregulated in adult male flies that inherit a paternal X
chromosome and a maternal free Y chromosome (both XPYM and
XYPYM) are largely expressed specifically in the testes and genes
upregulated in these flies are enriched for expression in the adult
midgut. Because Y chromosomes are not normally found in females
or inherited maternally, the epigenetic effects our experiments detect
are not likely to be commonly observed in natural populations. None-
theless, our results provide direct evidence that transmission of the sex
chromosomes through the male or female germline results in differ-
ential epigenetic modification and demonstrates the consequences of
these modifications for genome-wide gene expression.

MATERIALS AND METHODS

Drosophila genetics and husbandry
To control the genetic background so that robust inferences regarding
parent-of-origin effects on gene expression could be made, we
precisely substituted an attached-X chromosome [C(1)M4,y2] and
an attached X-Y chromosome [C(1;Y)3,In(1)FM7,w1,m2] into an in-
bred wild-type D. melanogaster genetic background (Autw132) using
balancer and marked autosomes (Supporting Information, Figure S1).

Figure 1 Crosses used to generate individuals with
reversed sex chromosome parent-of-origin inheritance.
Both free and attached X and Y chromosomes were
substituted into a common autosomal background
(Figure S1). Only the sex chromosomes are depicted
for each cross. Hundreds of individual flies of each ge-
notype were pooled for gene expression analysis.

2 | B. Lemos et al.

http://flybase.org/reports/FBgn0263755.html
http://flybase.org/reports/FBgn0003607.html
http://flybase.org/reports/FBgn0004034.html
http://flybase.org/reports/FBgn0003996.html
http://flybase.org/reports/FBgn0002577.html
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008029/-/DC1/008029SI.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008029/-/DC1/FigureS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008029/-/DC1/FigureS1.pdf


Following the generation of the C(1)M4,y2/ C(1;Y)3,In(1)FM7,w1,m2;
Aut; Aut strain, crosses between this genotype and the parental
Autw132 strain were used to generate the experimental genotypes
(Figure 1). We chose this approach rather than screening progeny
for exceptional karyotypes resulting from nondisjunction, because it
allowed careful control of the larval environment while simultaneously
producing a large number of adult flies that allowed well-replicated
microarray analysis. All three contrasts compared individuals carrying
Autw132 autosomes and identical sex chromosomes. Genetic con-
straints associated with our experimental approach required that the
two male contrasts also differed in the maternally inherited cytoplasm
(see Discussion for more details on this point). Both strains that pro-
vided maternal cytoplasm [C(1)M4,y2 and Autw132] were tested for
the presence ofWolbachia by PCR using previously published primers
and conditions (Montooth et al. 2010).

Both male and female fecundity differ substantially between
attached-X females or attached X-Y males and Autw132; therefore,
flies were reared to minimize variation in culture conditions and
density between genotypes. All cultures were kept in a 25� incubator
with a 12:12 light/dark cycle. To generate each genotype, 25 virgin
males and 25 virgin females were placed together in vials with added
yeast to initiate mating. Twenty-four hours later, two vials (i.e., 50
males and 50 females) were combined into a mating cage on apple
juice plates and live yeast paste to stimulate oviposition. Parents were
transferred to a new laying cage 24 hr later, and again 48 hr later. On
the third day after egg laying, larvae were removed from the apple
juice plates by adding 20% sucrose solution and allowing the larvae to
float to the surface. They were transferred by Pasteur pipette to PBS
solution in a watch glass, and then 50 larvae were pipetted from the
PBS onto a cotton plug. The plugs were then inserted into a vial of
food without added yeast and the larvae were allowed to develop.
Adults were collected as virgins, aged 2–3 days in single-sex vials,
and then flash-frozen in liquid nitrogen at the same time of day to
control for circadian effects on gene expression.

Microarrays
Microarrays were constructed from 21,487 exon-specific PCR prod-
ucts amplified from the Oregon-R strain of D. melanogaster (Hild
et al. 2003) that were spotted onto poly-L-lysine–coated slides
(Thermo Scientific, Portsmouth, NH) using standard protocols
(www.microarray.org). Total RNA was extracted from whole flies
using TRIzol (Life Technologies). cDNA synthesis and labeling with
fluorescent dyes (Cy3 and Cy5) as well as hybridization conditions
were performed using 3DNA protocols and reagents (Genisphere,
Hatfield, PA). For each genotype, total RNA was isolated from mul-
tiple replicates of �60 flies; each replicate was hybridized and scanned
with an Axon 4000B scanner (Molecular Devices, Sunnyvale, CA) and
GenePix Pro 6.0 software (Molecular Devices). Only microarray spots
meeting the following quality control criteria were retained for further
analysis: 70% of the foreground pixels within a spot had a signal
intensity higher than 2 SDs above the median background signal in-
tensity in at least one of the two channels (Cy3 or Cy5); the median
foreground signal intensity was at least three-times as great as the
median background signal intensity in at least one of the two chan-
nels; and a spot had more than 30 foreground pixels. Log2 ratios were
normalized over spot signal intensity by loess smoothing using the
limma package (Smyth 2004; Smyth and Speed 2003) and a span of
0.3. Spatial variation in signal intensity across arrays was removed by
subsequently normalizing log2 ratios with loess smoothing over the
physical location of the spots on the slide, using a span of 0.002, or
approximately 250 spots.

Experimental design and gene expression analysis
Gene expression differences between pairs of genotypes differing only
in the parent-of-origin of the sex chromosomes were assayed by direct
comparison of RNA samples on the spotted microarrays, incorporat-
ing dye swaps. For X/Y males and XY/X females, the experiments
included two batches of independent RNA extractions and microarray
hybridizations. We observed excellent agreement between the two
batches for both male and female data and the two batches were
combined for the final analysis. XMYP vs. XPYM males and XYPXM vs.
XYMXP females were each contrasted on eight separate arrays. Limited
emergence of XY/Y genotypes precluded the same level of replication
for this genotype: the dataset in this case consists of five separate
microarrays. The significance of differences in gene expression was
assessed using a linear model in limma (Smyth 2004). Results were
checked for consistency with the Bayesian analysis of gene expression
levels (BAGEL) (Townsend and Hartl 2002), for which false discovery
rates (FDRs) were empirically estimated by permutation of the dataset.
Fold-change estimates showed remarkable concordance between
limma and BAGEL (r = 0.99; P , 0.0001). The microarray gene
expression data reported here can be obtained at the NCBI Gene
Expression Omnibus database under accession number GSE51942.

Bioinformatic analyses
Tissue specificity of gene expression was assessed using the FlyAtlas
data (downloaded on August 2012) (Chintapalli et al. 2007). We
filtered the data to include only the following nonredundant set of
tissues: adult brain; adult accessory gland; adult crop; adult eye; adult
fat body; adult hindgut; adult heart; adult midgut; adult salivary gland;
adult thoracicoabdominal ganglion; ejaculatory duct; female sperma-
thecaea; larval central nervous system; larval hindgut; larval midgut;
larval salivary gland; larval trachea; larval malpighian tubules; ovary;
and testes. For each Affymetrix probe in the FlyAtlas dataset and for
each tissue, we arbitrarily set expression level of probes with “absent”
calls to 1. When multiple probe sets matched a single gene, the probe
set with the strongest signal intensity across all tissue samples was
chosen and the redundant probe sets were discarded. Tissue-specific
expression was determined using the t metric (Yanai et al. 2005) and
a cutoff of t . 0.9. Chromatin status was determined from previously
published genome-wide protein binding and covalent histone modi-
fication profiles summarized into a five-state model (chromatin “col-
ors”) (Filion et al. 2010). Only genes in which a single chromatin state
covered the entire coding region were assigned a chromatin color. All
analyses were performed in R (version 2.15.2) (R Core Team 2011).
Microarray analyses used the limma package (version 3.14.4) (Smyth
2004); bivariate regression analysis used standard major axis regres-
sion with the smatr package (version 3.2.4).

RESULTS

Abundant genome-wide expression effects in XPYM

adult males
Our experiments directly compared genome-wide patterns of gene
expression between identical genotypes that differ in the parent-of-
origin of the X and Y chromosome. The crossing schemes used to
generate the parental genotypes are shown in Figure S1, and the
crosses used to generate the experimental individuals are shown in
Figure 1. For all three contrasts shown in Figure 1, gene expression
differences were assayed in individuals with precisely the same nuclear
genotype, so our results are not confounded by variation in the genetic
background of the contrasted individuals. We first assayed gene ex-
pression in samples of adult male D. melanogaster with a standard X/
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Y sex chromosome karyotype that differed solely in the parental origin
of the X and Y chromosomes [typical X-maternal / Y-paternal (XMYP)
flies vs. X-paternal / Y-maternal (XPYM) flies]. At a FDR of 0.05, we
identified 905 genes significantly differentially expressed between
XMYP and XPYM individuals. This large number of differentially
expressed genes was confirmed by a second independent batch of
arrays, which resulted in 898 genes differentially expressed as a conse-
quence of X-chromosome and Y-chromosome inheritance through
the female or male germline. More than 60% of the genes identified
as differentially expressed in the first experiment were replicated in the
second set of arrays, and we found a highly significant concordance in
fold-change estimates for gene expression variation between the two
experiments (r = 0.81; P , 0.0001). Together, these results indicate
a substantial effect on gene expression in adult male D. melanogaster
resulting from X-chromosome and Y-chromosome parent-of-origin.
Because of the strong concordance between the two array batches, we
combined them into a single analysis, which substantially increased
statistical power. This resulted in the identification of 2535 genes
differentially expressed between XMYP and XPYM males at FDR ,
0.05. In all subsequent analyses, we focused on this combined dataset.

Imprinting effects are generally mediated by epigenetic modifica-
tions that modulate expression via cis-regulation. The gene expression
changes we observe could be the direct consequence of such cis-
regulatory control, or a downstream consequences of such modifi-
cations. In the former case, we would expect differentially expressed
genes to be located primarily on the X or the Y chromosome, whereas in
the latter case differentially expressed genes might be dispersed through-
out the genome. The number of differentially expressed genes located
on the major autosomal arms or the small heterochromatic fourth
chromosome is similar to random expectation (Table 1), and we
observed a minor but significant deficit of differentially expressed
genes on the X chromosome (17% of genes detected on the array
are X-linked, 15% of differentially expressed genes are X-linked; x2

test; P = 0.007). The slight but significant enrichment of differentially
expressed genes on chromosome arm 2L (Table 1) likely resulted from
the effects we observed on genes that are expressed specifically in the
testis, which are overrepresented on 2L (x2 = 13.6; P = 0.0002). Thus,
there is little evidence for direct expression effects on X-linked genes
as a consequence of X chromosome transmission through the male or
the female germline, supporting that conclusion that the observed
gene expression differences are downstream consequences of epige-
netic modifications to the sex chromosomes.

Testis-specific genes are downregulated in XPYM males
To determine whether genes differentially expressed as a result of sex
chromosome parent-of-origin share a common organismal expression
pattern, we compared our results with microarray data from dissected

larval and adult organs and tissues (Chintapalli et al. 2007) (Figure
S2). We observed that genes expressed specifically in the testis (see
Materials and Methods) were significantly overrepresented among
genes significantly differently expressed between XMYP and XPYM

males (12% of genes detected on the array were testis-specific; 32%
of differentially expressed genes were testis-specific; Fisher exact test,
PFET , 0.0001). Additionally, there was a severe bias among testis-
specific genes toward downregulation in XPYM males relative to XMYP

males; 575/585 (98%) of significantly differently expressed testis-
specific genes were downregulated in males inheriting a paternal
X chromosome and a maternal Y chromosome (PFET , 0.0001).
Furthermore, the magnitude of differential expression among testis-
specific genes, regardless of statistical significance, suggested that
downregulation in XPYM males was common to testis-specific genes
as a group (Figure 2). The median log2 expression difference be-
tween XMYP and XPYM males among testis-specific genes was 0.24
(1.18-fold; Mann-Whitney test, PMW , 0.0001).

We observed a pattern complementary to that seen for testis-
specific genes among genes expressed specifically in the adult midgut
(Figure S2); of the 71 adult midgut-specific genes assayed on the
arrays, 34 (48%) were significantly upregulated in XPYM males
(PFET , 0.0001), whereas only one adult midgut-specific gene was
significantly downregulated in XPYM males. Similarly, upregulation
in XPYM males was common to adult midgut-specific genes as a group
(Figure 2); the median log2 expression difference between XMYP and
XPYM males for all adult midgut-specific genes was 20.23 (0.85-fold;
PMW, 0.0001). In contrast to testis-specific and midgut-specific genes,
all other genes assayed showed no strong bias among expression differ-
ences between XMYP and XPYM males (Figure 2 and Figure S2).

Gene expression effects in XYPYM males recapitulate
those in XPYM males
The comparison between XMYP and XPYM males did not allow us to
distinguish whether the effects we observed resulted from reversed
parent-of-origin of the X chromosome, the Y chromosome, or both.
To further dissect the consequences of sex chromosome transmission
on gene expression, we compared a second pair of male genotypes
that carry a compound X-Y chromosome as well as a free Y chromo-
some. Using a similar crossing scheme as that used for the XMYP vs.
XPYM contrast (Figure 1), we compared males that differ solely in the
parent-of-origin of the compound X-Y and the free Y chromosome
(XYMYP vs. XYPYM). Males of these genotypes inherit both a paternal
and a maternal Y chromosome; differences in gene expression between
these genotypes must therefore result from either parent-of-origin
effects associated with the X chromosome or different parent-of-
origin effects associated with the Y-linked component of the com-
pound X-Y vs. the free Y chromosome. We detected substantially

n Table 1 Chromosomal location of significantly differently expressed genes

X 2L 2R 3L 3R 4 Othera Total

All spots 2719 2992 3225 3235 3915 98 514 16,698
16.8% 18.5% 19.9% 20.0% 24.2% 0.6%

X/Y males 366 505 518 511 571 9 55 2535
14.8% 20.4% 20.9% 20.6% 23.0% 0.4%

XY/Y males 21 63 52 55 63 1 11 266
8.2% 24.7% 20.4% 21.6% 24.7% 0.4%

XY/X females 0 11 11 8 8 0 3 41
0.0% 28.9% 28.9% 21.1% 21.1% 0.0%

Numbers in bold indicate a significantly different proportion from that expected (x2 test, FDR = 0.05).
a

Microarray probes that are not mapped to the assembled D. melanogaster reference genome.
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fewer gene expression differences in XY/Y males than we observed
in X/Y males; only 266 genes were significantly differently expressed
between XYMYP and XYPYM males at FDR = 0.05. However, the XY/
Y genotypes were assayed at a level of replication (see Materials and
Methods) equivalent to a single batch of the X/Y experiments and
showed substantially lower statistical power than the combined X/Y
dataset (Figure S3).

We compared the list of genes significantly differently expressed in
X/Y and XY/Y males and found that 77% (205 genes) of the genes
differently expressed between XYMYP and XYPYM males at an FDR of
0.05 were also differently expressed between XMYP and XPYM males.
Furthermore, fold-change estimates across all genes were remarkably

similar in the XY/Y and the X/Y comparisons (r = 0.68; P , 0.0001)
(Figure 3), with a stronger correlation in the set of 205 differentially
expressed genes common to both the XY/Y and X/Y experiments (r =
0.85; P , 0.0001). None of these 205 genes had sign differences in
fold-change estimates between the X/Y and XY/Y experiments. These
observations indicate that the gene expression effects attributable to
paternal inheritance of the X chromosome or maternal inheritance of
a free Y chromosome are similar in X/Y and XY/Y males.

The biases observed in X/Y males toward upregulation and
downregulation among tissue-specific genes are also detectable in
XY/Y males. Testis-specific genes are significantly enriched among
genes downregulated in XYPYM males relative to XYMYP males

Figure 2 Tissue-specific expres-
sion effects of reversed parent-of-
origin sex chromosome inheritance.
Shown are the distributions of par-
ent-of-origin effects for genes
expressed specifically in the
testes, the adult midgut, and
all other genes. (A) Log2 ex-
pression differences between
XMYP and XPYM males. The
median fold-change of all three
groups of genes is significantly
different from zero (testis-specific
genes = 0.24; midgut-specific
genes = 20.23; all other genes =
20.03; PMW , 0.0001 in all
three cases). (B) Log2 expres-
sion differences between XYMYP
and XYPYM males. The median
fold-change of all three groups
of genes is significantly different
from zero (testis-specific genes =
0.22; midgut-specific genes =
20.36; all other genes = 20.02;
PMW , 0.0001 in all three cases).

Figure 3 Gene expression differences in X/Y males and XY/Y males
with reversed sex chromosome parent-of-origin inheritance. Orange
points indicate genes significantly differently expressed between both
XMYP vs. XPYM and XYMYP vs. XYPYM males. The two experiments are
highly significantly correlated (P , 0.0001), both for all genes (r = 0.68)
and the set of 205 differentially expressed genes common to both the
XY/Y and X/Y experiments (r = 0.85). Dashed line has a slope of one.

Volume 4 January 2014 | Sex Chromosome Imprinting in Drosophila | 5

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008029/-/DC1/FigureS3.pdf


(57% of genes downregulated in XYPYM males are testis-specific;
PFET , 0.0001) and significantly depleted among genes significantly
upregulated in XYPYM males (0/89 genes upregulated in XYPYM

males are testis-specific; PFET , 0.0001). Adult midgut-specific genes
are enriched among genes upregulated in XYPYM males (0.8% of
genes detected on the arrays are adult midgut-specific; 9.4% of genes
upregulated in XYPYM males are adult midgut-specific, PFET , 0.0001).
As is the case with X/Y males, testis genes as a group are down-
regulated and adult midgut-specific genes as a group are upregulated
in males inheriting a paternal X and maternal free Y compared to
males inheriting a maternal X and paternal free Y chromosome
(Figure 2).

Somatic upregulation of the X chromosome in
XPYM males
In D. melanogaster males, expression from the hemizygous X chro-
mosome is globally upregulated by the male-specific lethal (MSL)
complex to compensate for the difference in X vs. autosomal dosage
between males and females (Lucchesi et al. 2005). The MSL complex
contains chromatin-remodeling proteins and two X-linked noncoding
RNAs, roX1 and roX2, whose transcription facilitates localization of
the MSL complex to the X chromosome (Meller et al. 1997). As the
name suggests, mutations in genes that encode components of the
MSL complex are generally lethal in males and have few effects in
females. However, male roX1 roX2 mutants that inherit a maternal Y
chromosome have substantially higher survival than roX1 roX2 males
inheriting a paternal Y (Menon and Meller 2009), whereas there is no
effect of Y-chromosome imprinting on viability in males with wild-
type dosage compensation. One potential mechanism underlying this
observation is upregulation of the X chromosome in the presence of
a maternal Y chromosome (Menon and Meller 2009). Supporting this
idea, we observed significantly more X-linked than autosomal genes
upregulated in XPYM males (Table 2), and the magnitude of this
excess was stronger among genes located in chromatin domains char-
acterized by a histone modification (H3K36me3) that has been shown
to recruit the MSL complex (Filion et al. 2010; Larschan et al. 2007).
This excess of upregulated X-linked genes is not observed among
testis-specific genes (Table 2) (PFET = 0.372), which is consistent with
the hypothesis that X-chromosome dosage compensation is absent
from the male germline (Meiklejohn et al. 2011; Rastelli and Kuroda
1998). In roX1 roX2 mutants, enhanced viability attributable to a ma-
ternal Y chromosome is masked by the simultaneous presence of
a paternal Y chromosome (Menon and Meller 2009). We also ob-
served gene expression effects consistent with this masking in the XY/
Y male comparison, in which, in contrast to X/Y males, there is no
difference in the proportion of upregulated genes on the X chromo-
some and the autosomes (data not shown).

Little effect of Y chromosome parent-of-origin on gene
expression in XY/X female genotypes
To investigate further the effects of Y-linked inheritance on global
gene expression, we contrasted female genotypes that carry paternal or
maternal Y chromosomes (see Materials and Methods). As with the
male comparisons, we compared two XY/X female genotypes with the
same nuclear genotype but that differed in the parent-of-origin of
a single free X chromosome and a compound XY chromosome
(XYMXP vs. XYPXM) (Figure 1). Although this contrast between fe-
male genotypes was performed at a level of replication equivalent to
that of the X/Y male comparison (Materials and Methods), at an FDR
of 0.05 we detected only 41 genes differently expressed between
XYMXP and XYPXM females (Figure S3 and Table 1). This suggests
that transmission of the Y chromosome through the male or female
germline has a small impact on global gene expression in females.
None of the genes differentially expressed between XYMXP and
XYPXM females are X-linked (Table 1), whereas 17% of genes robustly
expressed on the female arrays are X-linked (PFET = 0.002), suggesting
that, as in males, parent-of-origin expression effects in females are
indirect and downstream consequences of epigenetic modifications
to sex chromosome chromatin.

There is substantial overlap between genes differentially expressed
in the female contrast and both male contrasts—62% and 46% of
genes significant in females are also significant in X/Y males and
XY/Y males, respectively (PFET , 0.0001 in both cases). Furthermore,
among those genes significantly differentially expressed between
XYMXP and XYPXM females, we observed a negative correlation be-
tween the expression effects resulting from parent-of-origin of the
compound XY chromosome in females and the free Y chromosome
in males (Figure 4). This strong overlap and negative correlation
between the sexes suggest that differential expression of these genes
may result from the same regulatory mechanism in males and females
and that this mechanism leads to the opposite effect (upregulation vs.
downregulation) in males and females.

DISCUSSION
Imprinting in Drosophila has been detected via differential expression
of visible markers when transmitted through sperm or eggs, such as
those on the rearranged Dp(1;f)LJ9 mini-X chromosome (Anaka et al.
2009) and P-element insertions on the Y chromosome (Haller and
Woodruff 2000; Maggert and Golic 2002). Imprinting of the Drosoph-
ila Y chromosome has also been shown to partially suppress muta-
tions affecting dosage compensation of the X chromosome in males
(Menon and Meller 2009). Here, we report extensive genome-wide
expression differences resulting from sex chromosome transmission
through the male vs. female germlines. Our results extend previous
observations that Y-chromosome transmission through the egg or the

n Table 2 Somatic upregulation of X-linked genes in XPYM males

Excluding Testis-Specific and Midgut-Specific Genesa

All Genes Testis-Specific Genes YELLOW Genesb

X-linked Autosomal X-linked Autosomal X-linked Autosomal X-linked Autosomal

XMYP . XPYM 161 1103 80 495 38 308 10 126
XMYP , XPYM 205 1002 0 10 141 722 57 265
Odds ratio 0.71 — 0.63 0.37
P 0.0032 NS 0.0196 0.0036

NS, not significant.
a

Includes only genes with FlyAtlas expression data.
b

Euchromatic genes enriched for H3K36me3 (Filion et al. 2010).
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sperm leads to differential epigenetic modification of the Y (Golic
et al. 1998; Lloyd 2000; Maggert and Golic 2002) and indicates that
such modifications influence genome-wide gene expression in whole
adult males.

We observed an enrichment of testis-specific genes differentially
regulated by sex-chromosome parent-of-origin effects, and these
effects are strongly biased toward downregulation in males inheriting
a paternal X and a maternal free Y chromosome, regardless of whether
they also inherit the Y-linked component of an attached X-Y
chromosome from their father. Genes expressed specifically in the
midgut show complementary patterns to those specific to the testis—
adult midgut genes are overrepresented among genes significantly
upregulated in XPYM and XYPYM males and are upregulated as
a group in these genotypes (Figure 2). The median magnitude of
differential expression among testis-specific and midgut-specific genes
is small (0.78-fold to 1.18-fold), consistent with the hypothesis that the
effects of sex chromosome imprinting are dispersed throughout the
genome in these cell types. However, by conducting expression assays
on whole animals, we have likely underestimated the magnitude of the
expression effects we observed on genes expressed only in a subset of
cell types (Chintapalli et al. 2007).

In contrast to the large number of genes differentially expressed in
males as a result of parent-of-origin of the sex chromosomes, we
detected only 41 genes that were significantly differentially expressed
between female genotypes inheriting a maternal Y chromosome
(XYMXP) vs. those inheriting a paternal Y chromosome (XYPXM).
Nonetheless, we saw a strong and statistically significant correlation
between shared parent-of-origin effects in X/Y and XY/Y males and in
XY/X females (Figure 4), suggesting that expression of these few genes
was influenced by transmission of a Y chromosome through the male
or female germline, regardless of the sex of the progeny. The direction
of the expression effect (upregulation or downregulation) was reversed
between males and females, with 39/41 genes showing greater expression
levels in females inheriting a maternal Y chromosome and 30/41 show-
ing reduced expression in males inheriting a maternal Y chromosome.

Although we do not know the molecular nature of the imprint
placed on the sex chromosomes that led to these effects on gene
expression, we suggest that passage through the male or female
germline produces differences in the chromatin state of the

heterochromatic regions of the sex chromosomes, such as the degree
of heterochromatinization or nature of chromatin packaging. Pre-
vious associations between heterochromatin and imprinting in Dro-
sophila (Lloyd 2000) suggest that these regions of the genome are
normally differentially packaged in oogenesis and spermatogenesis;
the indirect and trans-regulatory effects we detected likely resulted
from these effects on the substantial amount of heterochromatin
present in the 40-Mb Y-chromosome. This, in turn, could differen-
tially sequester heterochromatin-binding proteins such as HP1 and
Su(var)3-9, leading to differential expression of genes throughout
the genome whose expression is affected by the amount of available
HP1 (Zuckerkandl 1974).

Are parent-of-origin effects attributable to the X or the
Y chromosome?
By itself, the contrast between XMYP and XPYM males did not allow us
to determine whether the effects on gene expression or testis size were
attributable to reversed parent-of-origin of the X or the Y chromo-
some. The strong concordance between the X/Y and XY/Y contrasts,
however, suggests that these effects may not be solely ascribed to Y-
chromosome imprinting, because XYMYP and XYPYM males simulta-
neously inherit both a paternal and maternal Y chromosome. One
possible explanation for our observations is that these effects result
from transmission of the free Y chromosome through the male vs.
female germlines and that in XY/Y males, these effects are not masked
or compensated by the presence of the Y-linked complement of the
compound XY chromosome inherited from the other parent. The
compound XY chromosome we used here [C(1;Y)3, In(1)FM7, w1,
m2] contains a full inversion of the X chromosome and may have
other structural rearrangements or aneuploidy for X-linked or
Y-linked heterochromatin, which could lead to differences in parent-
of-origin effects between this chromosome and the free Y. An alterna-
tive possibility is that the changes in gene expression in both X/Y and
XY/Y males result from parent-of-origin effects associated with the X
chromosome. In addition to more than 2500 X-linked protein-coding
genes located in 20 Mb of euchromatic DNA, the Drosophila X chro-
mosome contains �20 Mb of heterochromatic DNA. Epigenetic mod-
ification of X-linked heterochromatin resulting from transmission

Figure 4 Expression differences in males and females for genes significantly differently expressed between females with reversed sex
chromosome parent-of-origin inheritance. (A) Expression in X/Y males and XY/X females. There is a marginally significant negative correlation
between gene expression effects attributable to parent-of-origin of the free X chromosome or the Y chromosome in males vs. females. (B)
Expression in XY/Y males and XY/X females. There is a significant negative correlation between parent-of-origin effects attributable to the free Y
chromosome in males and the attached X-Y chromosome in females. (C) Expression in X/Y and XY/Y males. There is a highly significant positive
correlation attributable to parent-of-origin effects on the X chromosome or the free Y chromosome between these two male genotypes.
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through spermatogenesis vs. oogenesis could have effects on gene ex-
pression similar to those proposed for the Y chromosome. X-linked
protein-coding genes are underrepresented among genes differentially
expressed in our contrasts (Table 1), consistent with the hypothesis
that such epigenetic modification of the X chromosome would be
concentrated in heterochromatic regions and that this modification
affects gene expression genome-wide in trans.

Parent-of-origin effects in males are concentrated in
the testes
Genes expressed specifically in the male germline are disproportion-
ately affected by epigenetic consequences of X-chromosome or Y-
chromosome passage through parental male or female germlines. The
Drosophila Y chromosome contains at least 14 single-copy protein-
coding genes, all of which are expressed only in the testes, and it is
dispensable for both sex determination and male somatic develop-
ment (Carvalho et al. 2009; Marsh and Wieschaus 1978). Despite its
small coding potential, the Y chromosome comprises 40 Mb of DNA,
and Y-linked variation has been shown to have widespread effects on
gene expression (Jiang et al. 2010; Lemos et al. 2008, 2010), presum-
ably via modulation of global chromatin status. Although genes reg-
ulated by differences between Y chromosomes are not restricted to the
germline, in some experiments male-biased and testis-specific genes are
disproportionately affected by Y-linked regulatory variation (Branco
et al. 2013; Lemos et al. 2008; Sackton et al. 2011).

One interpretation of these patterns is that sex chromosome
imprinting affects the expression of genes that share a common
regulatory feature and that testis-specific and midgut-specific genes
are overrepresented among this group of genes. A comparison of
our results with genome-wide analyses of chromatin-binding
protein occupancy and covalent histone modifications in Drosoph-
ila cell culture (Filion et al. 2010) indicates that genes regulated by
sex chromosome imprinting are preferentially located in repressive
chromatin domains in Kc167 cells; however, this can be explained
by the enrichment of all tissue-specific genes in these repressive
domains (Table S1). The global shifts observed among all testis-
specific and midgut-specific genes (Figure 2) suggest an alternative
interpretation—sex chromosome imprinting may influence ge-
nome-wide gene expression in these cell types. This interpretation
is supported by patterns of expression among genes whose expres-
sion is not specific to the testes or adult midgut. We observed
significant correlations between testis enrichment (a quantitative
measure of expression level in the testis vs. other cell types; see
Materials and Methods), midgut enrichment, and parent-of-origin
effects on differential expression (Figure S4) among all genes not
expressed solely in these two cell types. Specifically, there is a sig-
nificant positive relationship between testis-enrichment and differ-
ential expression in both male contrasts (r = 0.31 and P , 0.0001
in X/Y males; and r = 0.23 and P , 0.0001 in XY/Y males); there is
a significant negative relationship between midgut enrichment and
differential expression in both male contrasts (r = 20.13 and P ,
0.0001 in X/Y males; r = 20.19 and P , 0.0001 in XY/Y males).
Neither testis enrichment nor midgut enrichment showed a signif-
icant relationship with differential expression in females (P = 0.99
and P = 0.84, respectively). This indicates that these global expres-
sion effects in the testis and midgut are limited to males. Further
experiments may determine if sex chromosome imprinting leads to
differences in the anatomy of the testis or midgut that could con-
tribute to the expression effects we observed among genes specific
to these tissues.

Sex chromosome imprinting could directly modify expression of
testis-specific genes by changing the amount of available chromatin-
associated proteins such as HP1, but it is also possible that imprinting
effects on master transcriptional regulators in the male germline could
have downstream consequences on the expression of testis-specific
genes. For example, a segment of the Y chromosome thought only to
contain repetitive sequences acts as a trans-activator of gene expres-
sion specifically in the testes (Zhang et al. 2000); epigenetic modifica-
tion of this segment could affect the expression of many genes.
However, as noted, the effects observed in XY/Y males indicate that
a model involving imprinting of the Y chromosome requires that the
parental imprint placed on the free Y chromosome is dominant in its
effects over the parental imprint on the Y-linked segment of the
compound X-Y chromosome. Although there are examples of im-
printing involving X chromosome heterochromatin (Lloyd 2000),
we are not aware of any reported associations between this region
of the genome and regulation of gene expression in the male germline,
with the possible exception of the Stellate heterochromatic repeats
(Egorova et al. 2009; Palumbo et al. 1994a, 1994b).

Cytoplasmic effects on gene expression
Although all the genotypes we contrasted carried identical X and Y
chromosomes and autosomes, it was not possible to similarly control
the source of the maternal cytoplasm in our crosses. This is because,
in our crossing scheme, maternal inheritance of a Y chromosome
requires a compound-X chromosome, and compound-X chromo-
somes co-segregate with maternal cytoplasm, precluding the in-
troduction of a different cytoplasm into the C(1)M4,y2 compound-X
strain, or the introduction of the C(1)M4,y2 cytoplasm into another
X-chromosome genotype. Thus, both XMYP and XYMYP males inherited
the Autw132 strain cytoplasm, whereas the XPYM and XYPYM males
inherited cytoplasm from the C(1)M4,y2 strain. The two female
genotypes we contrasted share the same cytoplasm and mtDNA
(Autw132), and so the small number of genes differentially expressed
between XYPXM and XYMXP females cannot be attributable to cyto-
plasmic effects. The intracellular endosymbiotic bacterium Wolbachia
can have profound effects on host fitness, physiology, and develop-
ment (Clark et al. 2005; Ikeya et al. 2009; Mercot and Charlat 2004);
however, neither cytoplasm used in these experiments carriesWolbachia
(data not shown) (Montooth et al. 2010).

There are conflicting results in the literature regarding the
contribution of cytoplasmic effects to genome-wide gene expres-
sion in Drosophila. Although classic quantitative genetic experiments
detected negligible cytoplasmic contribution to expression variation in
D. simulans (Wayne et al. 2007), a recent study identified cytoplasmic
effects on genome-wide gene expression in D. melanogaster and found
that these effects were stronger in males and included many testis-
specific genes (Innocenti et al. 2011). One possibility, then, is that the
patterns of differential gene expression we observed were caused by
cytoplasmic factors, such as mtDNA variants, that led to differential
gene regulation in the testis. A close comparison of previously published
cytoplasmic effects on gene expression (Innocenti et al. 2011) and the
results reported here suggest the two experiments yield qualitatively
different results: our experiments affect the expression of more genes
(compare Table 1 to Table S1); the magnitude of the gene expression
effects we observe are larger (Table S2 and Figure S5); and the effects are
more concentrated among testis-specific genes (Table S1 and Table S2;
compare Figure S2 with Figure S6 and Figure S7). We therefore con-
clude that reversing sex chromosome parent-of-origin has gene expres-
sion effects above and beyond those that might be attributable solely to
the cytoplasm.
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Opposing consequences of parent-of-origin effects in
male and female progeny
The genes that display sensitivity to sex chromosome parent-of-origin
inheritance in both sexes (Figure 4) suggest a shared regulatory effect
in males and females. This effect cannot be attributable to cytoplasmic
factors, because both female genotypes inherited the Autw132 cyto-
plasm. Additionally, this effect is unlikely to be associated with im-
printing of the X chromosome, because both female genotypes
inherited both a paternal and a maternal X chromosome. These 41
genes therefore represent the most compelling evidence for Y-linked
imprinting effects on global gene expression in our data. The small
number of these genes, despite the extensive replication of the micro-
array experiments, is consistent with previous results that suggest
imprinting is rare in adult female Drosophila melanogaster (Coolon
et al. 2012; Wittkopp et al. 2006). The negative correlation between
the gene expression effects of Y chromosome imprinting in males and
females is reminiscent of the male-specific lethality associated with
mutations in HP1 (Liu et al. 2005) and indicates that heterochromatic
regulation of these genes leads to opposing expression changes
(upregulation vs. downregulation) between the sexes. Additional
experiments are required to ascertain whether such sex-specific het-
erochromatic effects are involved in the resolution of evolutionary
conflicts over optimal expression between the sexes (Arnqvist and
Rowe 2005; Stewart et al. 2010; Svensson et al. 2009).
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