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ABSTRACT A population genetic approach is presented
for general analysis and comparison of kin selection models
of sib and half-sib altruism. Nine models are described, each
assuming a particular mode of inheritance, number of fe-
male inseminations, and Mendelian dominance of the al-
truist gene. In each model, the selective effects of altruism
are described in terms of two general fitness functions, A(O)
and S(ft), giving respectively the expected fitness of an al-
truist and a nonaltruist as a function of the fraction of al-
truists f in a given sibship. For each model, exact conditions
are reported for stability at altruist and nonaltruist fixation.
Under the Table 3 axions, the stability conditions may then
be partially ordered on the basis of implications holding be-
tween pairs of conditions. The partial orderings are com-

pared with predictions of the kin selection theory of Hamil-
ton.

Kin selection, i.e., selection for altruistic behavior between
genetic relatives, has become the major genetic explanation
of many evolutionary phenomena involving social behavior
(1-3). Recognition of the fundamental importance of kin se-

lection largely began with the work of Hamilton (4, 5), who
pointed out that haplodiploidy in the Hymenoptera may

have been a major factor facilitating at least eleven indepen-
dent emergences of eusociality in this order (ref. 3, p. 327).
Specifically, Hamilton noticed that haplodiploidy implies a

mean Wright coefficient of sister-sister relationship r = T4,
which exceeds the mean relationship between a female par-

ent and her offspring of either sex (r = 'A). He then made an

attractive, if heuristic, argument that a kin altruist gene will
be favorably selected if

k
mean fitness gained by recipient > 1

mean fitness lost by donor r

where r is the mean coefficient of relationship between
donor and recipient (6). Using [1], Hamilton concluded that
sociality in the Hymenoptera may be explained as a likely
consequence of kin selection, specifically of sib selection
(i.e., selection for altruism between sibs).

Although Hamilton's reasoning is not rigorous, it has di-
rectly served as the basis of a rapidly increasing body of sub-
sequent work on kin selection (e.g., refs. 7-9). Many of these
investigations have focused specifically on sib selection, and
sib selection is undoubtedly one of the two or three cases of
kin selection most frequently encountered in nature. Below,
the problem of sib selection is reexamined rigorously as a

mathematical problem in population genetics.
The present models start by assuming a single biallelic

locus (A,a) which is undergoing sib selection, where a is
taken to be the altruist trait. The first step is to write down a

family of very general models describing sib selection under
a variety of different modes of inheritance, number of fe-
male inseminations, and assumptions on Mendelian domi-
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nance. Assuming random mating in a large population, these
models are then analyzed with respect to stability at both al-
truist and nonaltruist fixation. Next, these stability condi-
tions are systematically examined for implications holding
between pairs of conditions. This comparison is analogous to
Hamilton's predictions using [1]. Specifically, a set of axioms
is presented (Table 3) under which comparison of the al-
truist stability conditions leads to a nearly linear implication
ordering (Fig. 1). This ordering largely agrees with Hamil-
ton's predictions, as also to a lesser extent does the corre-
sponding implication ordering for the nonaltruist conditions
(Fig. 2). At the same time, the present analysis shows many
ways in which the actual relations among different model
cases are substantially more complicated than [1] would
imply. In addition, the analysis makes clear that the pres-
ence of a Hamilton-type ordering of cases (and with it the
validity of his predictions) is closely tied to the presence of
certain key restrictions on the way altruism affects fitness
[e.g., the presence of downward convexity in S(fl)].
Description of models
For illustrative purposes, we first develop the case where a is
recessive, inheritance is diploid, and each female is insemi-
nated exactly once. There are then three genotypes (AA, Aa,
aa), of which aa will be phenotypically altruist and AA and
Aa will be phenotypically nonaltruist.
The first problem is one of assigning fitnesses within a sib-

ship possessing a given altruist/nonaltruist composition. One
is initially tempted to try to give a detailed model of the me-
chanics of altruism within the sibship, and to infer expected
fitness on the basis of such a model. Essentially this approach
has in fact been followed by a number of investigators (10,
11). However, it is always possible to suggest many variants
on any particular description of the details of altruism, and
it is correspondingly difficult to assess the robustness of con-
clusions drawn from such specific models. For this reason,
the present developments will be carried out in a way which
does not attempt to construct a detailed picture of altruism
within a sibship. Instead, we simply start by defining two
functions, S(fl) and A(13):

S(f3) = expected fitness of a nonaltruist in a sibship con-
taining a proportion f3 of phenotypic altruists;

A(fl) = expected fitness of an altruist, : as before.

For the initial purpose of writing down the desired dip-
loid model and obtaining its associated fixation stability con-
ditions, no restrictions will be placed on S(fl) and A(i3) other
than S(f3), A(f3) > 0. Later, when undertaking model com-
parisons, we will consider the effects of imposing restrictions
on the form of S(,B) and A(,B) (Table 3).
Given S(,B) and A(fl), Table 1(a) reproduces a fitness ta-

bleau for the present model. Interpreting S(fl) and A(fl) as
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survival probabilities, the entries in the tableau are just the
expected number of sibs of a given genotype surviving to re-
produce, cross-classified by parental mating type (i.e., the
combination of parental genotypes). The assumption is
being made that all sibships are of the same size N and that
N is large, so that one can work solely in terms of genotype
frequency expectations. Large zygotic sibship size is in fact a
plausible assumption for the social insects and numerous
other species where sib selection may have taken place. Nev-
ertheless, the assumption of large N is a limitation on the
present models (the same assumption is also implicit in the
models of both refs. 10 and 11).
To achieve a complete model, the final assumption is that

there is random mating in a large population. Then let the
frequencies of the genotypes (AA, Aa, aa) in the nth genera-
tion be (Pn, 2Qn, Rn). Let the 6 X 3 matrix of Table 1(a) be
designated M1, and let

f = (pn2 ,4PnQn , 2PnRn, 4Qn2, 4QnRn, Rn2) [2]
be the vector of random mating frequencies of the six paren-
tal genotype combinations in the column order of Table
1(a). Then one obtains the following recursion describing sib
selection in the present model:

(Pnf+l,2Qn+bRn+l) If [3]

2n = constant to make Pn+1 + 2Qn+1 + Rn+1 = 1.

Note that [3] is a two-dimensional recursion in genotype
frequencies (Pn, 2Qn, Rn), not a one-dimensional recursion
in the a gene frequency ?ln+1 = 0(%). This necessity of pro-
ceeding in terms of genotype frequencies in giving an exact
description of sib selection, with the attendant analytical
complications, is a consequence of the fact that one must
keep track of the frequency of different parental mating
combinations in assigning fitness. Note also that N (sibship
size) does not enter into [3].

In addition to the present case, additional model cases will
also be considered:

1. Diploid inheritance, a recessive, single insemination;
2. Diploid, a dominant, single insemination;
3. Diploid, a recessive, multiple insemination;
4. Diploid, a dominant, multiple insemination;
5. Haplodiploid, brother altruist trait;
6. Haplodiploid, recessive sister altruist trait a, single in-

semination;
7. Haplodiploid, dominant sister altruist trait a, single in-

semination;
8. Haplodiploid, recessive sister altruist trait a, multiple

insemination;
9. Haplodiploid, dominant sister altruist trait a, multiple

insemination.

Case 2 is parallel to Case 1 with only the Mendelian domi-
nance changed.

In Cases 3 and 4 (and also Cases 8 and 9), "multiple in-
semination" refers to the assumption that altruism is now
taking place within the set of offspring of a given female
who has been inseminated by a large number of males,
drawn at random from the male population at large. Strictly
speaking, these cases are instances of half-sib, not sib, al-
truism, since in general the offspring of a given female will
be related only through the mother. Table 1(b) is the fitness
tableau for Case 3. Noting that genotype frequencies will
still be the same in the two sexes, since there is no differen-
tial selection acting on males, one may unambiguously use

Table 1. Fitness tableaus for sib selection models
(Cases 1, 3, 5, and 6)

(a) Case 1: Diploid, a recessive, single insemination

(AA x AA)

(AA x Aa)

(AA x aa)

(Aa X Aa)

(Aa X aa)

(aa x aa)

(AA)
NS(O)

2 S(O)
0
N
6(1/4)

0

0

(Aa).
0
N2so)

NS(O)

NS(1)
2

NS(lh)
0

(aa)
0

0

NA(4
4

NA(lh)
NA(1)

(b) Case 3: Diploid, a recessive, multiple insemination

(AA)

(Aa)

(aa)

(AA)
SnS(0)
~n s(Y!)
2 2
0

(Aa)
71n S(O)

(aa)
0

(c) Case 5: Haplodiploid brother altruism

(AA) (Aa) (aa)
(AA x A) F 0 0
(AA X a) 0 F 0

(Aa x A) 2 2 0
F F

(Aaxa) 0 2 2
(aa X A) 0 F 0
(aaXa) 0 0 F

(A)
MS(O)
MS(O)
MS('/2)

2
MS(1A)

2
0
0

(a)
0
0
MA(1A)

2
MA(1A)

2
MA(1)
MA(1)

(d) Case 6: Haplodiploid sister altruism, a recessive,
single insemination

(AA) (Aa) (aa) (A)
(AA x A) FS(O) 0
(AA X a) 0 FS(O)

(Aa x A) -S(0) -S(O)
2 2

(Aa X a) 0
F

S(1/2)

(aa X A) 0 FS(O)
(aa X a) 0 0

0
0

0

F A(1/2)
2
0
FA(1)

(a)
M 0
M 0
M M
2 2
M M
2 2
O M
O M

Interpreting S(fl), A(,B) as probabilities of surviving to reproduce,
the entries in the tables may be interpreted as simply the expected
number of survivors of each genotype, cross-classified by the paren-
tal genotype combination. N = brood size (diploid case), F =
female brood size, M = male brood size (haplodiploid cases).

(Pn, 2Qn2 Rn) as before to denote the frequency of genotypes
in the nth generation. One obtains a recursion

(Pn+ s2Qn+1n+1)= (Pnv2Qn ; Rn)M3

where M3 is the 3 X 3 matrix in Table 1(b) (Un = Pn + Qn =
1 - ?In) and 2n is a normalization constant to make Pn,+i +
2Qn+l + Rn+1 = 1.
The importance of considering multiple insemination de-

rives from Hamilton's observation (4) that altruism taking
place among female haplodiploid half-sibs will correspond
to a mean relationship coefficient r = 1/4, which is lower
than the mean relatedness between a female parent and her
offspring (r = %). Hence for Hamilton's theory on the ori-
gins of Hymenopteran sociality to be credible, one must add
the provision that multiple insemination should not be a pre-
vailing species practice.
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Table 2. Fixation stability conditions for sib and half-sib (multiple insemination) models, general A(13)-S(O) form

Description Altruist Nonaltruist

1, Diploid, altruist trait recessive, S(1/2) < A(1)* S(1/4) + A('/4) < 2S(O)
single insemination (dip)

2. Diploid, altruist trait dominant, S(3/4) + A(3¾) < 2A(1) A(1A) < S(O)*
single insemination (dip-dom)

3. Diploid, altruist trait recessive, S(1) + S(1/2) < 2A(1)* 2A(0) + 1/2 S'(0) < 2S(O)
multiple insemination (dip-mi) A

4. Diploid, altruist trait dominant, 2S(1) - 2 < 2A(1) A(O) + A(1/2) < 2S(O)*
multiple insemination (dip-dom-mi)

5. Haplodiploid, brother-brothert S(1/2) < A(1)* A(1/2) < S(O)*
altruism (BB)

6. Haplodiploid, recessive sister S(1/2) + S(O) < 2A(1)* S(1/2) + 2A(1/2) < 3S(O)
altruist trait, single insemination (SS)

7. Haplodiploid, dominant sister altruist A(1/2) + 2S(1/2) < 3A(1) A(½/2) + A(1) < 2S(O)*
trait, single insemination (SS-dom)

8. Haplodiploid, recessive sister altruist S(1) + S(1/2) < 2A(1)* 2A(O) + % S'(0) < 2S(O)
trait, multiple insemination (SS-mi)

9. Haplodiploid, dominant sister altruist 2S(1) - 2 < 2A(1) A(O) + A(1/2) < 2S(O)*
trait, multiple insemination (SS-dom-mi) 1 < 1) h h

10. Diploid, single insemination, hetero- (1 - h)S(1 2 + hAQ 2 )< A(1)* (1 - h)S(-) +.hA(--)< S(O)*
zygote penetrance with probability he (0, 1)

Abbreviations used in figures!are given in parentheses.
* Indicated condition may be obtained by a linear stability analysis about the relevant fixation.
t Here classification by dominance and insemination is irrelevant.

Table 1(c)-(d) describe, respectively, Cases 5 and 6. In all
haplodiploid cases, it is assumed that the altruist gene affects
behavior in one sex, and this sex is designated in the model
description (Cases 5-9 above). The a gene is then taken to be
selectively neutral in the unaffected sex. Note that there is
only one haplodiploid brother altruism case, since male ha-
ploidy and parthenogenesis make irrelevant any distinctions
based on Mendelian dominance or the number of female in-
seminations.

In setting up recursions for the haplodiploid cases, it is in
general necessary to keep separate track of male and female
genotype frequencies, since selection is now acting differen-
tially on the two sexes. We sketch how the recursion is set up
in Case 6. First note that because there is no selection on the
males, the male (A,a) gene frequencies will be ({n-1, 77n-1),
where Gn-1 = Pn-1 + Qn-13 t7n-l = Qn-1 + Rn-1 Let M6 be
the 6 X 3 matrix given by the first three columns of the 6 X
5 matrix in Table 1(d). Let
h =(Pntn-1,Pnrln-l+2Qntn-le2Qn71n-lxgntn-lgRtXnn-,)g [5]

which is just the random mating frequency vector analogous
to f in [2]. One then obtains a recursion in the female geno-
type frequencies (Pn, 2Qn, Rn),

(Pn+192Qn+l, Rn+) = hM6 [6]

Zn = constant to make Pn+1 + 2Qn+l + Rn+1 = 1.

Note that in writing down [6], F [number of female off-
spring in Table 1(d)] is being assumed large, although F does
not enter into [6] directly.
Stability of altruist and nonaltruist fixation
Given each of the model recursions corresponding to Cases
1-9, one may now analyze the obtained recursions [3], [4],
[6], etc. for fixedpoints and fixedpoint stability. From the
genetics it is obvious that (1,0,0) and (0,0,1) will be fixed-
points in all cases, corresponding respectively to A and a
fixation [in haplodiploid cases, it is also necessary to specify

male (A,a) gene frequencies = (1,0), respectively (0,1)]. The
present report will focus exclusively on analyzing the stabili-
ty of these specific fixedpoints, although the results of ana-
lyzing additional internal fixedpoints (polymorphism) will
be briefly noted.

Table 2 reports the results of the stability analysis in the
form of conditions that each of the two fixations be stable. In
all cases the reverse inequality (>) gives a condition for fixa-
tion instability. To illustrate the derivation of Table 2, con-
sider again Case 1, where the recursion is given by the deri-
vation of Table 1, [3]. For altruist fixation, straightforward
linearization about (0,0,1) leads directly to a recursion

n+1 (. Qn [7]

in the perturbed heterozygote frequency Qn, from which
the stability condition reported in Table 2 follows at once.
Stability analysis of the nonaltruist fixation is more difficult,
since linearization of [3] about (1,0,0) degenerates. Notice,
however, that selection in the neighborhood of (1,0,0) will be
extremely slow. One may use this slow selection to approxi-

Table 3. Axioms used to establish implication orderings
in Figs. 1 and 2

1. MS: ,B > ,B' -0 S(,B) > S(O,B)
(strict monotonicity of S(,B));

2. ConS: S(,B) is convex downward
(XI X2 > 0, xi + X2= 1 = XS(3) + x2s(9') <
S(X4 + X293));

3. MA: ,B > ,B' == A(g) > A(O')
(strict monotonicity of A(j3));

4. Ord: S(,B) > A(,B) for all 13 in [0, 1]
(expected nonaltruist fitness is not less than
expected altruist fitness);

5. WSCAL: A(1) = (1 - e[13] )S(3), where e(13) is in (0, 1)
for all 1 in [0, 1] and (3> 1' =! e(13)> e(1')

Note WSCAL ='Ord.

Genetics: Levitt
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(SS) S(1') + S(O) < 2A(1)

(k = 4/3)

(MS-ConS-WSCAL) \S)

(SS-do(p)-A(1/2) +2S(ll ) < 3A(1) | (M

(k =4/3)/

|(Ord) /

(dip E_ BB) |SV/2) < A(1 )|

/(k = 2)\

(MS-ConS-WSCAL)/ (>MS )

(dip-dorn) S!(3/4) + A(3/4) < 2A(l) |(1) + S(1/h) < 2A(l)| (dip-mi =_ SS-rni)

(k = 2) (k = 4)

(MS-ConS-WSCAL)\ //(MSConS-WSCAL)

2S~g(l) A(
< 2A(1) |(dip-dom-mi SS-dom-mi)

(k = 4)

FIG. 1. Implication ordering of altruist stability conditions in
general A(fl)-S(fl) models under Table 3 axioms. Model abbrevia-
tions as in Table 2. One altruist stability condition Al is below a
second condition A2 iff Al - A2. Axioms used to establish given
implications are indicated; Hamilton k threshold is indicated for
each model.

mate the mating frequency vector [2] by a new frequency
vector

fHW = (n4, 4tn377n, 2 n27n2741 n2,47n2A2~4n3'n3 4) [2']
which amounts to the approximation that no selection at all
is taking place and hence genotype frequencies are in their
zygotic Hardy-Weinberg proportions. Using [2'] instead of
[2], one obtains a simple one-dimensional recursion of the
form nn+1 = Ok(n), where ?In is the frequency of the altruist
gene. Surprisingly, this new recursion can be shown to pos-
sess exactly the same stability condition for nonaltruist fixa-
tion as does the original recursion [3]t. Hence, the nonlinear
stability of [3] about (1,0,0) can be given an exact analysis,
which leads to the condition shown in Table 2.

Similar complications are encountered throughout Table 2
in analyzing the stability at fixation of dominant genes. In
all cases, however, a similar procedure leads rigorously to
exact stability conditions. In the haplodiploid Case 5, domi-
nant stability analysis using [2'] leads to a recursion valid in
the neighborhood of dominant fixation

1
7n+1 = 2(7tn + 77n-1)

+ [ ( + (2) -3S(0) 21n n [8]

which may in turn be analyzed by a two-timing procedure,

t Full developments contained in two unpublished manuscripts:
"Technical Appendix" appended to GS-2689 Progress Report,
Department of Sociology, Harvard University, April, 1974;
"Mathematical Models of Kin Selection in Diploid and Haplodi-
ploid Systems," Courant Institute of Mathematical Sciences,
April, 1975.

(SS) S(1/2) + 2A('/2) < 3S(O)

(k = 4/3)

S(¼/4) + A(¼/4) < 2S(O) (dip)

(k = 2)

(MS-ConS-WSCAL)

(k = 2)

(MA)

(dip-mi F1A(O) + 7/2S7(0)<2S(O)7|SS-mi)L i 2 J

(dip-domi-mi = (O +A(/)7.<2(k = 4)
SS-dom-mi) jS(O) (MS-ConS-WSCAL)

(k = 4)

FIG. 2. Implication ordering of nonaltruist stability condi-
tions. Details parallel to Fig. 1, but one condition SI is now placed
below a second S2 in the ordering iff S2 SS. This enables the or-
dering to be read like Fig. 1 from top to bottom in order of models
decreasingly favorable to the altruist trait.

leading finally to the result reported in Table 2.
It should be emphasized that all analysis upon which

Table 2 is based is exact, and in particular involves no as-
sumptions that kin selection pressure is weak.

Note also that many of the distinct cases in Table 2 lead to
identical stability conditions.

Comparison of stability conditions
The next aim is to establish implications among the Table 2
conditions. It is obvious that this is a promising line of attack.
For example, it is clear that stability of altruist fixation in
Case 1 will imply stability of altruist fixation in Case 6, pro-
vided only that S(½) > S(O). Hence, under this very weak
provision Case 6 emerges as being at least as favorable to sta-
ble altruist fixation as Case 1, and in fact more favorable if
S('A) > S(O).
From a more systematic standpoint we now investigate

the presence of similar implications among other pairs of
stability conditions in Table 2.

Specifically, Table 3 introduces a set of axioms which re-
strict the form of S(j3) and A(#3) and which are used to estab-
lish the implications in Figs. 1 and 2. The strongest two ax-
ioms are clearly ConS, which imposes downward convexity
on S(f3), and WSCAL, which asserts that the ratio [S(j#)/A(fl)]
is greater than 1 and increasing with ,3. If one thinks of no-
naltruists as "cheaters" (using the terminology of ref. 12),
i.e., as individuals who accept support from the altruists but
who do not reciprocate in kind, then WSCAL asserts that it
pays more to be a cheater the higher is the altruist fraction
within the sibship, where the fitness of a "cheater" is com-
puted relative to that of an altruist as a fixed scale unit.
A specific combinatorial model of fitness assignment,

starting with the assumption that each altruist elects at ran-
dom to support exactly one other sib has been developedt.
This model, whose details will be reported elsewhere, leads
to the specific fitness functions

A(Al) = (i - e)S(f) = (1 - E)(1 - qe-Y3), [9]

4534 Genetics: Levitt
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with e- q, 0 < q, y, 6 < 1. These functions satisfy the
Table 3 axioms, and in particular satisfy WSCAL trivially.

Figs. 1 and 2 now report implications among the stability
conditions of Table 2 which may be derived making use of
the Table 3 axioms. The specific axioms used to establish im-
plications vary depending on the case and are reported for
each implication. Both orderings are presented so that one

can read them from top to bottom in an order of models pro-

gressively less favorable to the altruist trait. The following
conclusions emerge:

1. Use of the Table 3 axioms leads to a nearly linear or-

dering in the altruist case (Fig. 1). The nonaltruist case (Fig.
2) is less tractable, although a substantial number of implica-
tions can also be established here.

2. The axioms ConS and WSCAL are crucial for establish-
ing most of the comparisons, a major exception being the
linear subordering in Fig. 1 (dip-mi SS-mi - dip = BB

SS) which establishes implications among the altruist sta-

bility conditions for recessive altruist traits using MS only.
3. The obtained orderings are consistent with the predic-

tions of Hamilton based on [1], although they reveal substan-
tial complications which Hamilton's approach misses. For
easy comparison with Hamilton's [1], both altruist and no-

naltruist stability conditions in Figs. 1 and 2 are reported
with the corresponding Hamilton k threshold in parentheses.
The Hamilton threshold is seen to be consistent with both
implication orderings in a nonstrictly monotonic sense. By
contrast to the present models, Hamilton's k does not dis-
criminate Mendelian dominance cases, and moreover impos-
es comparability on distinct models in instances where such
comparability is not a consequence of the present axioms.

4. In addition to providing the comparative information
in Figs. 1 and 2, the Table 3 axioms have also been used to
investigate polymorphism behavior of the modelst. Using
MS, ConS, and WSCAL, it can first of all be shown that the
altruist and nonaltruist stability regions are nonoverlapping
for all models, i.e., altruist and nonaltruist fixations can

never simultaneously be stable. Using the Table 3 axioms
and assuming weak selection (I [S(#)/S(0)]-11 << 1, I [A(#)/
S(0)] -11 << 1), details of internal fixedpoint behavior have
been investigated in Cases 1 and 6. In both Cases, the Table
3 axioms enable one to show that polymorphism is unique
and stable when it exists and will exist when and only when
both fixations are unstable. This excludes the kind of thresh-
old behavior characteristic of reciprocal altruism models (13,
14) and suggests a basic difference between the structure of
selection for a reciprocal altruist trait and that of selection
for a sib altruist trait satisfying Table 3.

DISCUSSION

This paper has presented an axiomatic basis for comparing
sib selection models, starting from a rigorous population ge-
netic formulation of several such models. The approach
through the A(f3)-S(fl) fitness functions allows great generali-
ty in specifying the effects of altruism. The major limitation
on the present family of models lies elsewhere, in the as-

sumption of large sibships. Extension of theory to handle the
case where sibships need not be large is one major area

where further work is needed, especially for possible appli-
cations to the higher social vertebrates.

The central payoff from the present reworking of sib se-
lection theory lies only partly in the actual implication or-
derings shown in Figs. 1 and 2. Much additional information
is contained in the particular axioms used to derive these or-
derings. These axioms suggest several new areas for substan-
tive thinking, such as detailing what kind of "free-ride" non-
altruists may receive from a given kind of altruist activity,
i.e., specifying the structure of ,S(,3). For investigating the
monotonicity axioms MS and MA, fertility data such as that
reported in refs. 8 and 15 may be relevant. The Table 3 ax-
ioms also suggest ties to economic theory, specifically
through the role of convexity (ConS) [although it should be
noted that in using ConS we have presently made use only of
a very limited finite set of instances of the axiom, as it
applies to the relations among S(O), S(Y4), S('A), etc.; this is in
contrast to typical uses of convexity assumptions in econom-
ic theory (16)]. The present theory appears to require pres-
ence of both ConS and WSCAL for well-behaved results: if
either axiom is violated, then virtually any ordering of mod-
els becomes possible. This last fact need not, of course, nec-
essarily refute Hamilton's basic Hymenopteran conjecture.
In particular, it should be noticed that one can easily con-
struct cases where ConS is violated which exhibit the fol-
lowing behavior: altruist fixation in a multiple insemination
model (e.g., Case 3) is stable, but altruist fixation in the cor-
responding single insemination model (e.g., Case 1) is unsta-
ble. This type of possibility, which is not consistent with pre-
dictions derived from [1], suggests a new way that Hamil-.
ton's substantive conjecture may be consistent with instances
where multiple insemination is in fact a characteristic of
various Hymenopteran species (3, 17).
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