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Two strains of necrotrophic Alternaria brassicicola, Ab40857 
and Ab42464, are virulent on Korean cabbage and several 
wild types of Arabidopsis thaliana. Interaction between 
Ab42464 and Col-0 was compatible, whereas interaction 
between Ab40857 and Col-0 was incompatible. The loss of 
defense, no death (dnd) 1 function abrogated the compati-
bility between Ab42464 and Col-0, and the accelerated cell 
death (acd) 2 mutation attenuated the Col-0’s resistance 
against Ab40857. These two fungal strains induced PR1 
transcription in Col-0. Ab40857 accelerated transcription of 
PDF1.2, THI2.1, CAT, and POX by 12 h compared to those 
challenged with Ab42464. More abundant cell death was 
observed in Col-0 infected with Ab42464, however, callose 
deposition was evident in the incompatible interaction. 
Remarkably, Ab40857-infected areas of acd2-2 underwent 
rampant cell death and Ab42464 triggered callose produc-
tion in dnd1-1. Furthermore, the incompatibility between 
Ab40857 and Col-0 was nullified by the coronatine- insensi-
tive 1 (coi1) and phytoalexin-deficient 3 (pad3) mutations 
but not by nonexpresser of PR genes (npr1) and pad4. 
Ab40857 induced abundant cell death in pad3. Taken to-
gether, cell death during the early infection stage is a key 
determinant that discriminates between a compatible in-
teraction and an incompatible one, and the resistance 
within Col-0 against Ab40857 is dependent on a defense- 
signaling pathway mediated by jasmonic acid and PAD3. 
 
 
INTRODUCTION 
 
Programmed cell death (PCD) is ubiquitous in all organisms 
and is under the regulation of highly evolved intracellular signal-
ing networks. One of the typical examples of PCD in plant is the 
hypersensitive response (HR) induced by pathogen invasion 
(Flor, 1971; Ntoukakis et al., 2009; Rusterucci et al., 2001; Stas- 
kawicz et al., 1995). After recognition of its host, a pathogen 
secretes virulence factors into the intercellular space (apoplast). 
The host perceives this pathogen-associated molecular pattern 
(PAMP) signal through pattern recognition receptors (PRRs). In 
a compatible interaction, pathogens abrogate PAMP-triggered 
immunity (PTI) on behalf of the effector(s)’s function and this 

interference results in effector-triggered susceptibility (ETS). In 
the presence of a complete set of resistance (R) machinery that 
matches specifically with the effector(s), the indirect recognition 
of the interaction between the effector and its host target R 
machinery activates intracellular defense signaling pathways 
and is often culminated in a host HR. Host cell death in the 
early infection stage is fatal for the biotrophic pathogen’s 
propagation in planta as the pathogen of this class is unable to 
obtain nutrients from dead cells. This is the core of the initial 
phase of plant immunity limiting the pathogen within and 
around the infection area. There has been a substantial amount 
of investigations elucidating the mode of interactions among the 
effectors and PAMPs from microbes and their recognitions in 
Arabidopsis thaliana (Jones and Dangl, 2006; Nishimura and 
Dangl, 2010).  

A huge amount of genetic resources are available in Arabi-

dopsis. In addition, the publicly available sequence information 
following the completion of the genome sequencing projects for 
Arabidopsis and Alternaria brassicicola (http://www.genome. 
wustl.edu/genome.cgi?GENOME=Alternaria%20bras-sicicola) 
make this combination ideal for mining potential candidates of 
Arabidopsis genes or signaling pathways that may be useful for 
the breeding of resistance against A. brassicicola infection in 
Brassica species (Lawrence et al., 2008). Opportunely, the 
updated genome sequencing results for Brassica rapa subsp. 
pekinensis predict a high degree of sequence similarity among 
Arabidopsis genes and their orthologs in Korean cabbage 
(Hong et al., 2006). Several works have already been under-
taken to analyze the incompatible interaction between Alter-

naria brassicicola and Arabidopsis wild types and to explain the 
breakdown of this incompatibility in several mutants that lack of 
specific defense signaling pathways (Kagan and Hammersch-
midt, 2002; Mengiste et al., 2003; Oh et al., 2005; Thomma et 
al., 1998; 2000).  

A. brassicicola is a necrotrophic pathogen (Glazebrook, 
2005; Sellam et al., 2006; Trusov et al., 2006; Zheng et al., 
2006). In contrast with the biotrophic pathogens described 
above, necrotrophs produce and secrete PAMPs and effec-
tor(s) to kill its host’s cells during the host infection processes. 
They use resulting host cell leakage as a nutrient source for 
further propagation and subsequent disease progression in a 
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compatible host (Cramer et al., 2006; Thomma, 2003; Van 
Baarlen et al., 2004; van Kan, 2006). Representative Alternaria 
species including A. alternata and A. brassicae produce host-
specific toxins that define their host range (Thomma, 2003). A. 
brassicicola also secretes cutinase/cutinolytic enzymes and 
lipases that are thought to be virulence factors responsible for 
specific interaction with its hosts (Berto et al., 1999). Up to now, 
several large-scale expression studies have been performed in 
the interaction between A. brassicicola strain MUCL20297 and 
its susceptible host, Brassica oleracea, and between MUCL-
20297 and resistant Arabidopsis ecotypes including Col-0 
(Cramer and Lawrence, 2004; Cramer et al., 2006; Mukherjee 
et al., 2009). These results suggested a relationship between 
Col-0’s resistance and the primed state within Col-0 against 
MUCL20297 infection on the basis of the transcriptional pat-
terns of MONOOXYGENASE (MO) 1. 

The “defense, no death” (dnd) 1 mutant of Arabidopsis exhib-
its resistance against necrotrophic Botrytis cinerea (Govrin and 
Levine, 2002), and “accelerated cell death” (acd) 2 is resistant 
to biotrophic pathogens such as Pseudomonas syringae pv. 
maculicola due to the lack of red chlorophyll catabolite reduc-
tase activity (Greenberg et al., 1994). Altered PCD regulation 
by these mutations is able to change the host-pathogen interac-
tions. Infiltration of the intercellular fluid from B. cinerea-infected 
Arabidopsis plants provoked more rapid and actively enlarged 
necrosis in acd2 (Asai et al., 2000; Govrin et al., 2006). How-
ever, the same treatment did not trigger observable alterations 
in dnd1. Also, acd1 is also more susceptible to Botrytis elliptica 
infection than its wild type parent, Col-0 (Van Baarlen et al., 2004).  

Camalexin is a representative indolic phytoalexin of A. 
thaliana and is synthesized from indole-3-acetaldoxime (Glawi-
schnig et al., 2004; Zhao and Last, 1996). “Phytoalexin-defi-
cient” (pad) mutants are susceptible to biotrophic and-/or necro-
trophic pathogens (Berrocal-Lobo and Molina, 2004; Glazebrook 
et al., 1996; 1997). A deficiency of the phytoalexin, camalexin, 
and insensitivity to jasmonate have resulted in the attenuation 
of resistance of A. thaliana against A. brassicicola (Thomma et 
al., 1998; 1999). Similar to these results, a comparative analy-
sis using 24 Arabidopsis wild types indicated that there was a 
close relationship between the resistance against A. brassici-
cola and camalexin production (Kagan and Hammerschmidt, 
2002).  

The investigation of novel functions of active oxygen species 
(AOS) have revealed that, in addition to arresting pathogen 
proliferation in planta, AOS are involved in cell wall reinforce-
ment (Olivain et al., 2003) and callose deposition (Huckelhoven 
et al., 1999). Moreover, they are able to act as signaling mole-
cules (Alvarez et al., 1998; Bolwell et al., 1995; 1998; Cham-
nongpol et al., 1998; Rhee et al., 2010; Tenhaken et al., 1995; 
Wojtaszek, 1997). 

The aims of the research presented here was to analyze Col-
0 responses, including cell death, during compatible and incom-
patible interactions to unravel which defense signaling path-
way(s) and/or factor(s) play pivotal role(s) in each interaction. 
To achieve this goal, we screened and selected two A. brassi-
cicola strains that are virulent and avirulent on Col-0 and inves-
tigated the cellular/molecular responses triggered by challenges 
with A. brassicicola in wild type and its several mutants that lack 
of specific defense signaling or normal cell death regulation.  
 
MATERIALS AND METHODS 

 
Plants and pathogen challenge 
F1 seeds of Brassica rapa subsp. pekinensis cultivar Samjin 
were purchased from Seminis Korea (Seoul, Korea). The 60 

Arabidopsis thaliana accessions used in this study were; Aa-0, 
Bch-1, Br-0, C24, Chi-0, Co-1, Col-0, Cvi-0, Di-0, En-6, Gr-1, 
Ka-0, Kas-1, Kin-0, Lan-0, Laud-1, Li-1, Lind-1, Linnport, LIN, 
Lip-0, Litva, Ma-2, Mh-0, Ms-0, Na-1, Nd-0, No-0, Nok-0, Nw-0, 
Oy-0, Petergof, Pf-0, Pi-0, Pla-0, Pn-0, Pog-0, Pu-2-23, Pt-0, 
Rennes-1, Renk-1, Rome-1, Rou-0, Ri-0, Sei-0, Sf-1, Sh-0, 
Sha, Stw-0, Tsu-0, Tu-0, Vi-0, Vind-1, Wag1, Wc-0, Wei-1, and 
Ws-0. The six mutants and one transgenic plant derived from 
Col-0 and characterized for altered defense responses were 
“accelerated cell death” (acd) 2-2, “defense, no death” (dnd) 1-1, 
“coronatine-insensitive” (coi) 1, “nonexpresser of PR genes” 
(npr) 1, “phytoalexin-deficient” (pad) 3, pad4, and transgenic 
nahG that expresses the bacterial NahG gene. All of the geno-
types were obtained from The Arabidopsis Biological Resource 
Center (ABRC). In particular, homozygous coi1 was selected 
through PCR and XcmI digestion and used for the determina-
tion of defense signaling pathways (Xie et al., 1998). Plants 
were grown in a growth chamber at 22°C and 60-65% relative 
humidity, with 16 h of illumination daily. Arabidopsis and cab-
bage of 5- and 8-week-old were used for fungal inoculation, 
respectively.  

Six strains of Alternaria brassicicola, YSH-1, Ab40034, Ab-
40036, Ab40857, Ab42464, and Ab42465, were obtained from 
the Korean Agricultural Culture Collection, Rural Development 
Administration, Korea. Fungal strains were grown on oatmeal 
agar (50 gram oatmeal and 25 gram Bacto agar per 1 liter dis-
tilled water) under continuous fluorescent light for 7 days at 
22°C. Fungal conidia were retrieved from the medium with 
sterilized distilled water and 250 µg ml-1 Tween 20 and the 
concentration was adjusted to 1 × 105 conidia ml-1. Inoculum 
was sprayed until all of the leaves were covered with fine drop-
lets. Alternatively, 5 µl-drop of spore suspension was placed on 
the rosette leaves. The inoculated plants were kept in a dew 
chamber for 16 h at 25°C with 100% relative humidity and then 
transferred to a growth chamber. Fungal growth was assessed 
by staining the infected leaves with 2.5 mg ml-1 aniline blue 
resuspended in lactophenol (equal volumes of glycerol, lactic 
acid, and phenol) for an hour. Disease progressions were de-
termined either by estimating water-soaked or chlorotic lesions 
surrounded with a yellow halo or by counting the conidia 
formed on each lesion at 5 days after inoculation.  
 
Cell death, hydrogen peroxide, and callose 
To investigate the hydrogen peroxide accumulation and cell 
death in the Arabidopsis wild type Col-0 and its mutants dnd1-1, 
acd2-2, pad3, and pad4, A. brassicicola-inoculated leaves were 
retrieved and observed microscopically. Cell death was de-
tected by propidium iodide staining. Inoculated leaves were 
harvested 12 h post inoculation (hpi) and stained with 100 µg 
ml-1 propidium iodide (PI; Sigma, USA) resuspended in 1× 
phosphate buffered saline (PBS) or 2.5 mg ml-1 lactophenol-
trypan blue (TB; Sigma, USA). Infected tissues were incubated 
in PI solution for 15 min at room temperature. The PI fluores-
cence at 550 nm was analyzed microscopically (Zeiss Axioplan 
2). Due to the loss of normal membrane function, PI passes 
through the membrane and binds with the nucleic acids within 
dead cells. Tissues were incubated in TB solution for 1 min at 
100°C and then 16 h at room temperature. Excessive TB bound 
to the leaf tissues was removed using chloral hydrate as de-
scribed previously (Ton et al., 2005). The histochemical detec-
tion of hydrogen peroxide and callose in the inoculated rosette 
leaves harvested at 12 and 24 hpi was performed according to 
established methods (Ahn et al., 2007). The quantitative deter-
mination of cell death, hydrogen peroxide, and callose was 
done using inoculated rosette leaves retrieved at 12, 24, and 24 
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hpi (Ahn et al., 2007). 
 
RNA isolation and expression analyses 
Total RNA was prepared using the lithium chloride precipitation 
method (Davis and Ausubel, 1989). Hybridization analysis was 
performed as described (Ahn et al., 2005b). The genes used in 
this study were amplified by reverse transcriptase-polymerase 
chain reaction (RT-PCR) using total RNA of Ab40857-inocu-
lated Col-0 leaves harvested at 2 dpi and PR1-, PDF1.2- and 
THI2.1-specific primer sets (Vieira Dos Santos et al., 2003). 
Primer sets of POX (At1g71695) and CAT (At1g20620), encod-
ing PEROXIDASE 12 and CATALASE 3, were designed on the 
basis of mRNA sequences (Schenk et al., 2003) (forward and 
reverse primers of POX, 5′-AGTGCGGTCAAGTCGTCTCT-3′ 
and 5′-AAAAACAGCTGCTGGTCGAT-3′; forward and reverse 
primers of CAT, 5′-TCACATGGTGCTGGATGTTT-3′ and 5′-
GTTGTGGTGAGCACATTTGG-3′). First strand synthesis and 
amplification were done using Reverse-iT First Strand Synthe-
sis Kit as indicated by the manufacturer’s instructions (AB gene, 
UK). The DNA probes were labeled with [32P]-dCTP by random 
primer labeling (Boehringer Mannheim, Germany). 
 
Camalexin determination 
Camalexin was extracted and measured as described by 
Glazebrook and Ausubel (Glazebrook and Ausubel, 1994) with 
some modification. Leaf samples (200 mg), pulverized using 
mortar and pestle and liquid nitrogen, were mixed with 700 μl of 
80% methanol and kept at 80°C for 20 min. Plant debris was 
removed by centrifugation at 10,000 × g for 5 min, and the 
methanol was evaporated under vacuum. The remaining debris 
was completely resuspended in 200 μl distilled water and ex-

tracted twice with the same volume of chloroform. Both chloro-
form extracts were combined and evaporated completely. The 
residue was dissolved in 15 μl of chloroform and applied to a 
silica thin-layer chromatography (TLC) plate (Silica gel 60, 
Germany) which was developed with chloroform:methanol (9:1, 
v/v). Camalexin was visualized by its blue fluorescence under a 
hand-held long-wave ultraviolet lamp (365 nm). The silica con-
taining camalexin was retrieved from the plate and the 
camalexin was extracted into 1 ml of methanol. The emission of 
385 nm after excitation at 315 nm was measured using a LC-
6AD HPLC (Shimadzu Corp., Japan) and RF-10A fluorescence 
detector (Shimadzu Corp., Japan) and the camalexin concen-
tration was calculated by comparison with a standard curve 
obtained from purified camalexin. 
 
RESULTS 

 
Interactions between plants and Alternaria brassicicola  
Among the six strains of A. brassicicola tested, Ab40034, Ab-
40036, Ab40857, and Ab42464 were highly virulent on Bras-
sica rapa subsp. pekinensis cv. Samjin, but YSH-1 and 
Ab42465 were not virulent (Fig. 1A and data not shown). To 
investigate the compatibility and incompatibility between Cru-
ciferaceae and A. brassicicola, interactions among 60 Arabi-
dopsis wild types and Ab40857/Ab42464 were analyzed. 
Ab42464 infection progressed rapidly on C24, Col-0, Lind-1, 
Litva, Nd-0, No-0, Oy-0, Petergof, Sha, and Ws-0. Ab40857 
also caused similar symptoms on Di-0, Kas-1, Litva, Nd-0, Oy-0, 
Petergof, Vind-1, and Ws-0. Conversely, Ab40857 did not in-
duce observable alterations in Col-0. In the compatible interac- 
tion between Col-0 and Ab42464, small water-soaked infection 

Fig. 1. Disease development on Ko-

rean cabbage (Brassica rapa subsp.

pekinensis cv. Samjin) and Arabi-

dopsis thaliana inoculated with Alter-

naria brassicicola strains Ab42464

and Ab408957. (A) Necrotic lesions

on the leaves of 6-week-old Korean

cabbage at seven days after spray-

inoculation with conidia of A. brassi-

cicola. (B) Disease development on

the leaves of 4-week-old A. thaliana

wild type Col-0 and its mutants dnd1-

1 and acd2-2 24 and 72 h after

spray-inoculation with A. brassicicola

strain Ab42464 and Ab40857. hpi

designates hours post inoculation.

(C) Necrotic lesions on the leaves of

Col-0 five days after drop-inoculation

with conidia of A. brassicicola strain

Ab42464 and Ab40857. Arrowheads

indicate drop-inoculation sites. In (B,

C), bars = 2 cm. All experiments were

conducted more than three times

with 5 replicates and almost identical

tendencies were observed. 
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Fig. 2. Transcript levels of defense-related genes in Arabidopsis 

Col-0 challenged with A. brassicicola. Five-week-old soil-grown 

wild-type Col-0 plants were inoculated with strains Ab42464 and 

Ab40857 and harvested after the indicated times. As controls, leaf 

samples were harvested just prior to inoculation (0 h). RNA blots 

were hybridized with the five probes indicated. 
 
 
spots appeared within 16-24 h post inoculation (hpi) and these 
symptoms further developed into large lesions within 36- 48 hpi 
(Fig. 1B). This result contrasts with the incompatible interaction 
between Col-0 and Ab40857 in which inoculated leaves re-
mained unchanged. To confirm these results, conidial suspen-
sions (2 × 104 ml-1) from the two strains were dropped onto Col-
0 rosette leaves, and the disease development was assessed 
(Fig. 1C). Ab42464 induced water-soaked lesions around the 
inoculated sites within 16 hpi and this symptom developed. The 
inoculated leaves were almost completely withered and dead 5 
days post inoculation (dpi). In contrast, the areas around the 
sites inoculated with Ab40857 didn’t show evident symptom 
development on Col-0 leaves by 5 dpi, and only slight chlorosis 
was observed on the area where the inoculated area.  

A. brassicicola is known as a necrotrophic pathogen and the 
above results indicated the positive relationship between cell 
death (water-soaked lesions) and disease progression. To 
evaluate the effect of cell death on compatibility and incompati-
bility, the interactions among Ab42464 or Ab40857 and defense, 
no death (dnd) 1-1 or accelerated cell death (acd) 2-2 were 
investigated. dnd1-1 was highly resistant to both strains, and a 
fungal spray challenge did not cause any alterations on the 
leaves in spite of the longer period of observation (Fig. 1B). 
acd2-2 was hyper susceptible to both strains; water-soaked 
lesions formed within 12 hpi and this symptom developed into 
spreading lesions within 24-36 hpi. Finally, the inoculated leaves 
turned yellow and wilted within 48 hpi. Disease development in 
the drop inoculation assays almost coincided with the above 
results (Fig. 1C). 
 
The Defense-related gene expression in response to  
A. brassicicola  
To compare the responses of Arabidopsis to Ab42464 and 
Ab40857 at the transcriptional level, five representative marker 
genes, PR1, PDF1.2, THI2.1, CAT (encoding CATALASE 3) 
and POX (encoding PEROXIDASE 12) were employed (Fig. 2). 
Previous studies showed that the transcription of these genes is 
induced by infection of pathogens, including A. brassicicola, or 
is related to oxidative stresses (Kishimoto et al., 2007; Liu et al., 
2005; Manners et al., 1998; Norman-Setterbald et al., 2000; 

Seo et al., 2001; Vieira Dos Santos et al., 2003; Weigel et al., 
2005; Yoshioka et al., 2001). PR1 transcription was induced by 
the two fungal strains within 12 hpi. In the compatible interac-
tion between Col-0 and Ab42464, the transcription of PDF1.2, 
THI2.1, and CAT genes was also triggered within 12 hpi, reach-
ing a maximum level at 24 hpi, and decreasing slightly thereaf-
ter. These patterns coincided with the formation of water-
soaked lesions. POX transcription was also induced within 24 
hpi, and peaked during 24-48 hpi. In Col-0 inoculated with 
Ab40857 (incompatible interaction), the transcription of PDF1.2, 
THI2.1, and CAT was also induced and peaked within 12 hpi. 
POX expression was also induced within 12 hpi and a maxi-
mum level of transcript was observed at 24 hpi.  

 
Cellular defense responses 
Prior to penetration into the host cell, conidia of virulent Ab42464 
and avirulent Ab40857 attached firmly to the surface of the 
plant leaf (Fig. 3A). More than 90% of the conidia germinated 
and formed an infection-specific structure, an appressorium, 
and then penetrated into host’s tissues. There were no distinc-
tive differences between the susceptible and resistant interac-
tions during the prepenetration development. The accumulation 
of hydrogen peroxide and callose deposition are common re-
sponses in incompatible interactions and are often culminated 
in hypersensitive responses (HRs). To investigate the cellular 
responses by the two strains, rosette leaves of Col-0, dnd1-1 
and acd2-2 were challenged with the two fungal strains, and 
cell death, callose deposition, and hydrogen peroxide accumu-
lation were assessed microscopically within and around the 
infection sites (Fig. 3A). The Ab42464 infection triggered robust 
cell death and H2O2 accumulation in Col-0; however, callose 
was not detectable. In contrast, avirulent Ab40857 did not in-
duce cell death or H2O2 production, but callose deposition was 
evident. Inoculation with either pathogen did not trigger cell 
death or hydrogen peroxide accumulation in dnd1-1; however, 
callose deposition was constitutive and abundant. The same 
treatments triggered robust cell death and hydrogen peroxide 
production in acd2-2, yet callose deposition was barely ob-
served and was not induced by either pathogen.  

Moreover, quantitative analyses corresponded with the above 
observations. A spectrophotometric estimation of Evans blue 
bound to the dead cells indicated that cell death and H2O2 pro-
duction in Col-0 infected with virulent Ab42464 were 5.8 and 
7.2-fold higher, respectively, than those in the mock-treated 
control; however, the estimation also indicated that callose was 
not produced (Figs. 3B, 3C, and 3D). Callose deposition in Col-
0 challenged with incompatible Ab40857 was 3.4-fold higher. 
Both strains induced a high level of cell death and H2O2 in 
acd2-2. In addition to persistent callose deposition, avirulent 
strain infection increased the callose content up to 61% and 
58%, as compared to those from mock-treated and virulent 
strain-inoculated dnd1-1, respectively, whereas neither strain 
induced callose deposition in acd2-2.  
 
The effect of salicylic acid, jasmonic acid, and camalexin  
on the interactions 
Camalexin production was assessed in wild-type Col-0 and its 
mutants dnd1-1 and acd2-2 (Fig. 4A). Both strains triggered 
camalexin production in Col-0; however, 2.7 times the amount 
of camalexin accumulated in the compatible interaction com-
pared to that in the incompatible one. dnd1-1 was a higher 
camalexin producer than wild type and acd2-2 and the basal 
level was barely affected by the pathogen infection. In contrast, 
pathogen invasion up regulated the camalexin content in acd2-
2 regardless of the strain.
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experiments performed more than three times. Bars with different letters indicate that the corresponding data are significantly different (Dun-

can’s multiple range test; P < 0.05). 
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and stained with trypan blue. Representative samples among 20 leaves from 10 plants are shown. (D) Quantitative analyses of cell death. 

Samples were harvested as in (C). The data represent averages with standard errors of 5 measurements from 10 plants. Bars with different 

letters indicate that the corresponding data are significantly different (Duncan’s multiple range test; P < 0.05).

Fig. 3. Effects of A. brassicicola inocula-

tion on the cellular defense responses

in Arabidopsis wild type Col-0, dnd1-1,

and acd2-2. Arabidopsis was sprayed

with a conidial suspension of A. brassi-

cicola in 250 µg ml
-1

 Tween 20 or

Tween 20 (mock) only. (A) Microscopic

observation and quantification of hydro-

gen peroxide and callose deposition

were performed at 12 h post inoculation

(hpi). Cell death was analyzed on

leaves harvested at 16 hpi. The brown

color indicates hydrogen peroxide pro-

duction. The presence of green fluores-

cence indicates callose deposition. Cell

death was determined by the presence

(dead) or absence (live) of red lumines-

cence. Asterisks indicate cell death,

callose deposition, and hydrogen perox-

ide accumulation. Bars = 50 µm. (B)

Effects of A. brassicicola inoculation on

cell death examined by staining with

Evans blue. (C) Effects of A. brassici-

cola inoculation on callose deposition.

(D) Effects of A. brassicicola inoculation

on hydrogen peroxide accumulation.

Data presented in (B, D) were taken in

Fig. 4. Camalexin production, disease devel-

opment, and cell death progressions in Col-0

and defense-defective mutants. (A) The ac-

cumulation of camalexin 48 h after inocula-

tion of Col-0, dnd1-1, and acd2-2 with A.

brassicicola strains Ab42464 and Ab40857.

Bars with different letters indicate that the

corresponding data are significantly different

(Duncan’s multiple range test; P < 0.05). The

experiment was performed more than three

times with similar results. (B) Disease devel-

opment in Arabidopsis Col-0 wild type and

mutants challenged with A. brassicicola

strains Ab42464 and Ab40857. The upper

panel shows the diameter of a lesion formed

5 days after A. brassicicola inoculation on 5-

week-old Arabidopsis leaves. The data points

represent the averages with standard errors

of measurements of 50 lesions. The lower

panel shows the de novo-formed conidia per

lesion on the leaves inoculated with A. bras-

sicicola. The data points represent averages

with standard errors of measurements of 10

lesions. Bars with different letters indicate that

the corresponding data are significantly dif-

ferent (Duncan’s multiple range test; P <

0.05). The experiment was performed more

than three times with similar results. (C) Cell

death during the early infection stage of an

incompatible interaction. Leaves were har-

vested 12 h after challenge with Ab40857
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To elucidate the defense-signaling pathways for A. brassici-
cola, Col-0 wild type and its mutants, coi1, npr1, pad3, and 
pad4, and transgenic Col-0 harboring the bacterial gene, NahG, 
were inoculated with Ab40857 and Ab42464 (Fig. 4B). The 
compatibilities among the tested plants and Ab42464 were 
almost identical with that between Col-0 and Ab42464. The 
incompatibility between Col-0 and Ab40857 was also not af-
fected by the disruptions of npr1, pad4, and NahG expression; 
however, the lack of COI1 or PAD3 resulted in loss of resis-
tance against Ab40857 infection. The comparison of conidia 
production also coincided with the observed disease develop-
ment. Additionally, the burst of cell death by avirulent Ab40857 
was also abundant and evident in pad3 compared to Col-0 and 
pad4 (Figs. 4C and 4D).  
 
DISCUSSION 

 
Interactions between Arabidopsis thaliana and Alternaria bras-
sicicola have been frequently employed to investigate the func-
tions of plant genes in necrotrophic interactions (Cramer and 
Lawrence, 2004; Mengiste et al., 2003; Mukherjee et al., 2009; 
Oh et al., 2005; Veronese et al., 2004; Zheng et al., 2006). 
Based on the enigmatic innate immunity of Col-0 against 
MUCL20297, which is virulent on Brassica oleracea (Cramer et 
al., 2006), and the completion of the genome projects for both 
pathogen and host, a wealth of information has now accumu-
lated on the roles of several plant genes and defense signaling 
pathways that are related with jasmonic acid and camalexin in 
the incompatible interactions. However, the factor(s) determin-
ing compatibility and incompatibility still remain unclear due to 
the lack of strains that are virulent on Col-0 wild type. Here, we 
present the defense-related responses of Col-0 and several 
mutants challenged with virulent and avirulent strains of A. 
brassicicola. 

The compatible and incompatible interactions between Arabi-
dopsis thaliana wild type Col-0 and A. brassicicola were investi-
gated and the occurrence of host cell death during the early 
infection stage was analyzed because of the necrotrophic na-
ture of the fungal pathogen. The development of symptoms on 
Col-0 infected with Ab42464 was evident, however, Ab40857-
challenged leaves remained unchanged. The aggressive viru-
lence of Ab40857 on Korean cabbage and several other Arabi-
dopsis wild types indicates the specific incompatibility of this 
strain for Col-0. Microscopic and macroscopic cell death during 
the early infection stage within and around the infection site was 
also predominant in the compatible interaction. In contrast, 
incompatible Ab40857 barely induced cell death, similar to the 
results of MUCL20297 on Col-0 (Thomma et al., 1999; van 
Wees et al., 2003). Therefore, cell death is deeply related to 
successful disease development. When rice cells are infected 
with representative biotrophic pathogen that lack Avr genes, 
Magnaporthe oryzae, they remain alive until nearly the entire 
cells are filled with invasive mycelia, and they exhibit more of a 
delay in cell death than those challenged with pathogens ex-
pressing products of Avr genes or effectors (Dangl et al., 1996; 
Kankanala et al., 2007). Meanwhile, robust cell death has been 
shown to be indispensable for the disease progression and 
pathogen proliferation in Arabidopsis or rice infected with necro-
trophic Pectobacterium carotovorum, B. cinerea, or Cochliobo-
lus miyabeanus (Ahn, 2007; Ahn et al., 2005a; Govrin and 
Levine, 2000). Therefore, the interactions comprised with Col-0 
and Ab42464/Ab40857 should also be typical examples for 
elucidating opposing roles of programmed cell death during the 
early necrotrophic infection stage. 

To investigate the role of programmed cell death on the host-

pathogen interaction, the disease progression and cellular and 
molecular responses were analyzed using dnd1 and acd2 as 
the positive and negative controls of cell death. dnd1-1 did not 
exhibit cell death and remained unchanged, regardless of the 
pathogen inoculation. In contrast, robust cell death was evident 
during the early infection stage in acd2-2, and this mutant was 
hyper susceptible to challenge by both pathogens. These re-
sults indicate that DND1 enhances susceptibility and ACD2 
contributes to resistance. DND1 encodes the cyclic nucleotide-
gated ion channel 2 (AtCNGC2) protein that is involved in the 
influx of Ca2+, K+, and other cations into cells across the plasma 
membrane (Clough et al., 2000). ACD2 is a RED CHLO-
ROPHYLL CATABOLITE REDUCTASE (RCCR) that is re-
sponsible for the breakdown of the porphyrin component of 
chlorophyll (Wüthrich et al., 2000), and it inhibits the PCD 
caused by an early mitochondrial oxidative burst (Yao and 
Greenberg, 2006). Phenotypically, cell death is a prerequisite in 
the compatible interaction between Arabidopsis and A. brassi-
cicola. Lesion mimic mutants, such as barley mlo, show a 
broad-spectrum disease resistance against biotrophic patho-
gens but are highly susceptible to necrotrophic pathogens (Aviv 
et al., 2002; Huckelhoven et al., 2001; Jarosch et al., 2003; 
Salmeron and Vernooij, 1998; Yao et al., 2009; Yin et al., 2000). 
This ambivalence further supports the opposing contribution of 
PCD to the interaction. Taken together, these results imply that 
the effector(s) and/or their secretion system acclimating Col-0 
to a “ready-to-death” state might be defined in Ab42464 and 
should be activated during its early interaction stage.  

The incompatibility between Col-0 and Ab40857 was not al-
tered by the over expression of bacterial NahG or the disruption 
of NPR1 and PAD4; however, coi1 and pad3 almost completely 
abrogated this resistance. Incompatibility between Col-0 and 
MUCL20297 was also shown to be dependent on intact COI1 
(Thomma et al., 1998) and PAD3 genes (Narusaka et al., 2003; 
Thomma et al., 1999). In sum, defense signaling(s) within Col-0 
against MUCL20297were almost identical with those for Ab-
40857 and indicate the dependency of Col-0’s resistance against 
Ab40857 on the jasmonic acid-mediated signaling pathway. In 
addition, the camalexin analysis presented here indicates that 
there is no relationship between phytoalexin accumulation and 
resistance against Ab40857. A previous investigation also de-
scribed the accumulation of camalexin in the coi1 mutant, de-
spite its loss of resistance against MUCL20297 (Thomma et al., 
1999). To solve the paradox between the higher accumulation 
of camalexin in the compatible interaction and the attenuation 
of resistance against Ab40857 by pad3, the burst of cell death 
in pad3 and pad4 during the early infection stage was analyzed. 
Interestingly, only pad3 exhibited abundant cell death after 
challenge with Ab40857. Therefore, PAD3 might contribute to 
the resistance of Col-0 against Ab40857 as a component of the 
camalexin biosynthesis machinery and also participate in pro-
grammed cell death as a suppressor. 

Callose deposition coincided with resistance in Col-0 and 
dnd1-1, and H2O2 accumulation correlated with susceptibility in 
Col-0 and acd2-2. These results suggest the role of callose as 
an additional plant cell wall-dependent defense barrier against 
pathogen infection and camalexin accumulation itself might be 
dispensable for the accomplishment of a defense state. Callose 
is a fluorescent β-1,3-glucan and a major component of papillae, 
which impede fungal penetration into the host cells; the induc-
tion of papillae is considered a representative defense re-
sponse in the resistant state due to the reinforcement of the cell 
wall (Huckelhoven et al., 1999; Ton and Mauch-Mani, 2004). 
The abrupt induction and accumulation of active oxygen spe-
cies, including H2O2, have been adopted as a reliable cellular 
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response indicator that represents the “ready-to-defense” state 
of a host infected with a biotrophic pathogen; however, these 
responses are not helpful for enhancing resistance against A. 

brassicicola. In addition, our results indicate little or no relation-
ship between callose-mediated cell wall fortification and hydro-
gen peroxide in this pathosystem.  

The accelerated and strengthened transcription of defense-
related genes is also a type of molecular marker for whether a 
defense state has been accomplished, and for the signaling 
pathways that have been activated and/or are responsible for 
the observed disease resistance. The immediate activation of 
PDF1.2 and THI2.1 was evident in the incompatible interaction 
in Col-0; therefore, jasmonic acid/ethylene-dependent defense 
signaling might participate in this effective defense system. 
These results are almost identical with previous investigations 
that analyzed the transcriptome of Col-0 challenged with in-
compatible MUCL20297 (Narusaka et al., 2003; van Wees et 
al., 2003). 

In this study, we characterized the relationship between 
Arabidopsis wild-type Col-0 plants and two strains of A. brassi-

cicola. The comparative analyses of disease development and 
histochemical evidence confirmed the necrotrophic nature of A. 

brassicicola; that is, programmed cell death in the early infec-
tion processes was a key determinant overwhelming both com-
patibility and incompatibility. The pathosystems established in 
this study might be an ideal platform for the functional analysis 
of pathogens and Arabidopsis genes, and could also be a use-
ful foundation for establishing control strategies in Cru-
ciferaceae in general. 
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