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Predictive biomarkers to guide therapy for cancer patients are a cornerstone of precision medicine. Discussed herein are consid-
erations regarding the design and interpretation of such predictive biomarker studies. These considerations are important for both 
planning and interpreting prospective studies and for using specimens collected from completed randomized clinical trials. Specific 
issues addressed are differentiation between qualitative and quantitative predictive effects, challenges due to sample size require-
ments for predictive biomarker assessment, and consideration of additional factors relevant to clinical utility assessment, such as 
toxicity and cost of new therapies as well as costs and potential morbidities associated with routine use of biomarker-based tests.
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Precision medicine aims to guide therapy informed by biologi-
cal characterization of a patient’s disease. For patients with can-
cer, these characterizations are typically achieved by molecular 
analysis of tumor biomarkers or sometimes by examination of host 
characteristics, such as variations in germline DNA. Two classes 
of biomarkers in oncology are prognostic markers and predictive 
markers (1): prognostic markers inform about likely disease out-
come independent of the treatment received, and predictive mark-
ers provide information about likely outcomes with application 
of specific interventions. Therefore, predictive markers can help 
select among two or more therapy options. Predictive markers are 
of particular importance for targeted therapies, which often are 
expected to benefit only patients whose disease is characterized by 
presence of a biomarker.

When there is strong evidence that a targeted agent benefits 
only patients whose tumors have a particular biomarker, then eval-
uation of the targeted therapy in a trial that enrolls only patients 
whose tumors are positive for that marker would be appropriate. 
This type of trial design is called an enrichment design (2), and 
the marker is classified as an enrichment or selection marker (3). 
If there is uncertainty about the predictive biomarker and reason-
able possibility that the therapy could benefit a broad population 
of patients, one can evaluate a candidate predictive biomarker by 
studying a group of unselected patients treated with the targeted 
therapy and another group of patients treated with some alternative 
therapy. The biomarker is predictive if the relative efficacy of the 
two treatments is different for the biomarker-positive patients than 
for the biomarker-negative patients. (Note that just demonstrat-
ing that biomarker-positive patients have better clinical outcome 
than biomarker-negative patients on a cohort of patients uniformly 
treated with the targeted therapy is insufficient to demonstrate that 
the biomarker is predictive because it may solely be prognostic.) 
A familiar example of a tumor marker that is both prognostic and 

predictive is estrogen receptor status in breast cancer, for which a 
positive status is associated with a more favorable prognosis gen-
erally and with specific benefit from endocrine therapy. Although 
much of the discussion here is framed around evaluation of pre-
dictive biomarkers for targeted therapies in retrospective studies, 
the same general principles would apply for evaluation of a predic-
tive biomarker for selection between two different standard (non-
targeted) therapies and for designing prospective clinical trials to 
evaluate predictive biomarkers.

The best setting in which to evaluate a predictive biomarker 
for an experimental targeted therapy is a randomized clinical trial 
(RCT) of the targeted therapy vs a standard treatment, where the 
biomarker status is obtained on the patients but not used to direct 
treatment (4). (Other possible RCT designs to evaluate biomark-
ers are possible but not as efficient as this design (2).) Ideally, a 
biomarker would be assessed prospectively in an RCT of the tar-
geted agent. However, biomarker development often lags behind 
therapeutic development. The reasons for this asynchrony may 
include an incomplete understanding of the mechanism of action 
of a drug, the uncertainty about what form of a marker is most 
relevant (eg, DNA mutation, mRNA expression, protein expres-
sion), and technical difficulties with marker assay development (5). 
These reasons contribute, in part, to why biomarker studies are 
frequently conducted retrospectively on archived specimen collec-
tions several years after a cancer therapy has been developed. With 
a careful prospective design, such a retrospective analysis can pro-
vide convincing evidence in support of a predictive biomarker (6).

We assume that the assay for the biomarker or biomarker sig-
nature (a collection of biomarkers that are combined through 
some mathematical model and linked to a biological or clinical 
outcome) yields a fully specified binary marker [or is continu-
ous and has been dichotomized with a cutoff based on appropri-
ate statistical procedures (7,8)] that has demonstrated acceptable 
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analytical performance and sufficient robustness against influ-
ences of preanalytical factors (eg, warm ischemia time or dura-
tion of time that the paraffin blocks are stored before analysis) (9). 
Preanalytic factors may be of special concern because of the desire 
to extrapolate from retrospective biomarker analyses to how the 
biomarker will work in the clinic when the specimens are pro-
cessed contemporaneously (6).

Under the assumptions that the biomarker is biologically rel-
evant and analytically validated, we first define and describe in the 
next section predictive biomarkers that display clinical qualitative 
and quantitative interactions with the treatments. In the following 
section, we discuss the sample sizes required to reliably assess these 
interactions and discuss how to appropriately interpret estimates 
of predictive effect. This is followed by a discussion of the clinical 
utility of a predictive biomarker, which goes beyond whether or 
not a statistically significant interaction is present. We end with a 
brief discussion.

Qualitative and Quantitative Interactions
A biomarker is predictive if the treatment effect (experimental E 
compared with standard S) is different for the biomarker-positive 
patients compared with the biomarker-negative patients. This is 
known as a (statistical) interaction between the treatment effect 
and biomarker status. An interaction can be qualitative or quantita-
tive (10). Qualitative interaction can help guide treatment choice: E 
is better than S for the biomarker-positive patients and E is not bet-
ter than S for the biomarker-negative patients (for which it could 
be equally efficacious or worse). With a quantitative interaction, E 
is better than S for both biomarker groups, but the amount of the 
treatment benefit is different for the two biomarker groups (other-
wise there would be no interaction of any kind).

Examples of qualitative interactions are given in Figure  1. 
Gefitinib is better than chemotherapy as first-line treatment in 
epidermal growth factor receptor (EGFR) mutation–positive non–
small cell lung cancer (NSCLC) patients (hazard ratio [HR] =0.48; 
95% confidence interval [CI] = 0.36 to 0.64; P < .001) (Figure 1A) 
but worse than chemotherapy in EGFR mutation–negative patients 
(HR = 2.85; 95% CI = 2.05 to 3.98; P < .001) (Figure 1B); the inter-
action is statistically significant with P less than .001 for the pro-
gression-free survival endpoint (11). A second example of qualitative 
interaction is given by the RCT of cetuximab + chemotherapy vs 
chemotherapy alone for first-line treatment of EGFR immunohis-
tochemistry (IHC)–positive NSCLC patients (12). Based on the 
observed EGFR and outcome data, a division of the patients into low 
and high EGFR expression demonstrated a qualitative interaction: 
the addition of cetuximab improved overall survival for the patients 
with tumors with high EGFR expression (HR =0.73; 95% CI = 0.58 
to 0.93; P = .01) (Figure 1C) but offered no benefit for patients with 
tumors with low EGFR expression (HR = 0.99; 95% CI = 0.84 to 
1.16; P = .88) (Figure 1D); the interaction is statistically significant 
with P equal to .04 (13). (Because the EGFR cutpoint was not pre-
specified, these results would need to be validated on a new dataset.)

Examples of quantitative interactions are given in Figure  2. 
Pazopanib improves progression-free survival (PFS) relative to pla-
cebo in locally advanced or metastatic renal cell carcinoma patients 
with high interleukin 6 (IL-6) plasma concentrations (Figure 2A) 

and low IL-6 concentrations (Figure 2B), but more so for the high 
IL-6 subgroup (HR = 0.31; 95% CI = 0.31 to 0.58; P < .0001) than 
for the low IL-6 subgroup (HR = 0.55; 95% CI = 0.28 to 0.71; P 
< .002); the interaction is statistically significant (P  =  .009) (14). 
A second example of a quantitative interaction is given by the inter-
action between maintenance treatment of NSCLC with erlotinib 
and tumor EGFR mutation status: wild-type (Figure 2C) vs mutant 
(Figure  2D) (15). There is an interaction (statistically significant 
with P < .001), and the interaction is quantitative: erlotinib improves 
PFS for patients with wild-type EGFR tumors (HR = 0.78; 95% 
CI  =  0.63 to 0.96; P  =  .02) and for patients with EGFR-mutant 
tumors (HR = 0.10; 95% CI = 0.04 to 0.25; P < .0001), but much 
more for the patients with EGFR-mutant tumors.

Qualitative interactions can provide a clear indication of treat-
ment choice: patients who are biomarker-negative should get the 
standard treatment (S), and, when the experimental treatment (E) is 
sufficiently better than S in the biomarker-positive subgroup, these 
patients should receive E. Whether a biomarker that has quantita-
tive interaction with treatment would be useful in directing treat-
ment is a more difficult question and is discussed below.

Sample Sizes and ability to Draw 
Conclusions
In designing an RCT to assess an experimental treatment vs a 
control treatment, one typically designates a minimally clinically 
interesting treatment difference (for example, a target hazard ratio 
of 0.75) that one would not want the trial to miss detecting. One 
then chooses the sample size of the trial so that there will be a high 
probability of having a statistically significant result at the end of 
the trial (the power of the trial) if the true treatment difference is 
this target treatment difference or more extreme.

One approach for testing whether a biomarker is a predictive 
biomarker is to estimate the statistical interaction and to assess 
whether that interaction is statistically significant. Unfortunately, 
the required sample size to test whether an interaction is statisti-
cally significant can be much larger than the required sample size 
to assess a treatment difference. For example, with a biomarker 
with 50% positive prevalence, it requires approximately four times 
the sample size to detect a 0.75 interaction (defined, for example, 
by a hazard ratio of 0.75 in a biomarker-positive subgroup and a 
hazard ratio of 1.00 in a biomarker-negative subgroup) as it does to 
detect a treatment difference with a hazard ratio of 0.75 (16). If the 
biomarker positivity prevalence is not 50%, the required sample 
size will be even larger. For example, if 20% of the patients have 
positive biomarkers and 80% have negative biomarkers, then the 
required sample size to detect the 0.75 interaction would be more 
than six times the required sample size to detect the same size treat-
ment difference. If the investigator is using data and tissue from a 
retrospective RCT, not all patients will have tumor tissue available 
and the assay will not be successful for all tissues, further reducing 
the effective sample size.

A potential solution to the sample size problem is to pool bio-
marker data from multiple treatment trials that are asking similar 
questions. This approach is consistent with published guidelines 
for conducting prospective–retrospective studies that include a 
requirement that similar results for a biomarker be observed in 
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at least two comparable studies for a biomarker to reach level IB 
evidence for medical utility (6). For example, based on a meta-
analysis of multiple trials of the anti-EGFR monoclonal antibod-
ies cetuximab or panitumumab for metastatic colorectal cancer, 
it was shown that these agents provide no benefit for patients 
with KRAS-mutated tumors (17). However, caution in pooling is 
required because a biomarker may have a qualitative interaction 
with treatment in one setting but not in another “similar” setting. 
For example, EGFR mutation status has a qualitative interaction 
with the treatment choice of the EGFR tyrosine kinase inhibi-
tor gefitinib vs chemotherapy in first-line treatment of NSCLC 
(Figure  1, A and B) but only a quantitative interaction with the 
choice of EGFR tyrosine kinase inhibitor erlotinib vs placebo as 
maintenance therapy for NSCLC (Figure  2, C and D). Another 

cautionary example is the situation when a predictive biomarker 
in one disease setting may not be predictive in another disease set-
ting. For example, although KRAS mutation has been shown to be 
a negative predictive factor for benefit from anti-EGFR monoclo-
nal antibodies in colorectal cancer (17), data to date have not sup-
ported its predictive value in NSCLC (18,19). Although because 
of limited sample sizes there will not be sufficient power to detect 
the minimally clinically interesting treatment difference in each 
biomarker subgroup, there may be power to detect a larger inter-
action effect that is still considered plausible. For example, sup-
pose a targeted agent is tested in an unselected population with 
the overall treatment hazard ratio of 0.75. One expects the treat-
ment only to work in the biomarker-positive patients that comprise 
one-half of the population and not to work in the one-half of the 

Figure 1. Examples of qualitative interactions. Gefitinib vs carboplatin + 
paclitaxel for first-line treatment of non–small cell lung cancer patients 
with EGFR mutation–positive tumors (A) and EGFR mutation–negative 
tumors (B) [adapted from Figure 2 of Mok et al (11). Reprinted with per-
mission. Copyright 2009 Massachusetts Medical Society.]. Cetuximab + 

chempotherapy vs chemotherapy for first-line treatment of non–small cell 
lung cancer patients with high-expressing EGFR immunohistochemistry 
(IHC)–positive tumors (C) and low-expressing EGFR IHC–positive tumors 
(D) [adapted from Figure 4 of Pirker et al. (13). Reprinted with permission. 
Copyright 2012 Elsevier]. PFS = progression-free survival.
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patients who are biomarker negative (ie, hazard ratio = 1.0 in the 
biomarker-negative subgroup). Then, the treatment hazard ratio 
in the biomarker-positive patients would have to be approximately 
0.56 for the overall hazard ratio to be 0.75 (log 0.75 =  [log 0.56 
+ log 1.00] / 2). This corresponds to an interaction of 0.56, and 
a required sample size that is the same as the treatment trial (not 
four times larger) to achieve the same power. However, note that 
the analysis in this situation will not have much power to detect 
an interaction corresponding to a clinically meaningful treatment 
effect in the biomarker-positive patients (HR = 0.75) with no effect 
in the biomarker-negative patients. Therefore, it is important to 
describe the sample size limitations in reports of retrospective bio-
marker analyses, which are best conveyed by confidence intervals 
for the treatment effects in the biomarker subgroups.

Example of Difficulties Arising From Limited 
Sample Sizes
We consider the RCT of temozolomide + radiotherapy vs radio-
therapy alone for glioblastoma multiforme (20), for which the bio-
marker MGMT methylation status was studied on a subset of the 

patients for whom tumor specimens and assay results were avail-
able (n = 206 patients of the 573 randomized) (21). The biomarker-
stratified results are displayed in Table 1 and show a statistically 
significant PFS benefit of the addition of temozolomide for both 
biomarker strata. There was a statistically significant survival 
benefit from temozolomide in the MGMT methylated subgroup 
(P  =  .007 based on two-sided log-rank test), but this benefit did 
not reach statistical significance in the MGMT unmethylated sub-
group (P = .06 based on two-sided log-rank test). However, because 
patients with unmethylated MGMT did relatively poorly regard-
less of treatment and the temozolomide benefit is less for patients 
with unmethylated MGMT (ie, larger hazard ratios), Hegi et  al. 
(21) conclude, “Patients with glioblastoma containing a methyl-
ated MGMT promoter benefited from temozolomide, whereas 
those who did not have a methylated MGMT promoter did not 
have such a benefit.” Given the wide confidence interval for the 
hazard ratio in the unmethylated group, one cannot confidently 
reach a conclusion from these data alone (21) about the poten-
tial value of MGMT methylation status as a predictive marker for 
benefit from temozolomide in patients with glioblastoma. Further 

Figure 2. Examples of quantitative interaction: pazopanib vs placebo 
for locally advanced or metastatic renal cell carcinoma patients with 
high interleukin 6 (IL-6) values (A) and low IL-6 values (B) [adapted from 
Figure 2 of Tran et al. (14). Reprinted with permission. Copyright 2012 
Elsevier]. Erlotinib maintenance therapy vs placebo for non–small 
cell lung cancer patients with EGFR mutation–positive tumors (C) and 

EGFR wild-type tumors (D) [adapted from Figure 3 of Brugger et al. 
(15). Reprinted with permission. Copyright 2011 American Society of 
Clinical Oncology]. Note that data were not available from Brugger 
et  al. (15) to provide the number of patients at risk for (C) and (D). 
CI  =  confidence interval; HR  =  hazard ratio; PFS  =  progression-free 
survival.
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clinical follow-up on these patients resulted in demonstration of a 
statistically significant overall survival benefit in the unmethylated 
MGMT group [HR = 0.6; 95% CI = 0.4 to 0.8; Table 2 in Stupp 
et al. (22)], with an apparent long-term survival benefit (Figure 3). 
A rough calculation based on the information provided in Stupp 
et al. (22) suggests that the hazard ratio in the methylated MGMT 
group is approximately 0.6 (95% CI = 0.4 to 0.9). These calcula-
tions are consistent with Stupp et al. (22) who reported, “Survival 
was significantly longer in patients treated with temozolomide 
and radiotherapy than in patients treated with radiotherapy alone, 
both in patients with a methylated and unmethylated MGMT 
promoter.” Although MGMT methylation status is highly prog-
nostic, currently available data do not provide sufficient evidence 
that MGMT methylation status is predictive. Recognizing that the 
nature of the treatment effects in the two MGMT subgroups are 
quite different (Figure  3), evaluation of this biomarker in other 
studies will be needed to provide further clarity to its potential as a 
predictive biomarker. This example highlights the challenges asso-
ciated with establishing the predictive value of a biomarker using 
data from a previously completed RCT. Specifically, such studies 
often lack statistical power to reliably ascertain whether there is a 
treatment effect in the biomarker-negative subgroup. As such, sta-
tistical significance in one biomarker subgroup but not in the other 
biomarker subgroup is insufficient for establishing the predictive 
value of a biomarker. Such evaluations should be done in conjunc-
tion with a critical examination of the estimate and the confidence 
interval of the treatment difference in both biomarker subgroups, 
with the recognition that P values are influenced by available sam-
ple size and number of events.

From Interaction to Clinical Utility
The most important clinical question that needs to be answered 
is whether the biomarker can classify patients into biomarker sub-
groups for which different choices of treatment regimen may be 
indicated. Although the presence of a treatment-by-biomarker 
interaction provides some insights into whether differential degrees 
of treatment benefit exist in two biomarker-defined subgroups (ie, 

the biomarker is predictive), it does not by itself inform us which 
specific treatment is superior for each biomarker subgroup. In 
particular, the recommended treatment in the biomarker-negative 
subgroup may not be clear in the case of a quantitative interac-
tion because there will be treatment benefit in that subgroup but 
it may be relatively modest compared with the benefit seen in the 
biomarker-positive group. In this case, it is useful to incorporate 
into the decision-making process other practical factors such as 
toxicities induced by the therapies, the cost of the therapies, and 
the morbidity/cost associated with routine use of a biomarker 
assay to identify the biomarker-negative patients. For example, 
in the study by Brugger et al. (15), erlotinib maintenance therapy 
improved PFS compared with placebo for NSCLC patients with 
both mutant EGFR tumors and wild-type EGFR tumors. However, 
although statistically significant, the degree of benefit was less in 
the EGFR wild-type subgroup. In this situation, it is useful to weigh 
the added benefit from erlotinib against its cost and toxicity profile, 
the availability of other treatments, and issues related to routine 
testing for EGFR mutation.

An additional consideration in using archived specimens from 
clinical trials is that the clinical utility of the biomarker is being 
explicitly examined only for the subset of patients in the RCT who 
have specimens available. For example, the biomarker may only be 
evaluable on larger tumors in a retrospective analysis where the 
specimens are being used for multiple research purposes. How 
these patients may be different from the patients for whom even-
tual clinical use of the biomarker is being contemplated should be 
considered when evaluating the clinical utility of the biomarker.

To address the treatment question, it is best to estimate the haz-
ard ratio with its confidence interval for each of the biomarker sub-
groups. This information, along with presentation of the survival 
curves for each biomarker subgroup and the practical considera-
tions mentioned above, can help decide the recommended treat-
ment for each subgroup if the confidence intervals for the hazard 
ratios are sufficiently narrow. If the recommended treatment is the 
same for both biomarker subgroups (eg, treat with experimental 
therapy), then the biomarker is not clinically useful, regardless of 
its interaction with the treatment. For example, one would not 

Table 1. Outcome of randomized clinical trial of temozolomide + radiotherapy (T+R) vs radiotherapy (R) for glioblastoma patients stratified 
by MGMT methylation status*

Overall survival

MGMT status No. of events/ No. of patients (T+R vs R) Hazard ratio (95% CI) P†

Methylated 27/46 v 38/46 0.51 (0.41 to 0.84) .007
Unmethylated 52/60 v 53/54 0.69 (0.47 to 1.02) .06

Pinteraction = .29‡

Progression-free survival

Methylated 40/46 v 45/46 0.48 (0.31 to 0.75) .001
Unmethylated 53/60 v 54/54 0.62 (0.42 to 0.92) .02

Pinteraction = .38‡

* Results in this table are from Hegi et al. (21) except the interaction P value for progression-free survival. CI = confidence interval.

† P values are based on two-sided log-rank tests.

‡ The interaction P value for overall survival was reported in Table 2 of Hegi et al. (21) based on a two-sided test of interaction between treatment and MGMT 
methylation status in the Cox proportional hazards model. The two-sided interaction P value for progression-free survival was calculated by us based on the 
asymptotic normality of the log ratio of the hazard ratios (16).
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want to withhold pazopanib to renal carcinoma patients with low 
IL-6 values, based on Figure 2, A and B, and one might argue that 
temozolomide should be used for glioblastoma patients regard-
less of MGMT methylation status based on long-term survivors, as 
seen in Figure 3B (23,24). Whether erlotinib maintenance therapy 
for NSCLC is appropriate regardless of EGFR mutation status 
(Figure 2, C and D) is also a difficult issue (25).

When the confidence intervals for the hazard ratios are wide 
for one or both of the biomarker subgroups, then it may be impos-
sible to make an informed treatment recommendation for each of 
the subgroups. In this case, it will be impossible to say whether 
the biomarker has any clinical utility. One solution to this prob-
lem is to obtain more information—for example, by pooling data 
from related trials as described previously or increasing follow-up 
time to observe more events and increase precision of the estimated 
treatment effects. Moreover, additional biological understanding of 
the biomarker and mechanism of action of the targeted agent may 
be obtained through further preclinical studies that increase confi-
dence in the strength of the biomarker’s predictive effect.

Discussion
A key part of designing a study to evaluate a putative predictive 
biomarker using specimens from an RCT is to specify what one 
will potentially be able to conclude from the study with sample 
size planned for the new trial or available from the previously con-
ducted trial. In particular, although one may be able to conclude 
that the experimental treatment works much better than the stand-
ard treatment in the biomarker-positive subgroup (if it truly does), 
one may not be able to conclude whether the treatments are equally 
efficacious in the biomarker-negative subgroup (even if they truly 
are). This limitation is due partially to the inherently larger sam-
ple size required for testing an interaction compared with testing 
a treatment effect but is particularly important for analyses based 
on previously conducted trials where one does not have control 
of the sample size and because of the retrospective nature of the 
study specimens may not be available or be successfully assayed 
from all patients. In some circumstances, it may be reasonable to 
pool data from multiple trials to overcome the limited sample size 
in individual studies. Successful pooling relies on the clinical set-
tings to be similar across the trials and requires that the biomark-
ers be assayed on all specimens using a common assay or assays 
that are sufficiently comparable. In addition, when evaluating the 
clinical utility of a biomarker, one needs to consider the possibility 
that biomarker assays may improve over time, so a treatment effect 
seen in the biomarker-negative subgroup may be partially due to 
some biomarker-positive patients being incorrectly classified as 
biomarker-negative; this treatment effect may no longer be present 
if a more accurate assay is used in future clinical practice. An exam-
ple of a biomarker assay that has evolved over time is the HER2 
assay in breast cancer. The immunohistochemical assay for HER2 
that was used to screen for entry into the pivotal clinical trials of 
trastuzumab in metastatic breast cancer was replaced with a US 
Food and Drug Administration–approved companion diagnostic 
immunohistochemical assay at the time of approval of trastuzumab. 
Subsequently other immunohistochemical assays and fluorescence 
in situ hybridization tests for HER2 were widely adopted in clinical 
practice. Discordance rates of 20% or more were observed between 
different testing methods in clinical trial and community settings, 
prompting calls for HER2 testing standards (26).

In this commentary, we have focused on studies designed to 
demonstrate therapeutic superiority. In some settings, establishing 
noninferiority of a new therapy compared with the standard of care 
may justify change in clinical practice (eg, when the new therapy 
is less toxic and/or less costly than the standard one). However, 
because demonstration of noninferiority typically requires a larger 
sample size than that of superiority, the retrospective designs 
described here are unlikely to provide the precision needed to 
establish noninferiority unless they are based on previously con-
ducted RCTs designed to demonstrate noninferiority. For example, 
consider a retrospective biomarker study based on data from a ran-
domized trial designed to demonstrate superiority of a new therapy 
over the standard treatment. If the biomarker study shows that sur-
vival with the new treatment is statistically significantly better than 
with the standard treatment for the biomarker-positive subgroup, 
while the survival curves for the new and standard treatment arms 
are virtually identical to each other in the biomarker-negative sub-
group, one may be tempted to conclude that the new therapy is at 

Figure  3. Combined therapy (temozolomide + radiotherapy) vs radio-
therapy for glioblastoma patients with methylated MGMT (A) or unmeth-
ylated MGMT (B). The numbers of patients at risk are below the graphs. 
P values are based on two-sided log-rank tests [reprinted from Figure 4 
of Stupp et al. (22). Reprinted with permission. Copyright 2009 Elsevier].
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least as good as the standard treatment across the entire population. 
However, because of the typically limited sample sizes in subgroup 
analyses performed retrospectively, estimates of treatment effects 
restricted to subgroups may lack precision. This limited precision 
may preclude one from ruling out a nontrivial survival detriment 
due to the new treatment in the biomarker-negative subgroup.

Routine collection and banking of specimens from clinical trials 
provides a rich resource for conducting retrospective analyses of 
promising biomarkers. However, specimen collection is expensive 
and time consuming, and these precious resources, once depleted, 
are usually nonrenewable. Similar to futility monitoring for a treat-
ment effect in a prospective randomized clinical trial, one could 
perform biomarker assays in stages with the possibility to stop per-
forming biomarker assays if it becomes clear early that the hypoth-
esized biomarker effect will not be confirmed (27). In addition, 
patient specimens must be appropriately collected and stored and 
should be prioritized for well-designed studies that are most likely 
to delineate the clinical utility of promising biomarkers. For addi-
tional design considerations relevant to establishing clinical utility 
of biomarker assays or tests, readers are referred elsewhere (28).
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