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Abstract
Two-stage designs to develop and validate a panel of biomarkers present a natural setting for the
inclusion of stopping rules for futility in the event of poor preliminary estimates of performance.
We consider the design of a two-stage study to develop and validate a panel of biomarkers where a
predictive model is developed using a subset of the samples in stage 1 and the model is validated
using the remainder of the samples in stage 2. First, we illustrate how a stopping rule for futility
can be implemented in a standard, two-stage study for developing and validating a predictive
model where samples are separated into a training and validation sample. Simulation results
indicate that our design has similar type-I error rate and power to the fixed-sample design but with
a substantially reduced sample size under the null hypothesis. We then illustrate how additional
interim analyses can be included in stage 2 by applying existing group sequential methodology,
which results in even greater savings in the number of samples required under both the null and
alternative. Our simulation results also illustrate that the operating characteristics of our design are
robust to changes in the underlying marker distribution.
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1. Introduction
The scientific community has expended substantial resources over the last ten years to
identify biomarkers for cancer diagnosis and prognosis. This has resulted in a large number
of candidate biomarkers whose performance needs to be validated. Study design for the
evaluation of a single candidate marker is well studied [1] but, in most cases, a single
biomarker will not have adequate performance and a combination of biomarkers is needed to
achieve performance that is useful clinically. Innovative study designs are needed to
evaluate the performance of multiple markers in combination while making efficient use of
the available resources.

Regardless of the method used to develop a predictive model using multiple biomarkers, it is
generally accepted that the performance of any predictive model should be developed and
validated in a two-stage process where the model is built in stage one and validated with an
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independent set of data in stage two. Simple formulas for calculating the sample size
required to obtain the desired type-I error rate and power for two-stage studies to develop
and evaluate the diagnostic accuracy of a panel of biomarkers are not available.

Cancer biomarkers are often evaluated using banks of stored tissue samples. The
development of banks of high quality tissue samples is an expensive and time consuming
process and care should be taken to preserve these scarce resources. Group sequential
designs have been suggested as an approach to conserving specimens when validating
biomarkers for classification or prediction [2]. In particular, two-stage designs to develop
and validate a predictive model using several biomarkers are a natural setting for the
inclusion of stopping rules for futility after stage one in the event of poor preliminary
estimates of performance.

Early termination for futility in a two-stage study to develop and validate a predictive model
would have similar statistical implications to a group sequential clinical trial but different
practical implications. In a group sequential clinical trial, subjects are enrolled sequentially
and the the interim analyses are used to determine if additional subjects should be enrolled
in the trial. Diagnostic biomarkers are typically evaluated retrospectively using banks of
stored tissue samples and the sequential aspect refers to processing the samples. In a two-
stage study to develop and validate a biomarker panel, we would first assay a randomly
selected subset of the stored tissue samples, develop a predictive model and evaluate our
stopping rule. The remaining tissue samples would only be assayed if we do not terminate
the study at the interim analysis. Early termination would allow us to save time and money
by not unnecessarily processing the entire set of tissue samples and conserve the unused
samples for future studies to evaluate different candidate markers.

Group sequential designs for evaluating the performance of a single marker have been
discussed in the literature [3, 4, 5]. These designs could be used to evaluate the performance
of a predictive model developed in previous studies but are inappropriate for the setting
where development of a predictive model is of interest.

We consider early termination of a two-stage study to develop and validate a panel of
biomarkers for predicting prostate cancer. First, we illustrate how a stopping rule for futility
can be implemented in a standard, two-stage study for developing and validating a
predictive model where samples are separated into a training and validation sample.
Simulation results indicate that our design has similar type-I error rate and power to the
fixed-sample design but with a substantially reduced sample size under the null hypothesis.
We then illustrate how additional interim analyses can be included in stage 2 by applying
existing group sequential methodology, which results in even greater savings in the number
of samples required under both the null and alternative. Our simulation results also illustrate
that the operating characteristics of our study are robust to changes in the underlying marker
distribution.

The remainder of the paper proceeds as follows. In Section 2, we describe a two-stage study
to develop and validate a panel of biomarkers that allows early termination for futility. A
detailed description of a simulation study to evaluate the operating characteristics of our
study can be found in Section 3 and results are presented in Section 4. We discuss how
additional interim analyses can be incorporated into stage 2 in Section 5 and discuss
implementation of our proposed design in Section 6. Finally, we conclude with a brief
discussion in Section 7.
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2. Study Design
We present our results in the context of a study that is to be completed at the University of
Minnesota to develop and validate a panel of biomarker for predicting prostate cancer
recurrence. Fifteen candidate biomarkers have been identified as potential predictors of
prostate cancer recurrence in previous studies and our interest lies in their performance in
combination. Our study will make use of 720 stored tissue samples. We will develop a
predictive model for prostate cancer using a two-stage study design where a predictive
model is developed in stage 1 using a subset of the 720 samples and validated with the
remaining samples in stage 2. A design that allows early termination for futility after stage 1
would allow the remaining tissue samples to be used in future studies should initial
estimates of prognostic accuracy for the marker panel be inadequate.

The goal of this study is to develop a predictive model for biochemical failure. Biochemical
failure for prostate cancer is defined as rising prostate specific antigen (PSA) serum levels
after post-treatment low nadir. The prognostic accuracy of our model will be evaluated by
the time-dependent ROC curve for 5-year biochemical failure estimated using the method
proposed by Heagerty et al. [6]. This method considers men that have experienced
biochemical failure within 5 years to be cases, men that have not experienced biochemical
failure within 5 years to be controls and accounts for the possibility of censored
observations. For the purposes of designing our study, our primary measure of prognostic
accuracy will be a point, ROC(0.1), on the ROC curve for 5-year biochemical failure.
ROC(0.1) is the sensitivity corresponding to 90% specificity. The null and alternative
hypotheses for our study are:

respectively. The null and alternative hypotheses were chosen to achieve a clinically
meaningful improvement in the positive and negative predictive values (PPV and NPV,
respectively) for 5-year biochemical failure. Assuming that 15% of patients will experience
biochemical failure within five years, the NPV and PPV under the null hypothesis will be
90% and 41%, respectively, and the NPV and PPV will be 94% and 53%, respectively,
under the alternative hypothesis. While this may seem like only a modest improvement in
PPV and NPV, it was felt that the PPV and NPV corresponding to the alternative hypothesis
would represent a clear improvement over simply knowing the prevalence, while the PPV
and NPV corresponding to the null hypothesis would not.

In stage 1, a predictive model for biochemical failure will be developed using a random
subset (i.e. training subset) of P% of the total samples. A predictive model for biochemical
failure will be developed from the training subset using Cox proportional hazards regression
and the Lasso [7, 8]. ROC(0.1) for the predictive model will be estimated using the training
subset and the study will terminate if the estimate of ROC(0.1) is less than a pre-specified
cut-off, ROC(0.1)co. We expect that ROC(0.1) estimated from the training subset will
represent an optimistic estimate of performance and if the marker panel does not appear
promising with an optimistic estimate of performance then there is no need to validate with
an independent sample in stage 2.

Our choice of futility stopping rule deserves further discussion. Several methods exist for
defining stopping rules for futility (group sequential designs, conditional power, etc.) but we
feel that they are inappropriate in this setting for two reasons. First, a hypothesis test for
ROC(0.1) that does not account for model selection will not have the correct type-I error rate
and developing a hypothesis test that does account for model selection is difficult. There is
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no guarantee that existing methods for developing futility boundaries would perform as
expected given the difficulties associated with inference on ROC(0.1) after stage 1. Second,
the majority of group sequential methods rely on the independent increments assumptions
[9]. As we will see in Section 5, the independent increments assumption may be reasonable
when estimating the survival ROC curve for a single marker but the information growth
across stages 1 and 2 is not well understood given model selection in stage 1. Intuitively, we
expect that the data from stage 2 will provide more information about the true classification
accuracy of our predictive model because these data are independent of the data used to
build the model. In this case, the validity of the independent increments assumption is
certainly in question. For these reasons, we take the simple approach in defining a futility
stopping rule and will use simulation to evaluate the effect of varying ROC(0.1)co and P on
the operating characteristics of our study.

If the cut-off for futility is exceeded in stage 1, the predictive model will be validated using
the remaining (1 -P)% of samples in stage 2. The remaining samples used in stage 2 are
independent of the training subset and estimates of prognostic accuracy in stage 2 represent
an unbiased estimate of the performance of the predictive model. We will test our null
hypothesis using the test statistic,

(1)

where SERÔCstg2(0.1) is estimated by bootstrap and we will reject the null hypothesis if
ZROC(0.1) is greater than the .975th quantile of the standard normal distribution.

In summary, our design will proceed as follows:

1. Split data into training and validation set

2. Build a predictive model for biochemical failure using the Lasso on the training set

3. Estimate ROC (0.1) for this model from the training set

4. Terminate for futility if estimated ROC (0.1) < ROC (0.1)co, otherwise, continue to
step 5

5. Estimate ROC (0.1) and test the null hypothesis using the validation set

3. Simulation Study
Analytical methods exist for determining design parameters that achieve the desired
operating characteristics for simple study designs but simulation is needed to evaluate the
operating characteristics of a study in more complicated settings. In this section, we describe
an extensive simulation study to evaluate the operating characteristics of our study.

Let X be a 15 dimensional vector of biomarkers, which is composed of ns signal markers, Xs,
(i.e. biomarkers that are truly associated with PC recurrence) and 15 − ns noisy markers, Xn
(i.e. biomarkers that are not associated with PC recurrence). That is, X is composed of two
sub-vectors,
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where Xs is a ns dimensional sub-vector of signal markers and Xn is a (15 − ns) dimensional
sub-vector of noisy markers. Signal markers were drawn from a multivariate normal
distribution with mean 0⃗ and covariance matrix Σs, while noisy markers were drawn from
i.i.d. standard normal distributions. We note that N (0, Σs) represents the marginal
distribution of the signal markers and that the mean of this distribution does not impact the
quality of Xs as a classifier for recurrence. For this reason, we set the mean equal to 0⃗ for
simplicity. Instead, the ability of Xs to discriminate between subjects with long and short
failure times is controlled by Σs and a regression model, which we will now describe.
Biochemical failure times, Y, were sampled from an exponential distribution with rate
parameter, λ, where λ is a function of the signal markers,

with β1,s = βsWs, where βs is a scalar and Ws is a vector of weights indicating the relative
importance of each marker. At this point, we should clarify that our assumption of β1,s =
βsWs, where βs is a scalar will only be made for the purposes of our simulation study and
that this restriction will not be imposed when estimating the predictive model in stage 1 of
our study. There are infinitely many vectors, β1,s that result in a given value of ROC (t) and
we place a restriction on the form of β1,s in order to investigate the impact of specific
patterns in the regression parameters on the operating characteristics of our study. Finally,
censoring times, C, were drawn from a uniform distribution with range (0, Cmax).

The following parameters must be specified: ns, Ws, Σs, β0, βs and Cmax. The first three (ns,
Ws and Σs) were varied to determine their impact on the operating characteristics of the
study. Σs is a function of the variances of the signal markers, Vs, and the correlation between
markers, ρ, and was varied by considering different combinations of Vs and ρ. For our
simulations, we considered the following possible values of ns,Ws, Vs and ρ:

• ns: 3,5 and 7

•
Ws: (1, …, 1), 

•
Vs: (1, …, 1),  and 

• ρ: 0, 0.2, 0.4 and 0.6

The remaining parameters were set as follows: β0 and βs were fixed to achieve the desired
prevalence (5-year PC recurrence rate equal to 0.15) and true value of ROC (0.1) (either
ROC (0.1)0 or ROC (0.1)1) by solving the set of equations found in the Supplementary
Materials and Cmax was set equal to 50 years because we expect 5-year follow-up to be
available for 90% of subjects.

In addition to the biomarker parameters listed above, we will also consider the effect of
varying the proportion of samples used in stage 1, P, and the cut-off for continuing to stage
2, ROC (0.1)co, on the operating characteristics of our study. Values for P and ROC (0.1)
considered in our simulation include:

• P: 0.3, 0.4, 0.5, 0.6 and 0.7

• ROC (0.1)co: 0 (fixed-sample design), 0.40, 0.45 and 0.50

We will evaluate the standard operating characteristics of type-I error and power. Given that
we are considering a group sequential design, we will also consider the expected sample size
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of our study under the null and alternative hypotheses. At this point, we only allow early
termination for futility and hope to observe a substantial reduction in the expected sample
size under the null hypothesis compared to the fixed-sample design but expect that the
expected sample size under the alternative will be close to that of the fixed-sample design.

Finally, it is important to note that the hypothesis test after stage 2 is not testing whether

ROC (0.1) for  is greater than the null hypothesis but is instead testing whether ROC
(0.1) for Xtβ̂1 is greater than the null hypothesis where β̂1 is the estimated vector of
regression coefficients for all markers estimated in stage 1. It is likely that the classification

accuracy of Xtβ̂1 will be worse than the classification accuracy of  if for no other
reason than β̂1 is likely to include a non-zero coefficient for one of the noisy markers. We
expect that β̂1 will approach (β1,s, 0⃗) as the sample size in stage 1 increases and anticipate
that the classification accuracy of Xtβ̂1 will improve as the proportion of samples used in
stage 1 increases. For this reason, we must also consider the effect of varying P and
ROC(0.1)co on the quality of the predictive model developed in stage one in addition to the
type-I error rate and power when testing the classification accuracy of our model in stage
two. We are able to calculate the true value of ROC (0.1) for Xtβ̂1 from each simulated study
using the distributional assumptions described above and this value will be reported as an
operating characteristic of our study in addition to the standard operating characteristics of
type-I error, power and expected sample size.

4. Simulation Results
4.1. Design Parameters

The parameters varied in our simulation can be separated into two groups: the design
parameters (P and ROC (0.1)co), which we can control when designing our study, and the
biomarker parameters (ns, Ws, Vs and ρ), which are inherent characteristics of the biomarkers
and not within our control. Ideally, varying the biomarker parameters while holding the true
value of ROC (0.1) constant would have limited impact on the operating characteristics of
our study, leaving us only to worry about the design parameters. We begin by considering
the impact of the design parameters on the operating characteristics of our study.

Table 1 presents simulation results evaluating the effect of the proportion of subjects in
stage 1 and the cut-off for early termination on the operating characteristics of the study. We
hope to find a combination that minimizes the expected sample size under the null
hypothesis but provides adequate power under the alternative. A higher proportion of
subjects in stage 1 is expected to lead to a better predictive model and increase the
likelihood of early termination, while a higher proportion of subjects in stage 2 will increase
power. Similarly, a higher threshold for continuing to stage 2 will limit the expected sample
size under the null but increase the chance of early termination under the alternative and
decrease power.

We first consider the impact of P on the operating characteristics of our study in the fixed-
sample design as this serves as a baseline for which to compare the designs that allow early
termination for futility. Increasing P will result in a larger sample size for building our
predictive model in stage 1 but a smaller sample size for testing the classification accuracy
of our model in stage 2. We see that the power decreases dramatically as P increases. In
some sense, this should not be surprising. As P increases, the sample size available for stage
2 decreases, which results in a smaller sample size available for testing our predictive
model. For example, with P = 0.30, there are 504 samples available for testing our model in
stage 2 but with P = 0.70, there are only 216 samples available in stage 2, resulting in a
substantial reduction in power. What is somewhat surprising, though, is that the power
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decreases even though the true classification accuracy of the predictive model developed in
stage 1 increases. This implies that the marginal improvement in the classification accuracy
of our fitted model is not worth the decrease in power due to an inadequate sample size for
validation in stage 2. The same phenomenon is observed for the three scenarios where early
termination is allowed. Increasing P when early termination was allowed resulted in an
increased probability of early termination but also resulted in an increased expected sample
size under the null. This may seem counter-intuitive but it simply reflects the fact that the
increased probability of early termination did not offset the increased minimum sample size
as the proportion of samples used in stage 1 increased.

The cut-off for early termination had the expected effect on the sample size, type-I error rate
and power. Increasing the cut-off for early termination resulted in an increased probability
of early termination under the null hypothesis which decreased the expected sample size.
The cut-off for early termination did not affect the type-I error rate conditional on reaching
stage 2 but the unconditional type-I error rate decreased as ROC(0.1)co increased due to the
increased probability of early termination. The probability of early termination under the
alternative was small when ROC(0.1)co equaled 0.40 and 0.45, resulting in power similar to
the fixed-sample design, but increasing ROC(0.1)co to 0.50 resulted in approximately a 5%
decrease in power when P equaled 0.30 and 0.40 due to an increase in the probability of
early termination for futility. Somewhat surprisingly, ROC(0.1)co had little impact on the
true value of ROC (0.1) for Xtβ̂1. We expected that the true value of ROC (0.1) would
increase with ROC (0.1)co because only the best models would proceed to stage 2. Instead,
we observed that ROC (0.1)co had little impact on the true value of ROC (0.1), which
suggests that variability in the estimate of ROC (0.1) after stage 1 is primarily due to
variability in the estimation procedure and not variability in the true classification accuracy
of Xtβ̂1.

Going forward, we will consider a design with P = 0.30 and ROC(0.1)co = 0.45. This design
was chosen because it provides a substantial reduction in the sample size under the null
hypothesis, while providing similar power to the fixed-sample design.

4.2. Biomarker Parameters
We next consider the effect of varying the biomarker parameters on the operating
characteristics of our study. This can be thought of as a sensitivity analysis. We have no
control over these parameters and it would be reassuring if the operating characteristics of
our study were robust to variation in these parameters while holding the true value of ROC
(0.1) constant.

Table 2 presents simulation results evaluating the effect of various biomarker parameters on
the operating characteristics of our study. Increasing the number of signal markers (ns)
resulted in a slight increase in the expected sample size under the null (ns = 3, average E(SS)
= 383, ns = 5, average E(SS) = 389, ns = 7, average E(SS) = 394) and a slight decrease in
power (ns = 3, average power = 0.91, ns = 5, average power = 0.90, ns = 7, average power =
0.89). Increasing the correlation between signal markers had the opposite effect, decreasing
the expected sample size under the null (ρ = 0.0, average E(SS) = 393, ρ = 0.6, average
E(SS) = 385) and increasing power (ρ = 0.0, average power = 0.89, ρ = 0.6, average power =
0.91). Varying Ws and Vs did not appear to have a systematic effect on the operating
characteristics of our study.

Overall, though, the results observed in Table 2 are reassuring. The average sample size
under the null hypothesis was 388 with a range of 376 - 407 and the average power was 0.90
with a range of 0.88 - 0.92. These differences are modest compared to the differences
observed in Table 1, which suggests that the operating characteristics of our study are robust
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to changes in the underlying marker distribution as long as the performance of the markers
in combination remains constant.

5. Additional Interim Analyses During Stage 2
To this point, we have only considered one interim analysis for futility at the end of stage 1.
Additional savings in the number of samples could be achieved by including additional
interim analyses during stage 2. Furthermore, while we are unwilling to terminate the study
for superiority after stage 1 because of a desire to validate our predictive model on an
independent set of data, we have no such concerns during stage 2 and can implement
stopping rules that allow early termination for futility and superiority during stage 2.

Once a predictive model is developed in stage 1, stage 2 is simply a fixed-sample study to
evaluate the classification accuracy of a single marker (that is a linear combination of
several markers). Additional interim analyses can be incorporated into stage 2 by applying
existing group sequential methodology (i.e. O'Brien-Fleming or Pocock boundaries [10,11]
or error spending functions [12]). Standard group sequential methodology relies on the
existence of a test statistic with an independent increments covariance structure [9]. The
independent increments assumption has been verified for the standard ROC curve [5, 13] but
not for the survival ROC curve. The independent increments assumption holds in a wide
variety of situations and, while it has not been verified theoretically for the survival ROC
curve, we can evaluate this assumption through simulation.

Adding additional interim analyses to stage 2 does not substantially change the character of
our study. In stage 1, we develop a predictive model using the Lasso for Cox regression and
estimate ROC (0.1) for the predictive model. We compare our estimate of ROC (0.1) to ROC
(0.1)co and terminate for futility if our estimate is less than ROC (0.1)co. If our estimate
exceeds ROC (0.1)co, we validate our predictive model in stage 2 but instead of a single
hypothesis test at the end of stage 2, we monitor ROC (0.1) sequentially using the test
statistic from (1). For our simulations, we consider stopping boundaries using the error
spending functions proposed by Hwang et al. [14], which allow early termination for
superiority and futility. Considering only the studies that proceed to stage 2, implementing
group sequential stopping boundaries during stage 2 should have no effect on the type-I
error rate but will decrease the power (usually, sample size is increased to accommodate
interim analyses in a group sequential study but our sample size is fixed). The probability of
continuing to stage 2 will not be effected by the inclusion of additional interim analyses
during stage 2, implying that the additional interim analyses will have no effect on the
overall type-I error rate but will decrease the overall power.

Table 3 presents simulation results evaluating the operating characteristics of our study
when additional interim analyses are included in stage 2. Simulations were completed with
P = 0.3, ROC (0.1)co = 0.45, ns = 5, Ws = (1, …, 1), Vs = (1, …, 1) and ρ = 0.0. We see that
the conditional type-I error rate is similar regardless of the number of interim analyses.
While not definitive, this does suggest that the independent increments assumption holds for
the survival ROC curve. Incorporating additional interim analyses into stage 2 results in a
decrease in the expected sample size under both the null and alternative hypothesis. Under
the null hypothesis, the expected sample size decreased from 397 when one, single analysis
is completed at the end of stage 2 to 302 when four stopping times are considered. An even
larger decrease is observed under the alternative, where the expected sample size decreases
from 712 with one stopping time to 551 when four stopping times are considered. We
observe a decrease in power as additional interim analyses are included, as expected, but the
difference is modest when compared to the reduction in the expected sample size. Finally,
simulations evaluating the effect of varying the biomarker parameters ns, Ws, Vs and ρ can
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be found in the Supplementary Materials and illustrate that the operating characteristics of
our study are robust to changes in the biomarker parameters as long as the true value of ROC
(0.1) is held constant.

6. Implementation
In this section, we briefly discuss the implementation of our proposed method in the context
of nine simulated scenarios. Our study proceeds as described in Sections 2 and 5. First, we
split the data into a training and a validation sample. We develop a predictive model for
prostate cancer recurrence using the Lasso for Cox regression and estimate ROC(0.1) for the
predictive model using the training set. The study terminates for futility if the estimated
value of ROC (0.1) from the training set is less than ROC (0.1)co. Otherwise, we validate our
predictive model in the testing sample using group sequential stopping boundaries and the
test statistic described in (1).

In order to proceed, we must specify the following study parameters: n, ROC (0.1)0, P, ROC
(0.1)co and the group sequential stopping boundaries used in stage 2. In our motivating
example, the total sample size, n, is fixed at 720 due to the number of stored tissue samples
available. We design our study to test the null hypothesis, ROC (0.1)0 = 0.40, as described in
Section 2. We set P = 0.30, which implies that 216 samples will be used in stage 1, and
terminate for futility if the estimated ROC (0.1) from the training set is less than ROC (0.1)co
= 0.45. Finally, we will test the classification accuracy of our predictive model in stage 2
using the stopping boundaries developed by Hwang et al. [14] with three interim analysis
and a one-sided type-I error rate of 0.025. This results in the following stopping boundaries:

• Superiority: 3.15, 2.82, 2.44, 1.96

• Inferiority: -0.65, 0.33, 1.17, 1.96

Our study will stop early for superiority if our test statistic exceeds the superiority stopping
boundaries and terminate for futility if our test statistic is less than the inferiority boundaries.

Table 4 presents the estimated ROC (0.1) after stage 1(RÔC (0.1)stg1), the sequential test
statistic (ZROC (0.1),1 - ZROC (0 1),4) and the total sample size for the nine simulated scenarios.
The study terminates after stage 1 in scenarios 1, 2 and 4 because RÔC (0.1)stg1 is less than
ROC (0.1)co, which results in only 216 of the 720 total samples being used. Five of the
remaining six scenarios terminate early in stage 2. Scenarios 3, 5, 6 and 7 terminate early for
futility, while Scenarios 8 and 9 terminate early for superiority. The total sample size in
these five scenarios ranged from 342 samples in Scenario 3 and 594 samples in Scenario 6.
This illustrates the strength of the proposed design. High quality tissue samples are a scarce
commodity and early termination allows unused samples to remain available for future
studies.

7. Discussion
We discussed early termination in a two-stage study to develop and validate a panel of
biomarkers. First, we illustrated how a stopping rule for futility can be implemented in a
two-stage study where samples are separated into a training set and a validation set.
Simulation results showed that this design had a smaller type-I error rate and similar power
to the fixed-sample design, while decreasing the expected sample size under the null
hypothesis. We then discussed how an even greater reduction in sample size can be achieved
by implementing additional interim analyses during stage 2. The inclusion of additional
interim analyses during stage 2 had little impact on the type-I error rate and power but
reduced the expected sample size under both the null and alternative hypothesis.
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These results have important implications for the design of diagnostic biomarker studies.
One of the biggest challenges to evaluating a panel of biomarkers is the scarcity of high
quality tissue samples. In response, extensive resources have been used to develop banks of
high quality tissue samples for evaluating biomarkers for diagnosis and prognosis. These are
scarce resources and it is important to use them responsibly. Group sequential designs are an
obvious approach to conserving these resources while still adequately evaluating candidate
biomarkers.

Our simulation results also showed that varying characteristics of the biomarkers while
holding their combined classification accuracy constant had little effect on the operating
characteristics of our study. Knowing that the marker parameters have little effect on the
operating characteristics of our study allows us to design our study without worrying about
characteristics of the biomarkers that we can't control. Furthermore, future attempts to
develop analytic methods for designing similar studies would be greatly simplified if
characteristics of the underlying marker distribution are not of great concern.

An important difference between diagnostic biomarker studies and therapeutic clinical trials
is that diagnostic biomarker studies are generally completed retrospectively, while clinical
trials are prospective. The sequential aspect of a group sequential diagnostic biomarker
study refers to the processing of the samples and not their collection. A retrospective study
using stored tissue samples that is terminated early will save money by not processing the
samples and conserve specimens for future studies of other candidate biomarkers. In this
sense, group sequential methods are beneficial even if all samples have already been
collected.

Some of the features of this design (the stopping rule at the end of stage 1, in particular) are
somewhat ad hoc. Nevertheless, our simulation results indicate that our design has similar
type-I error and power to the fixed-sample design but requires a substantially smaller sample
size, on average. A rigorous theoretical justification and analytical methods are needed in
order for group sequential designs for developing and validating a panel of biomarkers to
achieve more widespread use. Our results, in particular, simulation results indicating the
limited influence of the underlying marker parameters on the operating characteristics of our
study, provide motivation for future theoretical work. Utilizing group sequential designs to
develop and validate a panel of biomarkers will impact our estimates of marker performance
at study completion. Estimation after a group sequential clinical trial has been studied
extensively in the literature [15, 16, 17]. The majority of these estimators focused on
unconditional estimation, where the goal is an estimator that has good statistical properties
when averaged over stopping times, while a subset were developed to achieve good
statistical properties conditional on the observed stopping time. In a fixed-sample design, we
estimate the performance of a panel of biomarkes conditional on the model developed in the
training set. In our setting, this implies that, at the very least, we are interested in estimation
conditional on proceeding to stage 2. Conditional estimation of the classification accuracy of
a single marker after designs that allow early termination for futility have been discussed in
the literature and could provide the motivation for conditional estimators of the performance
of a panel of biomarkers [18, 19].

We considered a scenario where only a small number of markers (n = 15) were considered
as candidates for our panel. There are many situations where we would be interested in
developing a marker panel from a much longer list of candidate markers. This does not
fundamentally change our design but it may have an impact on the operating characteristics
of our study.
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