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ABSTRACT In tight Na+-absorbing epithelial cells, the
rate of Na+ entry through amiloride-sensitive apical mem-
brane Na+ channels is matched to basolateral Na+ extrusion
so that cell Na+ concentration and volume remain steady.
Control of this process by regulation of apical Na+ channels
has been attributed to changes in cytosolic Ca2+ concentra-
tion or pH, secondary to changes in cytosolic Na+ concentra-
tion, although cytosolic Cl- seems also to be involved. Using
mouse mandibular gland duct cells, we now demonstrate that
increasing cytosolic Na+ concentration inhibits apical Na+
channels independent of changes in cytosolic Ca2 , pH, or
Cl-, and the effect is blocked by GDP-,8-S, pertussis toxin, and
antibodies against the a-subunits of guanine nucleotide-
binding regulatory proteins (GO). In contrast, the inhibitory
effect of cytosolic anions is blocked by antibodies to inhibitory
guanine nucleotide-binding regulatory proteins (G,l/Gi2. It
thus appears that apical Na+ channels are regulated by Go and
G, proteins, the activities ofwhich are controlled, respectively,
by cytosolic Na+ and Cl-.

Like many tight epithelia, including renal collecting ducts,
colonic mucosa, sweat ducts, and amphibian skin, the salivary
duct epithelium transports Na+ from the exterior to the
interstitium by permitting the influx of Na+ through amiloride-
sensitive Na+ channels in the apical membranes of the epi-
thelial cells (1-3) and then pumping Na+ into the interstitium
using the Na+-K+-ATPase in the basolateral membranes (4).
Epithelia of this type, including salivary ducts (5), regulate the
rate of Na+ influx across the apical membranes so as to match
the basolateral extrusion rate and thereby maintain a stable
cell volume and cytosolic Na+ concentration, although the
mechanism by which this so-called homocellular regulation or
epithelial cross-talk occurs remains controversial (6, 7).

Early studies were interpreted as indicating that extracellu-
lar Na+ regulated the activity of the apical Na+ channels
directly (8, 9), although an intracellular action of Na+ had also
been postulated (10). More recent electrophysiological studies
have strengthened the view that the effects of extracellular
Na+ are not direct (11, 12), but are mediated through changes
in cytosolic Na+ that influence the activity of apical Na+
channels indirectly by alterations in cytosolic pH (13) and free
Ca2+ concentration (14, 15), arising, respectively, because of
alterations in the activity of Na+-H+ and Na+-Ca2+ exchang-
ers. Studies using renal Na+ channels reconstituted into lipid
bilayers (16), on the other hand, have shown that increasing
intracellular Na+ decreases Na+ channel activity, but only
when the free Ca2+ bathing the cytosolic face of the channel
is above 1 ,umol/liter. Because this Ca2+ concentration is
above the resting level in absorptive epithelia such as salivary
ducts (17), the physiological relevance of the observation is
unclear. Regulation of apical Na+ channels seems also to be
brought about by changes in cytosolic Cl- concentration (18,

19). Given that in epithelial cells intracellular Cl- is correlated
with cell volume at constant extracellular osmolarity (20), this
may provide a mechanism by which cell volume modulates Na+
influx rate (18).
The present study demonstrates that cytosolic Na+ can

regulate Na+ channels independent of changes in cytosolic pH,
Ca2+, and Cl-, and explores the role of G proteins in mediating
its action.

MATERIALS AND METHODS
Cell Preparation. Isolated cells were prepared by collage-

nase digestion of mandibular glands from male mice (3, 19).
The standard bath solution had the following composition: 145
mmol/liter NaCl, 5.5 mmol/liter KCl, 1.0 mmol/liter CaC12,
1.2 mmol/liter MgCl2, 1.2 mmol/liter NaH2PO4, 7.5 mmol/
liter Na-N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic
acid) (Na-Hepes), 7.5 mmol/liter H-Hepes, and 10 mmol/liter
glucose; the pH was adjusted to 7.4 with NaOH. After
establishment of the whole-cell configuration, the bath was
replaced with a solution containing 145 mmol/liter Na-
glutamate, 5.0 mmol/liter NaCl, 1.0 mmol/liter MgCl2, 10
mmol/liter H-Hepes, 10 mmol/liter glucose, and 1.0 mmol/
liter EGTA; the pH was adjusted to 7.4 with NaOH. Exchang-
ing the bath solution before establishment of the whole-cell
configuration did not alter the results. The pipettes were filled
with solutions containing NMDG-glutamate and NaCl (to-
gether totalling 150 mmol/liter), 1.0 mmol/liter MgCl2, 10
mmol/liter H-Hepes, 10 mmol/liter glucose, and 5.0 mmol/
liter EGTA; the pH was adjusted to 7.2 with Tris base or
NaOH (7-14 mmol/liter) as appropriate.
Patch-Clamp Techniques. Standard whole-cell patch-clamp

methods were used as previously described (3, 19). Patch-
clamp pipettes were pulled from borosilicate microhematocrit
tubes (Modulohm, Hevik, Denmark) so as to have resistances
of 1-3 MQ. A Ag-AgCl pellet was used as the reference
electrode and all potential -differences were corrected for
liquid junction potentials as appropriate (19). An Axo-
patch-1D patch-clamp amplifier (Axon Instruments, Foster
City, CA) was used to measure whole-cell currents. To deter-
mine I-V relations, a MacLab-4 data acquisition interface
(ADInstruments, Sydney) attached to a Macintosh IIci com-
puter was used to generate command voltages and to sample
whole-cell currents. The amiloride-sensitive current was mea-
sured as the difference between the whole-cell current before
and following the addition of amiloride at 100 ,umol/liter to the
bath solution. Whole-cell I-V relations were obtained by
applying voltage pulses of 800-ms duration from a resting
potential of 0 mV. Steady-state currents were calculated as the
average current between 700 and 800 ms after the start of the
voltage pulse.

Abbreviations: G., guanine nucleotide-binding regulatory protein; Gi,
inhibitory guanine nucleotide-binding regulatory protein.
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FIG. 1. (a) I-V relation of the amiloride-sensitive Na+ conductance in mouse intralobular granular duct cells measured at pipette Na+
concentrations of 0, 33, 68, and 164 mmol/liter. (Insets) Representative voltage-clamp recordings of the amiloride-sensitive Na+ current with 68
mmol/liter (b) and zero (c) Na+ in the pipette solution. (d) Plot of the inward Na+ conductance (measured at pipette potentials between -60 mV
and -120 mV) as a function of pipette Na+ concentration. (e) Plot of the Na+ permeability (PNa) and the NMDG+ permeability (PNMDG) as a
function of pipette Na+ concentration. Each point represents the mean ± SEM with the number of separate experiments shown in parentheses.

Estimation of Ionic Permeabilities. The Na+ permeability
(PNa) and the NMDG+ permeability (PNMDG) were estimated
by fitting the Goldman equation to the I-V relation of the
amiloride-sensitive current (Iamiloride). The form of the equa-
tion we used was

'amiloride = PNa[(VF2/RT)/(1 - e( VF/RT)]

x ([Na ]o + (PNMDG/PNa)[NMDG+]o [1]

- ([Na ]i + (PNMDG/PNa)[NMDG ]i)e( VFIRT)
where V denotes the command potential, the subscripts o and
i denote extracellular and intracellular concentrations of Na+
and NMDG+, respectively, and FIRT is equal to 0.0364 mV-
at 220C.

Single-Channel Properties Measured Using Noise Fluctu-
ation Analysis. During the application of the weak electro-
neutral Na+ channel blocker, 6-chloro-3,5-diamino-pyrazine-
2-carboxamide (CDPC), the membrane potential was clamped
at -80 mV. The whole-cell current was then filtered at 500 Hz
and sampled at 1000 Hz. For each 100-ms block of data, the
mean current was determined and the current variance was
calculated following high-pass filtering at 3 Hz to remove the
dc-component of the signal. The mean whole-cell Na+ current
(INa) was calculated by subtracting the CDPC-insensitive cur-
rent, measured after prolonged exposure (>20 s) to CDPC,
from the mean whole-cell current for each block of data. The
single-channel current was estimated by fitting the relation
between mean Na+ current (INa) and current variance (o2)
with the equation

(T = INa - (INa/No) + ( residual [2]

using as free parameters, i, the single-channel current, No, the
number of channels open at the time of CDPC addition, and
O2residual, the residual current variance when all the Na+ current
is blocked. The channel activity (NTp) was then calculated
from the equation

NTP = INali [3]

where NT is the number of channels available andp is the open
probability. The single-channel conductance (y) was estimated
from the Goldman equation using the measured single-
channel current (i) for a channel bathed symmetrically in
solutions containing Na+ at 157 mmol/liter.
Chemicals and Antibodies. GDP-,3-S was obtained from

Boehringer Mannheim and pertussis toxin from Calbiochem.
Pertussis toxin was stored as a 111 ,g/ml stock solution and
was activated just before use by incubation for 15 min at 35°C
with dithiothreitol at 5 mmol/liter, and then diluted to 500
ng/ml in aliquots of pipette solution to which nicotinamide
adenine nucleotide at 1 mmol/liter had been added (21).
Antibodies directed against the C termini of the a subunits of
Gi1/Gi2, GO3, and Gi3/Go (Gi, inhibitory guanine nucleotide-
binding regulatory protein; Go, guanine nucleotide-binding
regulatory protein) were obtained from Calbiochem and an-
tibodies against the N terminal of the a-subunit of Go were
obtained from DuPont/NEN. These antibodies were chosen
because antibodies directed against the C termini of the
a-subunits of G proteins (22) and against the N terminus of the
a-subunit of Go (23) are known to interfere with signaling
mediated by these G proteins. Each antibody was included in
the pipette solution in a concentration of 1 in 200 (vol/vol).
CDPC, EGTA, bis(2-aminophenoxy)ethane-N,N,N' ,N'-
tetraacetate (BAPTA), Tris, and Hepes were obtained from
Sigma, amiloride from Research Biochemicals (Natick, MA),
and collagenase (type IV) from Worthington.

RESULTS AND DISCUSSION
Dependence of Amiloride-Sensitive Na+ Current on Cyto-

solic Na+ Concentration. As we have previously reported (3,
12), when mouse mandibular duct cells are studied in the
whole-cell patch-clamp configuration with a Na+-rich bath
solution and a Na+-free, low-Cl- pipette solution (containing
NMDG-glutamate at 150 mmol/liter), the predominant con-
ductance seen is an amiloride-sensitive Na+ conductance that
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FIG. 2. Single-channel conductance (y) and activity (Nip) of Na+
channels, measured by applying fluctuation analysis (12, 28) to the
whole-cell current-noise generated by the weak, electroneutral, epi-
thelial Na+ channel blocker, CDPC (27). (a) Time-course of the effect
of CDPC at 200 ,umol/liter on the whole-cell current of a duct cell
bathed in a solution containing Na-glutamate at 157 mmol/liter, with
an NMDG-glutamate pipette solution. The holding potential was -80
mV. (b) The record in a after high-pass filtering. (c) Time-course of
the current variance during the addition of CDPC at 200 ,umol/liter.
(d) The relation between the current variance and the mean whole-cell
Na+ current. The unbroken line is a least-squares fit of Eq. 2 to the
data. (e) Dependence of the whole-cell Na+ current (INa) on pipette
Na+. (f) Dependence of the single-channel current (i) on pipette Na+.
(g) Dependence of single-channel conductance (y) on pipette Na+. (h)
Dependence of the channel activity (Nip) on pipette Na+.

is not voltage-activated and is permeable to Li+ but not to K+.
The channel type underlying this conductance appears to be
the epithelial Na+ channel (ENaC), which is known to be
expressed in these cells (1). In the present experiments, we
observed that the magnitude of the amiloride-sensitive Na+
current (and therefore the Na+ conductance) declined with
increasing Na+ concentration in the pipette solution (Fig. 1),
the half-maximum reduction in Na+ conductance being ob-
served at a pipette Na+ concentration bf 33 mmol/liter, a value
within the physiological range for cytosolic Na+ concentration
in exocrine tissues (24-26).
The inhibitory effect was specific to Na+, as shown by studies

in which we replaced all the NMDG+ in the pipette solution
with K+, which did not significantly inhibit the amiloride-
sensitive Na+ conductance [NMDG-glutamate pipette solu-
tion: 1.094 ± 0.12 nS (n = 5) versus K+-glutamate pipette
solution: 0.845 ± 0.16 nS (n = 6), P = 0.252; see also refs. 3
and 19]. Furthermore, because the pipette solutions used in
our experiments were buffered at pH 7.2 with Hepes and had
a constant, low Cl- concentration and because the extracel-
lular and pipette solutions both contained EGTA (1 mmol/
liter and 5 mmol/liter, respectively) with no added Ca2+, the
decline in Na+ conductance cannot have been due to a change
in intracellular pH or in the cytosolic concentrations of Cl- or
free Ca2+. Because inhibition of epithelial Na+ channels due
to increases in intracellular free Ca2+ has been extensively
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FIG. 3. Effects of G protein modulators on the whole-cell Na+
current in duct cells. (a-d) The whole-cell Na+ current (a), the
single-channel current (b), the single-channel conductance (c) and the
channel activity (d), measured using CDPC fluctuation analysis (see
Fig. 2) at a pipette potential of -80 mV. Experiments were conducted
using the following pipette solutions: (i) a Na+-free NMDG-glutamate
solution; (ii) a solution containing Na+ at 68 mmol/liter; (iii) a solution
containing Na+ at 68 mmol/liter plus GDP-,B-S at 100 ,umol/liter; and
(iv) a solution containing Na+ at 68 mmol/liter plus pertussis toxin
(PTX) at 500 ng/ml. In solutions ii-iv, Na+ was supplemented with
NMDG+ to maintain a summed cation concentration of 157 mmol/
liter. The Goldman equation was used to estimate the single-channel
conductance in symmetrical 157 mmol/liter Na+ solutions from the
single-channel current at -80 mV.

reported in the literature (6, 14, 15), we further investigated
whether a change in free Ca2+ concentration could be medi-
ating the effects we observed. We found that the reduction in
Na+ conductance seen when cytosolic Na+ concentration is
increased persists even when the pipette Ca2+ concentration is
buffered with BAPTA, a more powerful Ca2+ chelator than
EGTA, in concentrations as high as 20 mmol/liter and the bath
solution contains 1 mmol/liter EGTA with no Ca2+ added to
either solution (data not shown).

In principle, a decline in Na+ conductance induced by
increasing intracellular Na+ could be the result either of a
decrease in channel activity (NTp) or a decrease in single-
channel conductance (,y). To investigate which of these was the
actual cause, we applied fluctuation analysis to the noise
generated during the onset of inhibition of the Na+ channels
by CDPC, a weak electroneutral channel blocker (12, 27), a
technique that permits us to determine the single-channel
current (i) and the activity (NTp) of the Na+ channels from
whole-cell recordings (Fig. 2). We found that the decline in
Na+ conductance with increasing intracellular Na+ was attrib-
utable to a decline in channel activity (Fig. 2h) rather than a
change in the single-channel conductance, which did not alter
with increasing intracellular Na+ (Fig. 2g).
The Role ofG Proteins. We then investigated the mechanism

by which intracellular Na+ controlled the activity of the Na+
channels. We found that inclusion of GDP-,3-S at 100 ,tmol/
liter [which competitively inhibits the binding of GTP by G
proteins (29)] in a pipette solution containing Na+ at 68
mmol/liter reversed the inhibitory effect of Na+ on the
whole-cell Na+ current and increased Na+ channel activity to
a level not significantly different from that observed when the
pipette solution contained no Na+ at all (Fig. 3). Similarly, we
found that pertussis toxin [which ADP ribosylates G proteins
of the Gi and Go classes so as to prevent their activation by

Physiology: Komwatana et al.
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FIG. 4. Effects of the inclusion of antibodies against various G protein a-subunits on the amiloride-sensitive Na+ conductance measured at -80
mV (a) with Na+ at 68 mmol/liter in a glutamate-rich pipette solution and (b) with NMDG-NO3 at 155 mmol/liter in the pipette solution. For
ease of comparison, we have also included the Na+ conductance observed with a pipette solution containing Na+ at 68 mmol/liter and GDP-,-S
at 100 ,umol/liter (as shown in a, calculated from the data in Fig. 3) and the Na+ conductance observed with a glutamate-rich pipette solution
containing zero Na+ (b). In the experiments in a, Na+ current was measured by the addition of amiloride (cf. Fig. 1 of ref. 18) and, in the experiments
in b, it was measured by substitution of bath Na+ by NMDG+ (cf. Fig. 2 of ref. 18); we have previously shown that these two methods give identical
results. The experiments on the effects of anions on the Na+ current used NO3 rather than Cl- in the pipette solution to eliminate contamination
by the hyperpolarization-activated ClC-2-type current found in these cells (18, 32).

receptors (30, 31)] also inhibited the effects of Na+ at 68
mmol/liter in the pipette solution on Na+ channel activity (Fig.
3). Given that we have previously reported that the Na+
current was not affected by GDP-1-S or pertussis toxin when
the pipette contained a Na+-free NMDG-glutamate solution
(18), the present results indicate that GDP-,3-S and pertussis
toxin act by preventing the inhibitory effects of intracellular
Na+, rather than by producing some kind of direct stimulatory
effect on the Na+ conductance.

Finally, we show that inclusion in the pipette solution of
antibodies directed against the a-subunits of Go proteins
abolishes the inhibitory effect of Na+ in the pipette solution on
the Na+ conductance, whereas inclusion of antibodies directed
against the a subunits of Gil, Gi2, and Gi3 had no effect (Fig.
4a). We have previously reported that the Na+ conductance in
salivary duct cells is inhibited by the presence of anions such
as Cl-, Br-, and NOj- in the cytosol (19) and have shown that
this effect is mediated by a pertussis toxin-sensitive G protein
(18). We thus examined whether the effect of anions on the
Na+ conductance is inhibited by antibodies directed against
the a-subunit of G, We found tV at the effects of inclusion of
NO1- in the pipette solution are inhibited by antibodies di-
rected against the C-terminal peptides of the a-subunits of
Gl/Gi2 but not of Go proteins (Fig. 4b).

interstitium

*2K+

FIG. 5. Proposed model for feedback regulation of Na+ channels
in salivary duct cells by cytosolic Na+ and Cl- acting through G
proteins.

This study demonstrates that intracellular Na+ influences
the activity of epithelial Na+ channels independent of previ-
ously identified controlling agents such as changes in intracel-
lular pH, Cl- or Ca2+ concentration. We find that this effect
of intracellular Na+ is blocked by agents that inhibit Go, a G
protein expressed in high concentrations in salivary duct cells
for which a physiological role has not previously been estab-
lished (33). Since inclusion of the nonhydrolyzable analogue of
GTP, GTP-y-S, in a Na+-free (NMDG-glutamate) pipette
solution inhibits the epithelial Na+ conductance in these cells
(18), it would appear that active Go actually mediates the
effects of cytosolic Na+ on the Na+ channels, rather than
simply producing a state in which the Na+ channels are able to
interact with and be blocked by cytosolic ions. The observation
that pertussis toxin, which prevents G protein activation by
receptors (30, 31), blocks the action of cytosolic Na+ further
suggests that a receptor of some type is involved. We do not
know whether this hypothetical receptor is specific for cyto-
solic Na+ or whether cytosolic Na+ is acting by altering the
efficacy of coupling between Go and a receptor for an un-

known extracellular ligand.
Interactions between epithelial Na+ channels and G pro-

teins, particularly Gi3, have been widely reported (34-37), and
G3 has been reported to form part of the purified Na+ channel
complex (35, 37). The physiological significance of these
interactions has been unclear, however. By showing that Na+
channels are modulated by Go in response to changes in
cytosolic Na+ concentration and by a different G protein
(either Gil or Gi2) in response to changes in cytosolic concen-

trations of anions (18, 19) (Fig. 5), the present work indicates
that G proteins play a critical role in the phenomenon of
homocellular regulation.
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