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The technique of constraining high frequency modes of molecular motion is an effective way to
increase simulation time scale and improve conformational sampling in molecular dynamics simula-
tions. However, it has been shown that constraints on higher frequency modes such as bond lengths
and bond angles stiffen the molecular model, thereby introducing systematic biases in the statistical
behavior of the simulations. Fixman proposed a compensating potential to remove such biases in the
thermodynamic and kinetic properties calculated from dynamics simulations. Previous implementa-
tions of the Fixman potential have been limited to only short serial chain systems. In this paper, we
present a spatial operator algebra based algorithm to calculate the Fixman potential and its gradient
within constrained dynamics simulations for branched topology molecules of any size. Our numeri-
cal studies on molecules of increasing complexity validate our algorithm by demonstrating recovery
of the dihedral angle probability distribution function for systems that range in complexity from se-
rial chains to protein molecules. We observe that the Fixman compensating potential recovers the
free energy surface of a serial chain polymer, thus annulling the biases caused by constraining the
bond lengths and bond angles. The inclusion of Fixman potential entails only a modest increase in
the computational cost in these simulations. We believe that this work represents the first instance
where the Fixman potential has been used for general branched systems, and establishes the viability
for its use in constrained dynamics simulations of proteins and other macromolecules. © 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4851315]

I. INTRODUCTION

Rigid constraints on the higher frequency degrees of free-
dom, such as bond lengths and bond angles, are often used
with molecular dynamics (MD) simulations. The SHAKE,
RATTLE, and torsional MD techniques are notable examples
of the use of such constraints.1, 2 Torsional MD simulations
can help speed up simulations and enhance conformational
sampling in the low-frequency torsional degrees of freedom.
Constraints also provide a powerful avenue to vary model
coarseness. Significant progress has been made in developing
algorithms and techniques to effectively tackle the increased
complexity of constrained MD,3 and in applying these MD
techniques to protein folding, domain motion, and structure
refinement problems.4–6

Scheraga, Fixman, and other researchers7–11 recognized
that the use of rigid constraints leads to systematic biases in
the statistical behavior of MD simulations of the system, lead-
ing to errors in calculated thermodynamic and kinetic proper-
ties. Fixman’s work in particular has provided considerable
insight into the effect of rigid constraints on MD simulations.
Fixman proposed the addition of a compensating potential, re-
ferred to as the Fixman potential, to remove such biases from
constrained MD simulations. The Fixman potential depends
on the determinant of the mass matrix for the constrained
molecular model.
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The mass matrix determinant is computationally difficult
to evaluate, since it is usually large in size, complex in struc-
ture, and configuration dependent. Several researchers have
conducted numerical studies to evaluate the effectiveness of
the Fixman potential in correcting for the biases in the prop-
erties calculated from constrained dynamics. However, due to
the computational difficulty in calculating the Fixman poten-
tial, these investigations have mostly focused on small and
idealized serial chain systems. In these studies, the applica-
tion of the Fixman potential has been shown to recover the
uniform probability distribution function (pdf) for the torsion
angles in simulations with rigid constraints.12–19

More recently, Patriciu et al. have studied the con-
formational dependence of the Fixman potential for serial
chains, and demonstrated computationally that the maximum
variation in the Fixman potential increases with increase in
the chain length.20 Echenique et al. have studied the relative
magnitude of the Fixman potential and the quantum mechani-
cal potential energy for alanine dipeptide,21, 22 and concluded
that the Fixman potential becomes significant in simula-
tions of peptides with more than 2 residues. In addition,
Brooks and Abagyan have independently proposed alternate
methods to circumvent the bias arising from the stiffness in
the constrained model23, 24 by deriving corrective torsional
potentials to match the flexible model potential energy
surface. However, these corrections are ad hoc and system
dependent and not generalizeable. Although the inclusion
of the Fixman potential holds great promise for improving
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the accuracy of constrained MD simulation methods, the use
of such methods has been held back by the serious lack of
computationally tractable algorithms to calculate the Fixman
potential, especially for large and realistic macromolecules.

Previously, we have used spatial operator algebra (SOA)
techniques from multibody dynamics to develop the Gen-
eralized Newton-Euler Inverse Mass Operator (GNEIMO)
constrained molecular dynamics method3, 25 that reduces the
cost of solving the equations of motion in internal coor-
dinates for molecular systems with rigid constraints. The
computational cost of the GNEIMO method scales linearly
with the number of degrees of freedom, instead of the cubic
cost growth of prior methods.26 Later, SOA techniques were
used to extend the GNEIMO method to develop the tractable
GNEIMO-Fixman method for the computation of the Fix-
man potential.27 More significantly, the GNEIMO-Fixman
method is also able to compute the partial derivatives of the
Fixman potential. These partial derivatives define the addi-
tional forces, i.e., the Fixman torque, to be applied within con-
strained MD simulations. The GNEIMO-Fixman method can
be used for branched molecules of arbitrary size with only a
modest increase in computational cost.

In this work, we have evaluated the GNEIMO-Fixman
method by carrying out thorough validation studies and
demonstrations on the use of the GNEIMO-Fixman method
for branched and realistic molecular systems. We have
performed Langevin dynamics simulations of serial and
branched molecular systems of different levels of complexity
to validate the GNEIMO-Fixman methods. We believe that
this work represents the first time that such studies for the
Fixman potential have been carried out for general branched
molecules without restrictions on the size or the topology of
the molecule. The modest computational cost for using the
GNEIMO-Fixman method makes possible the routine inclu-
sion of the Fixman potential in constrained MD simulations.
The improved accuracy obtained by including the Fixman po-
tential opens up the possibility of a broader use of constrained
MD simulations.

II. COMPUTATIONAL METHODS

A. Unconstrained (flexible) models

Cartesian, or absolute coordinates, are the common
choice for coordinates in all-atom, unconstrained MD simu-
lations. Curvilinear bond/angle/torsion (BAT) coordinates are
another important option for describing a molecule’s configu-
ration. BAT coordinates are instances of relative coordinates
and are also often referred to as internal coordinates. The im-
portance of BAT coordinates stems from the fact that the con-
formational motion of molecules is typically determined by
the motion of the torsional angles to a much larger degree
than by the motion of the bond angle and bond length degrees
of freedom. Thus, BAT coordinates offer a natural way for
analyses and models to focus on the dominant motion. For
this reason, entropy analyses in absolute coordinate MD of-
ten involves the transformation of covariance data into BAT
coordinates.28

With motion dominated by torsion angles, a natural path
to simplifying molecular models is to use rigid constraints
to freeze and eliminate some of the bond length and bond
angle BAT coordinates from the model. Torsional MD is a
well known example of such constrained MD where all the
bond and angle coordinates are frozen using rigid constraints,
and only the torsional coordinates are allowed to vary. Rigid
constraints are also often used in entropy and free energy
evaluations.29–32

Unconstrained systems are often referred to as flexible
models. We partition the 3n BAT coordinates into N uncon-
strained coordinates, denoted as α, and (3n − N ) coordinates,
denoted as q, that are to be constrained. In the flexible model,
both q and α are allowed to vary, though the variation in the
q coordinates is often limited by the bond potentials. In the
constrained model, the q coordinates have a fixed value, q0,
and only the α coordinates are allowed to vary.

With p denoting the canonical momentum coordinates for
the unconstrained system, the Hamiltonian, H(α, q, p), has
the form

H(α, q, p) = 1

2
p∗M−1

B (α, q)p + U(α, q), (1)

where MB ∈ R3n×3n denotes the BAT coordinates mass ma-
trix for the unconstrained system, U the force field potential
function, and n the number of atoms. For a temperature, T,
the ensemble partition function, Z(T), is given by

Z(T) = c1

∫
dp dα dq e−H(α,q,p)/kT, (2)

where c1 is a scaling constant, k the Boltzmann constant, and
T the temperature.

Using Eq. (1) in Eq. (2), and integrating over the mo-
mentum coordinates yields the following expression for the
configuration space partition function:33

Z(T) = c2

∫
dα dq det

{
M

1
2
B(α, q)

}
e−U(α,q)/kT. (3)

The probability density function (pdf), ρ(α, q), for the uncon-
strained configuration coordinates thus is

ρ(α, q) ∝ det
{
M

1
2
B(α, q)

}
e−U(α,q)/kT. (4)

Note that

MB = J ∗
BMcJB, (5)

where JB ∈ R3n×3n is the Jacobian for the transformation be-
tween the BAT and Cartesian coordinates, and Mc ∈ R3n×3n

is the constant Cartesian coordinates diagonal mass matrix
consisting of the atom masses along the diagonal. Go and
Scheraga10, 34 developed the following simple expression for
det {JB} for general branched systems,

det {JB} = sin θex d2
2

n∏
i=3

d2
i sin θi, (6)

where di denote the (n − 1) bond lengths, θ i denote the (n − 2)
bond angles, and θ ex denotes an overall molecule orientation
coordinate. A remarkable property of this expression is that
it is independent of the torsional angles, and only depends on
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bond lengths and angles. Using this expression in Eq. (5), we
obtain

det {MB} = det {JB}2
n∏

i=1

m3
i

= sin2 θex d4
2

n∏
i=3

d4
i sin2 θi

n∏
i=1

m3
i , (7)

where mi denotes the mass of the ith atom. This expression is
simple to evaluate. When the potential U(α, q) is independent
of the torsion angles (e.g., for bond angle and bond length po-
tentials), the right-hand side of Eq. (4) is entirely independent
of torsion angles. For this case, the pdf for any torsion angle
β i is thus uniform and given by

ρ(βi) = 1

2π
. (8)

In other words, in the presence of just bond angle and bond
length potentials, all torsional angles have uniform pdfs for
unconstrained molecular models.

B. Constrained models

In constrained models, hard constraints are used to freeze
the (3n − N ) coordinates q at a constant value, q0. The con-
strained model configuration partition function has the form

Z(T) = c3

∫
dα det

{
M 1

2 (α)
}
e−U(α,q0)/kT, (9)

where M(α) ∈ RN×N denotes the mass matrix for the con-
strained model. This matrix is the unconstrained α coordi-
nates sub-block of the MB flexible mass matrix. The pdf for
the constrained configuration coordinates for the constrained
model thus has the form

ρ(α) ∝ det
{
M 1

2 (α)
}
e−U(α,q0)/kT. (10)

Unlike det {MB}, det {M} does depend on the torsion angles.
Comparing Eqs. (4) and (10), it is evident that the pdfs for
the flexible and constrained cases are different. This results in
systematic differences in the statistical behavior of the flex-
ible and constrained models. Thus, while the torsion angles
have uniform pdf in the presence of just bond angle and bond
length potentials for the flexible model, the pdf for the torsion
angles is no longer uniform for constrained models.

In order to remove the statistical biases introduced by
the constraints, Fixman7, 8 proposed the use of the following
U ′(α) modified potential function

U ′(α)
�= U(α, q0) + Uf (α) where

(11)

Uf(α)
�= 1

2
kT ln

det {M(α)}
det {MB(α, q0)}

in place of U(α, q0) in constrained MD simulations. The

“
�= ” symbol above denotes “defined as.” The compensating

potential, Uf, is referred to as the Fixman potential. Substitut-
ing U ′ into Eq. (10) transforms it into agreement with Eq. (4)

for q = q0. The compensated pdfs have the form

ρ(α) ∝ det
{
M

1
2
B(α, q0)

}
e−U(α,q0)/kT. (12)

Thus, the use of the Fixman compensating potential with the
constrained model removes the statistical biases for the α co-
ordinates introduced by the constraints.

The contribution of the MB term to the Uf Fixman po-
tential in Eq. (11) is easy to evaluate using Eq. (7). Indeed,
when the α unconstrained coordinates are just torsion angles,
this contribution does not depend on α, and is constant. For
this case, the Fixman potential expression in Eq. (11) and the
compensated pdf ρ(α) in Eq. (12) simplify to

Uf(α) = cf + 1

2
ln det {M(α)} and ρ(α) ∝ e−U(α,q0)/kT,

(13)
where cf is a constant. Without any loss in generality, we as-
sume from here on that the α unconstrained coordinates are
indeed just the torsion angles. This assumption will help sim-
plify the rest of the development in this paper.

The key computational challenge for evaluating the Fix-
man potential lies with the det {M} term. The M matrix is
dense and configuration dependent, and the associated Ja-
cobian matrices are non-square. For very small systems, it
is possible to derive explicit symbolic expressions for the
determinant.12, 13 However, this approach does not scale well
and is intractable for even moderate size systems.

Fixman7 developed a method to evaluate the mass matrix
determinant for serial-chain topology systems (i.e., systems
with no branches). His method exploits the sparse structure of
the constrained sub-block of M−1

B . This expression has been
used in Refs. 13 and 14 and others for numerical studies of the
Fixman potential for small serial topology constrained MD.
Fixman’s formula becomes more complex to use for larger
serial systems, and cannot be used for branched topology sys-
tems. The lack of practical, general-purpose computational
methods for evaluating the Fixman potential has limited its
use to academic studies over the years.

Use of the Fixman potential in a constrained dynam-
ics simulation requires the evaluation of the Fixman torque
for each of the unconstrained coordinates and applying these
torques for each angle coordinate when solving the equations
of motion. The Fixman torque for an unconstrained coordi-
nate angle is the partial derivative of the Fixman potential
with respect to the coordinate angle. Thus, the Fixman torque,
T (i), for the ith coordinate αi is given by

T (i) = −∂Uf(α)

∂αi
. (14)

Not surprisingly, given the challenges in evaluating just the
Fixman potential, no general method has been available for
computing the Fixman torque. The sole exception to this is
the GNEIMO-Fixman method described in Sec. II C.

C. GNEIMO-Fixman method for calculating
the Fixman potential

Jain27 developed the GNEIMO-Fixman general method
for evaluating the Fixman potential and torque, for arbitrary
size, serial, and branched constrained models. This method
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makes use of the SOA analytical techniques for the factoriza-
tion and inversion of the constrained mass matrix M. For the
sake of completeness we paraphrase the main ideas here, and
refer the reader to Refs. 3 and 35 for detailed definitions and
derivations. The key spatial operator expressions for the fac-
torization and inversion of the mass matrix3, 35 are as follows:

M = HφMφ∗H∗,

M = [I + HφK]D[I + HφK]∗,

[I + HφK]−1 = [I − HψK],

M−1 = [I − HψK]∗D−1[I − HψK].

(15)

The “*” superscript above denotes matrix transpose. The first
expression is known as the Newton-Euler operator factoriza-
tion of the mass matrix M in terms of the block-diagonal H
hinge articulation, the lower-triangular φ rigid body propaga-
tion, and the block-diagonal M link spatial inertia operators.
The block diagonal terms of H define the torsional axes of
rotation for each torsional degree of freedom. The block di-
agonal elements of M are the spatial inertias for each of the
clusters. The φ(i, j) block element propagates spatial forces
on the jth cluster rigidly to the ith cluster. While this factoriza-
tion has non-square factors, the second expression describes
an alternative factorization involving only square factors with
block diagonal D and block lower-triangular [I + HφK] ma-
trices. This factorization involves additional spatial operators
that are associated with the articulated body (AB) recursive
algorithm3 for the system. The next expression describes an
analytical expression for the inverse of the [I + HφK] opera-
tor. Using this leads to the final analytical expression for the
inverse of the mass matrix. These operator expressions hold
generally for branched systems, irrespective of the number
of bodies, the types of hinges, and the specific topological
structure of the system.35 The last expression with the oper-
ator factorization of the mass matrix inverse forms the basis
for the recursive GNEIMO constrained dynamics algorithm3

whose computational cost scales just linearly with the number
of degrees of freedom in the constrained model.

From the second expression in Eq. (15), it follows that

det {M} = det {I + HφK}2 det {D}

=
N−6∏
i=0

det {D(i)} = det {D(0)}
N−6∏
i=1

D(i). (16)

The above expression uses the fact that det {I + HφK} = 1
and that D is block-diagonal. For molecular models, all of
the D(i) elements are scalars except for the base cluster D(0)
which is a 6 × 6 matrix. The D(i) terms are available as a
by product of the GNEIMO constrained dynamics algorithm.
Substituting Eq. (16) into Eq. (13), the Fixman potential ex-
pression becomes

Uf(α) = cf + 1

2
ln det {D(0)} + 1

2

N−6∑
i=1

lnD(i). (17)

Since all of the D(i) are available from the GNEIMO algo-
rithm, Eq. (17) provides a simple way, and with negligible

additional cost, to extend the GNEIMO constrained dynamics
algorithm to also evaluate the Fixman potential for arbitrary
sized branched molecular systems! This is the GNEIMO-
Fixman method for evaluating the Fixman potential as orig-
inally described in Ref. 27

D. GNEIMO-Fixman method for calculating
the Fixman torque

Combining Eqs. (13) and (14), the expression for the Fix-
man torque for the coordinate αi is

T (i) = −1

2

∂ ln det {M(α)}
∂αi

. (18)

Jain27 developed a simple expression for this Fixman torque.
We state here standard results from matrix calculus that play a
key role in these simplifications. For any smooth scalar func-
tion g(X(y)) of a matrix X ∈ Rm×n, we have the identity

∂g(X(y))

∂y
= Trace

{[
∂g

∂X

]∗
∂X(y)

∂y

}
, (19)

where ∂g
∂X and ∂X(y)

∂y are m × n matrices whose elements are
defined as

∂g

∂X
(i, j)

�= ∂g

∂X(i, j)
and

∂X

∂y
(i, j)

�= ∂X(i, j)

∂y
. (20)

Another useful matrix calculus identity is36

∂ ln det {X}
∂X

= {X∗}−1. (21)

References 27 and 35 use these matrix calculus expressions,
and other SOA analysis, to derive explicit expressions for the
Fixman torque. Reference 35 uses Eq. (17) as a point of de-
parture while Ref. 27 starts with Eq. (18). For the sake of
completeness we include the final expressions for the Fixman
torque, but refer the reader to the original references for the
derivation and definition details. The Fixman torque for the
ith torsion angle is27

T (i) = − Trace{P(i)ϒ(i) H̃∗
ω(i)}. (22)

The P(i), ϒ(i), and H̃∗
ω(i) are all 6 × 6 matrices. A slightly

simpler version of Eq. (22) is

T (i) = h∗(i) F[Q11 + Q22] with

P(i)ϒ(i) =
[

Q11 Q12

Q21 Q22

]
, Qij ∈ R3×3.

(23)

In the above, F(A) maps an arbitrary 3 × 3 matrix A into a
3-vector v such that the A − A* skew-symmetric matrix is
the 3 × 3 cross-product matrix for v. Reference 35 includes a
generalization of the above expression for the case where the
α coordinates happen to also include bond length coordinates.

It is worth emphasizing that the expression for the torque
in Eq. (23) holds for branched systems of any size. It forms
the basis of the GNEIMO-Fixman method for evaluating Fix-
man torques. The P(i) matrix for each cluster is once again
a by-product of the GNEIMO algorithm for solving the con-
strained dynamics. The computation of the 6 × 6 ϒ(i) matri-
ces for the clusters on the other hand requires an additional
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(a) (b)

FIG. 1. Fixman potential and torque plots for a three-bond (C4) chain with 90◦ bond angle. (a) Comparison of Fixman potential values from the analytical
expression in Eq. (24) and the SOA based expression in Eq. (17). (b) Comparison of Fixman torque values from the SOA based expression in Eq. (23) and those
from numerically differentiating the Fixman potential from Eq. (17).

recursive scatter algorithm that starts at the base cluster.27, 35

This recursion also makes use of quantities available from the
GNEIMO dynamics algorithm. Its computational cost scales
linearly with the number of torsion degrees of freedom. Thus,
the overall cost of computing and including the Fixman torque
into the simulation remains of linear computational complex-
ity, and adds only marginally to the GNEIMO constrained dy-
namics computational cost as seen later in Sec. III. The gener-
ality and low cost of the GNEIMO-Fixman method for eval-
uating T (i) is in stark contrast with the symbolic techniques
previously employed8 that are practical for only small serial
systems. The GNEIMO-Fixman method makes possible the
routine inclusion of the Fixman potential in constrained MD
simulations. We now present our results on validating and
testing the effect of the Fixman potential and torque on con-
strained MD simulations of serial and branched molecules.

III. RESULTS AND DISCUSSION

A. Numerical validation of the GNEIMO-Fixman
potential and torque calculations

The GNEIMO-Fixman expressions in Eqs. (17) and (23)
can be used to recursively compute the Fixman potential and
torque, respectively, for any unconstrained degree of freedom
in a serial or branched molecule. We describe here numerical
results that validate the correctness of these expressions for
our computations. We begin with the Fixman potential, since
there exists prior work that we can compare against.

Pear and Weiner12, 13 derived symbolic closed form ex-
pressions for the Fixman potential for the C4 idealized 3 bond
serial chain system with fixed bond lengths, and with the bond
angles set to 90◦. For this system, they calculated the mass
matrix determinant to be

det {M(α)} = c5(35 + 4cos(α) − 16cos2(α) + cos4(α),
(24)

where α is the single torsion angle, and c5 is a constant depen-
dent on the bond lengths and the masses in the system. A com-

parison of the Fixman potential values obtained from Eq. (24)
with those calculated using Eq. (17) for the GNEIMO-Fixman
method, presented in Figure 1(a), shows excellent agreement
between them.

Patriciu et al.20 used an algorithmic technique, similar to
the one in Jain,27 to calculate the Fixman potential for ideal-
ized serial chains of arbitrary length. Figure 2 shows the con-
tour of our Fixman potential values for the two torsion angles
in the C5 four-bond serial chain system. These are in excellent
agreement with the contour plot presented by Patriciu et al.20

The close numerical match with prior published data provides
positive validation evidence for the GNEIMO-Fixman tech-
niques for the Fixman potential – for at least serial systems.

Since there is no prior data for the Fixman torque in lit-
erature, we validated our expression for the Fixman torque,
Eq. (23), by comparing its calculated values to those ob-
tained by numerically differentiating the Fixman potential
values from Eq. (17). Figure 1(b) shows that the values ob-
tained via the two different methods are identical for the C4

FIG. 2. Contour plot of the Fixman potential for the pair of torsion angles
for a C5 chain with 109◦ bond angle.
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system. We also carried out similar validation studies for the
Fixman torque for larger systems. Figure S1 in the supple-
mentary material44 shows the contour plot of the Fixman
torque for two torsional angles in C5 where we observe simi-
lar agreement.

B. Descriptions of the MD simulations

We carried out MD simulations to study the effective-
ness of the Fixman potential in recovering the thermody-
namic pdf of torsion angles for both serial and branched sys-
tems. The effect of Fixman potential can be most clearly
seen by comparing the pdfs calculated from torsional MD
simulations with Fixman potential to the pdfs from uncon-
strained MD simulations. To enhance conformational sam-
pling, we used Langevin dynamics for all the simulations. All
the simulations were performed for isolated single molecules.
The simulations were carried out at 300 K temperature and
with a damping constant of 0.01/fs. We performed three
sets of simulations, namely, FLEXIBLE, TORSIONAL, and
FIXMAN, for each system. These are:

1. FLEXIBLE: Flexible Cartesian Langevin dynamics
simulation with only bond length and bond angle poten-
tials. The non-bonded Coulombic and van der Waals po-
tentials were turned off in these simulations. The U(α, q)
potential here does not depend on torsional angles, and
therefore as discussed earlier, every αi torsion coordi-
nate in FLEXIBLE simulations has an expected uniform
pdf given by Eq. (8):

ρ(αi) = 1

2π
.

2. TORSIONAL: Constrained Langevin dynamics simula-
tion without Fixman potential. These are torsional dy-
namics simulations where the bond length and angle co-
ordinates are fixed as hard constraints and hence these
potentials were not used. The non-bonded Coulombic
and van der Waals potentials were turned off in these
simulations. For this case the expected torsion pdfs are
given by Eqs. (10) and (16):

ρ(α) ∝ det
{
M 1

2 (α)
} =

[
det {D(0)}

N−6∏
i=1

D(i)

] 1
2

.

(25)

3. FIXMAN: Constrained Langevin dynamics simulation
with Fixman potential. These are the same simulations
as TORSIONAL, but with the additional Fixman poten-
tial included. In this case the expected torsion pdfs given
by Eq. (13) once again simplify to the uniform pdf

ρ(αi) = 1

2π
.

The FLEXIBLE simulations do not use any hard con-
straints, and establish the expected uniform pdf for the torsion
angles. The TORSIONAL simulations measure the pdf devi-
ations from the uniform distribution stemming from the con-
straints. The probability distributions for the torsions in these

simulations are governed by Eq. (25). The FIXMAN simula-
tions assess the extent to which the use of the Fixman poten-
tial in the constrained simulations recover the uniform distri-
butions for the FLEXIBLE simulations.

For the unconstrained FLEXIBLE simulations, the
Langevin dynamics has the form

Mẍ = −∇xU − γ Mẋ +
√

2γ kT M
1
2 dW, (26)

where x denotes the Cartesian coordinates, γ is the damp-
ing coefficient, dW is a vector of independent Weiner pro-
cesses, and U the bond angle and bond length potentials. The
BBK algorithm37 was used for the numerical integration of
the equations of motion.

C. MD simulation results for serial chains

We performed FLEXIBLE, TORSIONAL, and FIXMAN
simulations for C4, C5, C11, and C15 serial chain systems.
Each simulation was run with a timestep of 1 fs for a total
of 50 ns, and the coordinates and energy were recorded every
100 steps. In these simulations, the beads were assigned equal
masses of 14 amu, and equal bond lengths of 1.54 Å and 90◦

bond angle. For the FLEXIBLE simulation, the bond and an-
gle spring constants were set to 83.66 kcal/Å 2 and 43.46 kcal,
respectively.

For the C4 system, Pear and Weiner12 have previously
shown that the constrained model with the Fixman potential
recovers the uniform pdf for the torsion angles. Figure 3(b)
shows the pdf for various values of the single torsion angle
in C4 system. As expected the FLEXIBLE simulations show
a uniform pdf while the TORSIONAL simulations show a bi-
modal biased distribution. The dashed lines in Figures 3(a)
and 3(c) represent the predicted distributions from Eq. (8),
and in Figure 3(b) from Eq. (25). The constrained model’s
torsion angle has a bimodal probability distribution with

(a)

(b)

(c)

FIG. 3. Torsion angle distributions for the three-bond C4 chain, for (a)
FLEXIBLE, (b) TORSIONAL, and (c) FIXMAN simulations. The dashed
lines represent the predicted distributions, with the ones in (a) and (c) be-
ing uniform pdfs from Eq. (8), and the one in (b) from Eq. (25). The bin size
for the histograms is dα = 7.2◦.
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FIG. 4. Free energy distribution in a three-bond chain C4 system, plotted as
a function of the torsion angle. The negative of the Fixman potential, −Uf, is
very close to the free energy in the TORSIONAL simulation, demonstrating
that the application of the Fixman potential corrects the bias in the free en-
ergy landscape of the TORSIONAL model. The free energies were calculated
using bins of size 7.2◦ for the torsion angles.

maxima at ≈±83◦ and minima at 0◦ and ±180◦ as seen in
Figure 3(b). The presence of such a bimodal structure in the
pdf illustrates the inherent bias in TORSIONAL simulations.
This bias can affect the torsion angle probability distribution
function, the transition rates between conformational states
and the free energy surface. The FIXMAN simulation recov-
ers the uniform pdf as seen in the FLEXIBLE simulation
(Figure 3). This effectively demonstrates that the application
of the Fixman potential compensates for the bias and removes
the distortions of the potential energy surface introduced by
the hard constraints in this system.

The corrective feature of the Fixman potential can also be
observed in the free energy landscape derived from the pdf of
the simulation (Figure 4). The free energy was calculated us-
ing the equation 
G(αi)/kT = −ln (ρ(αi)). As such, the uni-
form free energy distribution shown in this figure is equal to
−ln (1/360). A comparison of the free energy in the TOR-
SIONAL simulation of the C4 system (shown in blue line in
Figure 4) to the negative of the Fixman potential energy from
the FIXMAN simulation (dotted pink line) shows that the mea-
sured value of the Fixman potential is almost equal to and op-
posite in sign to the inherent free energy in the TORSIONAL
simulation, and that the net free energy in the FIXMAN simu-
lation agrees with that of the FLEXIBLE simulation (broken
green and red lines).

In addition to the three-bond C4 chain, we performed
Langevin dynamics simulations and calculated the pdf for
all the torsion angles for a four-bond serial chain C5 (Fig-
ure S2 in the supplementary material44), a ten-bond serial
chain C11 (Figure S3 in the supplementary material44), and
fourteen-bond serial chain C15. For every torsion angle in
all of these cases, the application of the Fixman potential re-
covered the ideal uniform distribution of the flexible model.
Figure 5 shows the computed distributions for the C15 TOR-
SIONAL simulations, as well as the recovered uniform distri-
butions for the same system in the FIXMAN simulations. This
again demonstrates that the Fixman potential corrects for the
bias generated in constrained dynamics.

The three-dimensional structures corresponding to the
global minimum and maximum of the Fixman potential,
as extracted from the trajectories for C5 and C11 systems
are shown, in Figures 6(a) and 6(b). Our results are con-
sistent with the corresponding results presented by Patriciu
et al.,20 who observed that, for serial chains, the minimum
of the Fixman potential occurs when the structure is in a

FIG. 5. Probability distribution functions for torsion angles in a fourteen-bond C15 chain. The application of the Fixman potential in the TORSIONAL model
recovers the uniform pdf for all the torsion angles. The bin size for the histograms is dα = 7.2◦.
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(a) (b)

FIG. 6. The global minimum and maximum configurations of the Fixman potential for (a) the C5 and (b) the C11 molecule correspond to the self-intersecting
planar and self-intersecting spatial conformations, respectively. In the self-intersecting planar conformation, each torsion angle is 0◦. In the self-intersecting
spatial conformation, each torsion angle is ≈±83◦.

self-intersecting planar configuration, while the maximum oc-
curs when the structure is in a self-intersecting spatial con-
figuration. In the self-intersecting planar conformations, the
value of each torsion angle corresponds to the global mini-
mum of the Fixman potential for a three-bond chain, with the
torsion angle 0◦, as presented in Figure 1(a). Similarly, in the
self-intersecting spatial conformation, the value of each tor-
sion corresponds to one of the maxima of the Fixman poten-
tial for a three-bond chain, ≈±83◦.

D. MD simulations for branched systems

In Sec. III C, we simulated idealized serial chains consist-
ing of identical masses, bond lengths, and bond angles. Natu-
ral polymers, in contrast, are much more complex – they are
generally asymmetric, branched systems consisting of large
numbers of atoms with varying masses, bond lengths, and
bond angles. The application of the Fixman potential on con-
strained MD simulations of such branched systems has, to our
knowledge, not been carried out so far.

To investigate the effect of the application of the Fix-
man potential in generalized branched systems, we performed
Langevin dynamics FLEXIBLE, TORSIONAL, and FIXMAN
simulations on three realistic branched peptides, namely, ala-
nine dipeptide, valine dipeptide, and a ten amino acid pep-
tide chignolin.38 The pdf of the torsion angles were calculated
from the trajectories obtained from these simulations.

1. Small branched peptides

In this section, we look at the equilibrium statistical
properties of two small branched peptide systems, alanine
dipeptide, and valine dipeptide, whose chemical structures
are shown in Figures 7(a) and 7(b). The peptides are mod-
eled as a collection of rigid bodies, referred to as clusters,
connected by flexible hinges. Each rigid cluster is a collec-
tion of atoms within which all bond lengths and bond angles
are frozen via rigid holonomic constraints, and the hinges are
the torsions connecting these rigid clusters. All the terminal
bonds are treated as rigid, as are the aromatic ring moieties
present in the side chains of phenylalanine, tyrosine, trypto-
phan, and histidine. In this clustering scheme the alanine and
valine dipeptides have eight and ten clusters, respectively. The
bond length and bond angle parameters are from the AM-
BER99SB forcefield.39 For each of the FLEXIBLE, TOR-

SIONAL, and FIXMAN sets, we ran 3 separate simulations,
each with a timestep of 1 fs, and a simulation length of 100
ns, for a total of 300 ns of simulation data. The coordinates
and energy were recorded every 200 steps.

Figures 7(c) and 7(d) show the pdfs for the C1 − N2 −
C2

α − C2 (marked by green and red circles in Figs. 7(a) and
7(b), respectively) torsion for both the alanine dipeptide and
valine dipeptide molecules. We observe that, for both these
systems, the TORSIONAL simulations produce bimodal dis-
tributions, while the FIXMAN simulations recover the uni-
form pdf from the FLEXIBLE simulations. To quantify the
effectiveness of the Fixman potential in recovering the pdf
for each torsion in the system, we calculated the average root
mean square deviation of the pdfs obtained from the simula-
tions, from the uniform pdf. These RMS deviations are de-
noted Rflex, Rtor, and RFix for the FLEXIBLE, TORSIONAL,
and FIXMAN simulation pdfs, respectively.

For alanine dipeptide, we find that Rtor = 1.0 × 10−3,
RFix = 8.7 × 10−5, and Rflex = 6.5 × 10−5. For valine dipep-
tide, we find that Rtor = 8.4 × 10−4, RFix = 7.9 × 10−5, and
Rflex = 6.6 × 10−5. This again shows that, with the applica-
tion of the Fixman potential, we recover the uniform pdfs as
observed for the flexible model.

In addition to individual torsions, we also evaluated the
joint probability distribution functions for pairs of torsion
angles for the three sets of FLEXIBLE, TORSIONAL, and
FIXMAN simulations. A plot of the joint pdf of C1

α − C1

− N2 − C2
α torsion (α1) versus the C1 − N2 − C2

α − C2 tor-
sion (α2) is presented in Figure 8. The joint pdf of backbone
torsion angles from FLEXIBLE simulations (Figure 8(a)) is
close to flat, and so is the joint pdf for FIXMAN (Figure 8(c)).
The joint pdf from TORSIONAL simulations on the other
hand are biased as shown in Figure 8(b). This demonstrates
that the Fixman potential recovers not just the single torsion
pdfs, but also joint torsion pdfs for pairs of torsion angles.

2. Moderate sized branched peptide

We tested the effects of the Fixman potential for a larger
branched peptide, namely, the ten amino acid β-hairpin pep-
tide called chignolin (Figure 9). Again, TORSIONAL, FLEX-
IBLE, and the FIXMAN Langevin simulations were per-
formed. The terminal bonds and rings were clustered, as in the
case of the alanine dipeptide, for the TORSIONAL and FIX-
MAN simulations. We used the nuclear magnetic resonance
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(a) (b)

(c) (d)

FIG. 7. Structures of (a) alanine dipeptide and (b) valine dipeptide. The atoms highlighted with the green circles in (a) and the red circles in (b) constitute the
C1 − N2 − C2

α − C2 torsion in the respective systems. Probability distributions for these torsions for alanine dipeptide and valine dipeptide, respectively, in (c)
and (d). The application of the Fixman potential in the TORSIONAL model recovers the uniform pdf observed for the FLEXIBLE model. The bin size for the
histograms is dα = 7.2◦.

(NMR) structure from the protein data bank (pdb ID: 1UAO)
as the starting structure for the simulations. For each of the
TORSIONAL and FIXMAN sets, we ran four different simu-
lations, each with a timestep of 1 fs and a simulation length
of 100 ns, for a total of 300 ns of data. The coordinates and
energy were recorded every 200 steps.

The torsion angle pdfs for the torsions labeled C1

− N2 − C2
α − C2, C4 − N5 − C5

α − C5, and C7 − C8 − C8
α

− C8 are shown in Figure 9. The atoms comprising these three
torsions are shown as colored spheres in Figure 9(a). These

three torsions are located at different parts of the peptide. We
find that, in all three cases, the TORSIONAL simulations pro-
duce a bimodal probability distribution. With the introduc-
tion of the Fixman potential, however, the probability distri-
butions become nearly flat as we expect for a fully flexible
model.

For chignolin, the pdf deviation measures were Rtor = 1.2
× 10−3 and RFix = 8.6 × 10−5. Again, we find that, with the
application of the Fixman potential, the pdfs for the FIXMAN
model are very close to the uniform pdf.

(a) (b) (c)

FIG. 8. Joint probability distribution function of the C1
α − C1 − N2 − C2

α (α1) and C1 − N2 − C2
α − C2 (α2) torsions for alanine dipeptide. (a) FLEXIBLE

simulations, (b) TORSIONAL simulations, and (c) FIXMAN simulations. The bin size for each axis is dα = 18◦.
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(a) (b)

(c) (d)

FIG. 9. The structure of the ten-residue β-hairpin protein, chignolin in (a). The green, red, and blue sphere atoms constitute the C1 − N2 − C2
α − C2 torsion,

the C4 − N5 − C5
α − C5 torsion, and the C7 − N8 − C8

α − C8 torsion, respectively. The application of the Fixman potential in the TORSIONAL model recovers
the expected uniform pdf as see in (b) for the C1 − N2 − C2

α − C2 torsion, (c) for the C4 − N5 − C5
α − C5 torsion, and (d) for the C7 − N8 − C8

α − C8 torsion.
The bin size for the histograms is dα = 7.2◦.

E. Computational cost

So far, we have focused on validating the correctness of
the GNEIMO-Fixman method in evaluating the Fixman po-
tential and torque, and on verifying that their use does indeed
correct the statistical biases observed in constrained TOR-
SIONAL simulations. Any practical use of the Fixman po-
tential introduces another important consideration – the ad-
ditional computational cost involved in calculating the Fix-
man potential and torque. Figure 10 shows that the computa-
tional cost for the GNEIMO dynamics solution scales linearly
with system size, and that the introduction of the GNEIMO-
Fixman method leads to a 24% increase in the computa-
tional cost. This increase is modest in large part because the
GNEIMO-Fixman methods use several by-products from the
GNEIMO method for solving the constrained dynamics. Most
of the additional cost arises from the recursive evaluation of
the ϒ(i) matrix for each cluster.

We now examine the computational cost implications for
regular all-atom molecular dynamics simulations. In our ex-
perience, each integration step for TORSIONAL simulations
with all-atom force fields is typically twice as expensive (for
a moderate sized system such as calmodulin with about 150
residues) as corresponding all-atom FLEXIBLE simulations
due to the added complexity of solving the constrained equa-
tions of motion. However, this added cost is more than off-
set by the ability to use time steps of the order of 5–20 fs
with TORSIONAL simulations compared with the 0.5–2 fs
typical for FLEXIBLE simulations. The story changes only
slightly with the inclusion of the Fixman potential. As ob-
served from Figure 10, each time step in a GNEIMO-Fixman
simulation with full force fields costs about 2.24 times (in-
stead of 2 times for TORSIONAL) the cost of FLEXIBLE
simulation time steps. The modest increase in computational
cost is once again easily overcome by the larger time step
size in GNEIMO-Fixman simulations making possible the
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FIG. 10. The computational time for the dynamics evaluation versus the
number of clusters for the GNEIMO method with and without the GNEIMO-
Fixman method. Including GNEIMO-Fixman increases GNEIMO costs by
24%.

routine inclusion of the Fixman correction potential within
constrained MD simulations.

IV. CONCLUSIONS

The Fixman compensating potential has been known to
be critical in improving the accuracy of constrained MD sim-
ulations. However, the lack of practical algorithms to evaluate
the Fixman potential has been a significant impediment for the
development and application of constrained MD simulations.
We have previously developed computationally efficient al-
gorithms to solve the equations of motion for constrained
MD simulations, and have demonstrated their application to
various important problems in protein dynamics.3–6, 25, 40–43

In this paper we have studied the SOA based GNEIMO-
Fixman algorithm for calculating the Fixman compensating
potential and torque.27 We have run numerical experiments to
cross-validate the GNEIMO-Fixman algorithm against prior
published data for serial topology systems. We have further
demonstrated the effectiveness of the application of the Fix-
man potential and torque in recovering the probability distri-
bution function of single and joint torsion angles for simplistic
models such as C4, C5, C11, C15 as well as realistic branched
molecules – alanine and valine dipeptide and a ten amino acid
peptide, chignolin.

To the best of our knowledge, this is the first demonstra-
tion of the use of the Fixman potential and torque for realistic
branched molecular systems of arbitrary size. Our results con-
firm the validity of our computational algorithms, and also
verified the modest computational cost for using them. Our
results establish the viability of using the Fixman potential
routinely in constrained MD simulations to remove undesired
statistical biases from these simulations. In future work we
expect to study the interplay between the Fixman potential
and all-atom forcefields for large and realistic molecules. We
also will investigate possibilities for improving absolute en-

tropy and free energy computations using constrained dynam-
ics simulations.
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